
Heterogeneous Facility Location with Limited Resources

Argyrios Deligkas,1 Aris Filos-Ratsikas,2 Alexandros A. Voudouris3

1Department of Computer Science, Royal Holloway University of London
2Department of Computer Science, University of Liverpool

3School of Computer Science and Electronic Engineering, University of Essex
argyrios.deligkas@rhul.ac.uk, aris.filos-ratsikas@liverpool.ac.uk, alexandros.voudouris@essex.ac.uk

Abstract

We initiate the study of the heterogeneous facility location
problem with limited resources. We mainly focus on the fun-
damental case where a set of agents are positioned in the line
segment [0, 1] and have approval preferences over two avail-
able facilities. A mechanism takes as input the positions and
the preferences of the agents, and chooses to locate a single
facility based on this information. We study mechanisms that
aim to maximize the social welfare (the total utility the agents
derive from facilities they approve), under the constraint of
incentivizing the agents to truthfully report their positions and
preferences. We consider three different settings depending
on the level of agent-related information that is public or pri-
vate. For each setting, we design deterministic and random-
ized strategyproof mechanisms that achieve a good approxi-
mation of the optimal social welfare, and complement these
with nearly-tight impossibility results.

1 Introduction
The truthful facility location problem is one of the most
prominent paradigms in environments with strategic par-
ticipants, and it was in fact the prototypical problem used
by (Procaccia and Tennenholtz 2013) to put forward their
very successful research agenda of approximate mecha-
nism design without money about a decade ago. Since then,
the problem has been extensively studied in the literature
of theoretical computer science and artificial intelligence,
with a plethora of interesting variants emerging over the
years. Among those, one particularly meaningful variant,
which captures several important scenarios, is that of hetero-
geneous facility location, introduced by (Feigenbaum and
Sethuraman 2015) and studied notably by Serafino and Ven-
tre (2015, 2016), Anastasiadis and Deligkas (2018), Fong
et al. (2018), Chen et al. (2020) and Li et al. (2020). In this
setting, there are multiple facilities, and each of them plays a
different role – for example, a library and a basketball court.
Consequently, the preferences of the agents for the possible
outcomes do not only depend on the location of the facil-
ity (as in the original model of Procaccia and Tennenholtz
(2013)), but also on the type of the facility. As a result, the
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mechanism design problem becomes far more challenging.1
While the literature on heterogeneous facility location is

quite rich by this point, there is a fundamental setting that
has surprisingly eluded previous investigations. In particu-
lar, all previous works have considered the case of multi-
ple (predominantly two) facilities which all have to be lo-
cated, based on the positions and the preferences of the
agents. However, in many real-world applications, resources
are limited, and therefore a decision has to be made about
which subset of the facilities should be build and where. For
instance, the governing body might have sufficient funds to
build only one of two options, either a library or a basketball
court. The decision must be made based on the preferences
of the agents over the two facilities, but also on their posi-
tions, in a way that incentivizes the agents to reveal all their
private information truthfully; this is clearly a challenging
mechanism design problem.

1.1 Our Setting
We initiate the study of the heterogeneous facility location
problem with limited resources. We focus on the most fun-
damental case where there are two facilities, and only one of
them must be located somewhere in the line segment [0, 1].
In particular, there is a set of agents, each of whom is as-
sociated with a position in [0, 1] and an approval preference
over the facilities. An agent may approve one of the two fa-
cilities or both, and obtains positive utility2 only if a facility
that she approves is built; otherwise, she has zero utility ir-
respectively of her position.

Our goal is to design strategyproof mechanisms that
choose and locate a single facility, so as to maximize the
social welfare (the total utility of the agents) and incentivize
the agents to truthfully report their private information. We
study the following three settings depending on the level of

1In particular, the preference domain is no longer single-
peaked, and therefore maximizing the happiness of the agents can-
not be achieved by simple median mechanisms.

2We remark that in several facility location settings (e.g., see
(Procaccia and Tennenholtz 2013; Lu, Wang, and Zhou 2009; Lu
et al. 2010)), the agents are associated with costs instead of utili-
ties. In the literature of heterogeneous facility problems however,
the setting is commonly defined in terms of utilities, as there is no
meaningful way of assigning a cost to undesirable outcomes, such
as a facility which the agent does not approve.
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Deterministic Randomized
General 2 (1, 2]
Known-preferences 2 [4/3?, 4/3]
Known-positions [13/11, 2] (1, 3/2]

Table 1: Overview of our results for deterministic and ran-
domized strategyproof mechanisms. The lower bound 4/3
(marked with ?) in the known-preferences setting holds only
for the class of Random-Median mechanisms defined in Sec-
tion 4. For the general and known-preference settings, the
bound of 2 also holds for the more general case where we
can choose k out of m ≥ 2 facilities, for appropriate values
of k and m.

information about the positions and the preferences of the
agents that is assumed to be public or private.

• General setting: Both the positions and the preferences
are private information of the agents.

• Known-preferences setting: The positions are private in-
formation of the agents, whereas the preferences are pub-
lic information.

• Known-positions setting: The preferences are private in-
formation of the agents, whereas the positions are public
information.

We measure the performance of a strategyproof mechanism
by its approximation ratio, defined as the worst-case ratio
over all instances of the problem between the maximum pos-
sible social welfare and the social welfare achieved by the
mechanism. For each of the aforementioned settings, we de-
rive upper and lower bounds on the achievable approxima-
tion ratio of strategyproof mechanisms. An overview of our
results can be found in Table 1.

1.2 Discussion of our Results
We start our investigation by studying deterministic mech-
anisms in the general setting, where we show that a sim-
ple group-strategyproof mechanism, which we call Middle
mechanism, achieves an approximation ratio of 2 (Theo-
rem 1); the same guarantee extends to the other two settings
we consider. We complement this result by showing a lower
bound of 2 on the approximation ratio of any determinis-
tic strategyproof mechanism, even when the preferences of
the agents are assumed to be known (Theorem 2). Combin-
ing these two results, we completely resolve the problem
of identifying the best possible deterministic strategyproof
mechanism for both the general and the known-preferences
settings. For the known-positions setting, we show that there
is no deterministic strategyproof mechanism with approxi-
mation ratio better than 13/11 (Theorem 6).

We also consider randomized mechanisms, and provide
improved approximation guarantees for both the known-
preferences and the known-positions settings. More specif-
ically, for the known-preferences setting we derive a novel
universally group-strategyproof mechanism, termed Mirror
mechanism, which achieves an approximation ratio of 4/3
(Theorem 4). This mechanism is in fact a member of a larger

class of universally group-strategyproof mechanisms, and as
we prove, it is the best possible mechanism in this class
(Theorem 5). For the known-positions setting, we prove that
the well-known Random Dictatorship mechanism, equipped
with a carefully chosen tie-breaking rule for the agents that
approve both facilities, is a universally group-strategyproof
mechanism and achieves an approximation ratio of 3/2
(Theorem 7).

Finally, we make initial progress in more general settings
with m ≥ 2 facilities, from which we can choose to locate
k < m. We consider three variations based on whether the
utility of each agent is determined by all the facilities she ap-
proves, or by the one that is the closest to or the farthest away
from her position. For such utility classes, we show that an
adaptation of the Middle mechanism still has an approxima-
tion ratio of 2 in the general setting, it is group-strategyproof
for k = 1, but it is only strategyproof for k ≥ 2 (Theorem 8
and Lemma 9). We complement this result by showing that
when k ≤ 2m it is impossible to do better, even when the
preferences of the agents are known (Theorem 10).

1.3 Related Work
As we mentioned earlier, the literature on truthful facility
location is long and extensive; here, we discuss only those
works that are most closely related to our setting. Besides the
very recent paper of Elkind, Li, and Zhou (2022) who con-
sider a setting similar to ours (where the goal is to choose a
subset of facilities given approval preferences), virtually all
other papers on heterogeneous facility location is that they
consider settings with two facilities, where both facilities
have to be built, and the utility/cost of an agent is calculated
with respect to the closest or the farthest among the two.

Chen et al. (2020) consider a setting in which agents have
approval preferences over the facilities, similarly to what we
do here, and for which the positions of the agents are known.
Li et al. (2020) consider a more general metric setting along
the lines of Chen et al. (2020), and design a deterministic
mechanism which improves upon the result of Chen et al.
(2020) when the metric is a line. Fong et al. (2018) consider
a setting in which the agents have fractional preferences in
(0, 1); similarly to us, besides studying the general setting,
they also consider restricted settings with known preferences
or known positions. Serafino and Ventre (2015, 2016) con-
sider a discrete setting, where the agents are positioned on
the nodes of a graph, and the facilities must be located on
different nodes. Feigenbaum and Sethuraman (2015) were
the first to study heterogeneous facility location, by present-
ing a “hybrid” model combining the standard facility loca-
tion problem with the obnoxious facility location problem
(Cheng, Yu, and Zhang 2011, 2013). This setting was ex-
tended by Anastasiadis and Deligkas (2018), who allowed
agents to be indifferent between whether a facility would be
built or not. Duan et al. (2019) study a setting where the goal
is to locate two facilities under the constraint that the dis-
tance between the locations of the facilities is at least larger
than a predefined bound.

Li, Wang, and Zhang (2020) study a conceptually sim-
ilar but fundamentally different facility location problem
under budget constraints. In their setting, the facilities are
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strategic and need to be compensated monetarily in order
for them to be built; the goal is to maximize an aggregate
objective given that the total payment is below a prede-
fined budget. Besides these works, there is long literature
of (homogeneous) facility location, studying different objec-
tives (Alon et al. 2010; Cai, Filos-Ratsikas, and Tang 2016;
Feigenbaum, Sethuraman, and Ye 2013; Feldman and Wilf
2013), multiple facilities (Escoffier et al. 2011; Fotakis and
Tzamos 2013; Lu, Wang, and Zhou 2009; Lu et al. 2010),
different domains (Schummer and Vohra 2002; Tang, Yu,
and Zhao 2020; Sui, Boutilier, and Sandholm 2013; Sui
and Boutilier 2015), different cost functions (Filos-Ratsikas
et al. 2015; Fotakis and Tzamos 2016), and several interest-
ing variants (Golomb and Tzamos 2017; Kyropoulou, Ven-
tre, and Zhang 2019; Zhang and Li 2014; Filos-Ratsikas
and Voudouris 2021). The very recent survey of Chan et al.
(2021) provides an excellent overview of the literature on
mechanism design for facility location problems and the sur-
vey of Anshelevich et al. (2021) provides an overview of the
literature on distortion, which has been applied for analyzing
facility location settings.

2 Preliminaries
We consider a facility location setting with a set N of n
agents and two facilities; we will discuss extensions to set-
tings with more than two facilities in Section 6. Every agent
i ∈ N has a position xi ∈ [0, 1]; let x = (xi)i∈N be the
position profile consisting of the positions of all agents. Fur-
thermore, every agent i ∈ N also has an approval preference
(or, simply, preference) ti = {0, 1}2 over the two facili-
ties, where tij = 1 denotes that the agent approves facility
j ∈ {1, 2} and tij = 0 denotes that she does not approve
facility j; let t = (ti)i∈N be the preference profile consist-
ing of the preferences of all agents. Let I = (x, t) denote an
instance of this setting.

Given an instance I = (x, t), our goal is to choose and lo-
cate a single facility so as to optimize some objective func-
tion that depends on both the distances of the agents from
the facility location and on whether they approve the cho-
sen facility. In particular, if facility j ∈ {1, 2} is chosen to
be located at y ∈ [0, 1], the utility of every agent i ∈ N
is defined to be ui(j, y|I) = tij ·

(
1 − d(xi, y)

)
, where

d(xi, y) = |xi − y| is the distance between xi and y. Then,
the social welfare is the sum of the utilities of all agents:

W (j, y|I) :=
∑
i∈N

ui(j, y|I).

We denote the optimal social welfare for instance I as
W ∗(I) := max(j,y)W (j, y|I).

A mechanism M takes as input an instance I = (x, t)
consisting of the position and preference profiles of the
agents, and outputs an outcome M(I) = (jM , yM ) con-
sisting of a facility jM ∈ {1, 2} that is to be placed at
yM ∈ [0, 1]. The approximation ratio ρ(M) of M is defined
as the worst-case ratio (over all possible instances) between
the optimal social welfare and the social welfare of the out-
come chosen by the mechanism, that is,

ρ(M) = sup
I

W ∗(I)

W (M(I)|I)
.

A mechanism is strategyproof if it is in the best interest of
every agent to report their true position and preferences, ir-
respectively of the reports of the other agents. Formally, a
mechanism M is strategyproof if, for every pair of instances
I = (x, t) and I ′ = ((x′i,x−i), (t

′
i, t−i)) in which only

a single agent i misreports a different position and prefer-
ences, it holds that

ui(M(I)|I) ≥ ui(M(I ′)|I).

Besides mechanisms that deterministically select a facil-
ity and its location, we will also study randomized mecha-
nisms, which choose the outcome according to probability
distributions. In particular, a randomized mechanism locates
each facility j ∈ {1, 2} at y ∈ [0, 1] with some probabil-
ity pj(y) such that

∑
j∈{1,2}

∫ 1

0
pj(y)dy = 1. Denoting by

p = (p1, p2) the probability distribution (for both facilities)
used by the mechanism, the expected utility of every agent
i ∈ N is computed as

ui(p|I) =
∑

j∈{1,2}

tij ·
∫ 1

0

(1− |xi − y|) · pj(y)dy.

A randomized mechanism is strategyproof in expectation if
no agent can increase her expected utility by misreporting.
Also, we say that a randomized mechanism is universally
strategyproof if it is a probability distribution over determin-
istic strategyproof mechanisms. Clearly, a universally strat-
egyproof mechanism is strategyproof in expectation, but the
converse is not necessarily true.

We will also discuss about mechanisms that are resilient
to misreports by coalitions of agents. In particular, a mech-
anism is group-strategyproof if no coalition of agents can
simultaneously misreport such that the utility of every agent
in the coalition strictly increases.

We are interested in mechanisms that satisfy strate-
gyproofness properties (like the ones discussed above) and
at the same time achieve an as low as possible approxima-
tion ratio (that is, an approximation ratio as close as possible
to 1). In our technical analysis in the upcoming sections, we
will distinguish between the following settings:

• In the general setting, the agents can misreport both their
positions and preferences.

• In the known-preferences setting, the preferences of the
agents are assumed to be known and the agents can mis-
report only their positions.

• In the known-positions setting, the positions of the agents
are assumed to be known and the agents can misreport
only their preferences.

Observe that positive results (i.e., (group-)strategyproof
mechanisms with proven approximation guarantees) for the
general setting are also positive results for the known-
preferences and known-positions settings. Moreover, neg-
ative results (i.e., lower bounds on the approximation of
(group-)strategyproof mechanisms) for the restricted set-
tings are also negative results for the general setting. Finally,
results (positive or negative) for one of the two restricted set-
tings do not imply anything for the other restricted setting.

4968



3 General Setting
We start the presentation of our technical results by focus-
ing on the general setting; recall that in this setting the
agents can misreport both their positions and their prefer-
ences. Due to the structure of the problem, which combines
voting (based on the preferences of the agents) and facility
location (based on the positions of the agents), it is natural
to wonder whether simple adaptations of the median mech-
anism (which is known to be strategyproof and optimal for
the original single-facility location problem) lead to good
solutions. For example, we could define mechanisms that
locate the majority-winner facility (breaking ties in a con-
sistent way) at the median among the agents that approve it,
or at the overall median agent. Unfortunately, it is not hard to
observe that the first mechanism is not strategyproof, while
the second one has an approximation ratio that is linear in
the number of agents.

Luckily, there is an even simpler deterministic mechanism
that is group-strategyproof and achieves an approximation of
at most 2 in the general setting. In the next section, we will
further show that this mechanism is best possible among all
deterministic strategyproof mechanisms in terms of approx-
imation, even when the preferences of the agents are known.

Middle mechanism (MM)

1. Count the number nj of agents that approve each
facility j ∈ {1, 2}.

2. Locate the most preferred facility at location 1
2 ,

breaking ties arbitrarily.

Theorem 1. The Middle mechanism is group-strategyproof
and has an approximation ratio of at most 2.

Proof. Consider any instance I = (x, t). To show that the
mechanism is group-strategyproof, first observe that the po-
sitions of the agents are not taken into account when decid-
ing which facility to locate and where. Hence, no agent has
a reason to misreport her position. It remains to argue that
there exists no group of agents who can all strictly increase
their utility by misreporting their preferences. To this end,
assume that facility j ∈ {1, 2} is chosen to be placed at
1/2. Observe that the utility of any agent that approves j is
maximized subject to the constraint that the chosen facility is
always placed at 1/2. Hence, such agents would not have in-
centive to participate in a misreporting coalition. Moreover,
the count nj of facility j would only increase if any group of
agents that truly disapprove facility j, misreported that they
approve it. Hence, the outcome would not change in such a
case, this proving that is indeed group-strategyproof.

We now focus on the approximation ratio of the mecha-
nism. Let j be the facility chosen by the mechanism, and
let o be the optimal facility. We make the following simple
observations:

• Since the facility is placed at 1/2, every agent i that ap-
proves j has utility at least 1/2.

• By the definition of the mechanism, we have nj ≥ no.

Figure 1: The two instances used in the proof of Theorem 2,
which differ only on the position of an agent with prefer-
ences (1, 0) marked in red.

• Since the maximum utility of any agent is 1, we have that
W ∗(I) ≤ no.

Putting all of these together, we have:

W (MM(I)|I) ≥ 1

2
nj ≥

1

2
no ≥

1

2
W ∗(I),

and the bound on the approximation ratio follows.

4 Known-Preferences Setting
Here, we focus on the known-preferences setting, where we
assume that the agents can only strategize over their po-
sitions. Our first result is a lower bound of 2 on the ap-
proximation ratio of any strategyproof deterministic mecha-
nism, thus proving that the Middle mechanism presented in
the previous section is best possible for the general and the
known-preferences settings.

Theorem 2. In the known-preferences setting, there is no
deterministic strategyproof mechanism with approximation
ratio better than 2− δ, for any δ > 0.

Proof. Consider an arbitrary deterministic strategyproof
mechanism and the following instance I depicted in Fig-
ure 1. There are four agents, two with preferences (0, 1) and
two with preferences (1, 0). One agent of each type is po-
sitioned at some ε ∈ (0, 1/2) and the other is positioned at
1. Without loss of generality, we can assume that the mech-
anism chooses to locate facility 2; the welfare of the agents
in this instance is maximized no matter where the facility is
actually located.

Now consider a second instance I ′ that is obtained from
I when only the agent i with preference (1, 0) that is po-
sitioned at ε is moved to 1. Since the mechanism is strate-
gyproof, it must choose to locate facility 2 in instance I ′ as
well; otherwise, agent i would prefer to misreport her posi-
tion in instance I as 1, thus leading to instance I ′ and the
selection of facility 1, which would increase her utility from
0 to positive. However, the welfare from locating facility 2
in instance I ′ is at most 1+ε (no matter where it is located),
whereas the optimal welfare is equal to 2, achieved when fa-
cility 1 is located at 1. The bound on the approximation ratio
follows by selecting ε to be arbitrarily small.

Next, we turn our attention to randomization and consider
the class of Random-Median mechanisms. Every mecha-
nism in this class operates by first randomly choosing one
of the facilities based on the preferences the agents, which is
then located at the median among the agents that approve it.

4969



So, different choices of the probability distribution accord-
ing to which the facility is chosen lead to different Random-
Median mechanisms. It is not hard to observe that all such
mechanisms are universally group-strategyproof.
Lemma 3. Every Random-Median mechanismM is univer-
sally group-strategyproof.

Probably the simplest Random-Median mechanism one
can think of is the Proportional mechanism defined below,
which selects every facility with probability proportional to
the number of agents that approve it. By exploiting the defi-
nition of this probability, we can show that the Proportional
mechanism has an approximation of (1 +

√
3)/2 ≈ 1.366,

thus significantly improving upon the bound of 2 achieved
by deterministic mechanisms. In fact, we can further im-
prove upon the bound of the Proportional mechanism to 4/3,
by defining the slightly more involved Mirror mechanism
defined below, which uses a probability distribution that is
a piecewise function of the numbers of agents that approve
the two facilities.

Mirror mechanism

1. Count the number nj of agents that approve each
facility j ∈ {1, 2}; wlog assume n1 ≥ n2 (other-
wise switch n1 with n2 below).

2. Let α := 3n1−2n2

4n1−2n2
.

3. Choose facility 1 with probability α, and facility
2 with probability 1− α.

4. Locate the chosen facility at the median among
the agents that approve it.

Theorem 4. In the known-preferences setting, the Mirror
mechanism is universally group-strategyproof and has an
approximation ratio of 4/3.

Proof. Since the mechanism is Random-Median, it is uni-
versally group-strategyproof due to Lemma 3. To bound the
approximation ratio, let Wj be the welfare of the agents that
approve facility j when it is chosen (and located at the me-
dian of those agents). Observe that for any facility j ∈ {1, 2}
it holds that Wj ≤ nj since the maximum possible utility of
any agent is 1, and Wj ≥ nj/2. To see why the latter is true,
consider the agents that approve facility 2 in pairs, where
one is on the left of the median (among those that approve
facility 2) and the other is on the right of the median, and
observe that the total utility of this pair of agents is at least
1. Since there are n2/2 such pairs, the claim follows. We
distinguish between the following two cases:

• W1 ≥W2. Then, the approximation ratio is:

ρ(Mirror) =
W1

α ·W1 + (1− α) ·W2

=
1

3n1−2n2

4n1−2n2
+ n1

4n1−2n2
· W2

W1

≤ 1
3n1−2n2

4n1−2n2
+ n1

4n1−2n2
· n2/2

n1

=
4

3
.

Figure 2: Instances used in the proof of Theorem 6. If any
mechanism chooses to locate facility 1 in instance I , then its
location must be y < 1/2, as otherwise the agents with pref-
erences (1, 1) marked in red would have incentive to change
her preferences as in instance I ′, where the mechanism must
necessarily locate facility 2 at some y < 1/2 to have an ap-
proximation smaller than 13/11. However, such a choice of
location in I leads to approximation at least 13/11.

• W2 > W1. We have:

ρ(Mirror) =
W2

α ·W1 + (1− α) ·W2

=
1

3n1−2n2

4n1−2n2
· W1

W2
+ n1

4n1−2n2

≤ 1
3n1−2n2

4n1−2n2
· n1/2

n2
+ n1

4n1−2n2

=
2n2(4n1 − 2n2)

3n21
.

It is not hard to observe that this last expression is maxi-
mized to 4/3 when n1 = n2.

Hence, in any case the approximation ratio of the mecha-
nism is at most 4/3.

We conclude this section by showing that the Mirror
mechanism is best possible among all Random-Median
mechanisms in terms of approximation.

Theorem 5. In the known-preferences setting, the approxi-
mation ratio of any Random-Median mechanism is at least
4/3− δ, for any δ > 0.

5 Known-Positions Setting
We now turn our attention to the known-positions setting,
in which the positions of the agents are fixed, and thus the
agents can misreport only their preferences. Our first result
is a lower bound of 13/11 on the approximation ratio of any
deterministic strategyproof mechanism.

Theorem 6. In the known-positions setting, there is no de-
terministic strategyproof mechanism with approximation ra-
tio smaller than 13/11.

Proof. Suppose towards a contradiction that there exists a
deterministic strategyproof mechanism that has an approx-
imation ratio strictly smaller than 13/11, and consider the
following instance I depicted in Figure 2. There is an agent
with preferences (0, 1) positioned at 0, an agent with pref-
erences (1, 1) positioned at 1/6, an agent with preferences
(1, 1) positioned at 5/6, and an agent with preferences (1, 0)
positioned at 1. Due to the symmetry of the instance, with-
out loss of generality, we can assume that the mechanism
chooses to place facility 1 at some location y ∈ [0, 1].
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If y ≤ 1/2, the social welfare achieved by the mechanism
is(

1−
∣∣∣∣y − 1

6

∣∣∣∣ )+

(
1−

(
5

6
− y
))

+

(
1− (1− y)

)
=

7

6
+ 2y −

∣∣∣∣y − 1

6

∣∣∣∣ ≤ 11

6
.

Since the optimal social welfare is 13/6 (achieved by plac-
ing either facility 1 at 5/6 or facility 2 at 1/6), the approxi-
mation ratio of the mechanism is then 13/11, contradicting
the assumption that it is strictly smaller than 13/11. Conse-
quently, it must be y > 1/2.

Now consider the instance I ′ that is obtained from I by
changing the preference of the agent at 1/6 to (0, 1). In
I ′, the maximum possible social welfare one can hope to
achieve by placing facility 1 is 11/6 (when it is located any-
where in the interval [5, 6, 1] is 11/6) and by placing facil-
ity 2 is 13/6 (when it is located at 1/6). Hence, to have an
approximation ratio strictly smaller than 13/11, the mech-
anism must choose to locate facility 2 in I ′ at some posi-
tion z ∈ [0, 1]. Similarly to instance I , we can show that it
must be z < 1/2 as otherwise the approximation ratio of the
mechanism would be at least 13/11. Hence, the agent posi-
tioned at 1/6 with preferences (1, 1) in instance I has incen-
tive to misreport her preferences as (0, 1) so that the facility
is located closer to her, and thus increase her utility. How-
ever, this contradicts the assumption that the mechanism is
strategyproof, and the theorem thus follows.

Designing a deterministic mechanism with approximation
ratio strictly smaller than the bound of 2 achieved by the
Middle mechanism is quite challenging, and we leave it as
an open question. Instead, we continue by considering ran-
domized mechanisms. Observe that the instances from Fig-
ure 2 show that there is no randomized strategyproof mech-
anism with approximation ratio 1 for the known-positions
setting. This is because no matter how the mechanism lo-
cates the facilities on instance I , it has to locate facility 2 on
Instance I ′, thus the agent positioned at 1/6 has incentives
to misreport her preferences. For the upper bounds, we pro-
pose the following variant of the well-known Random Dicta-
torship (RD) mechanism, equipped with a carefully chosen
tie-breaking rule for the agents who approve both facilities;
in particular, the mechanism chooses an agent at random and
locates her favorite facility at her position, breaking ties in
favor of the optimal facility in case she likes both facilities.

Random Dictatorship (RD) mechanism

1. Choose an agent i uniformly at random.
2. If agent i approves a single facility j, then locate
j at xi.

3. If agent i approves both facilities, then locate the
optimal one at xi.

To bound the approximation ratio of RD, we exploit a se-
ries of structural properties of the worst-case instances, in

which the approximation ratio of the mechanism is maxi-
mized. In particular, we will show that there exists a worst-
case instance satisfying the following three properties:
• There are no agents that approve both facilities.
• Every agent that approves the non-optimal facility is po-

sitioned at 0 or 1.
• Every agent that approves the optimal facility is posi-

tioned at 0, or some median position x ∈ [0, 1], or 1.
To show these properties, we start with an arbitrary instance
and gradually change the preferences and the positions of
the agents in a specific order so that the aforementioned
properties are satisfied. Every change we make leads to a
transformed instance in which the approximation ratio of
RD does not decrease. It then suffices to define a worst-case
instance satisfying these properties and bound the approxi-
mation ratio of the mechanism for this instance. This will be
a function of a handful of variables representing the number
of agents that are positioned at {0, x, 1} and approve one of
the two facilities. We have the following statement.
Theorem 7. In the known-positions setting, RD is univer-
sally group-strategyproof and has approximation ratio 3/2.

6 Extensions to Choosing k out of m
Facilities

So far we have exclusively focused on the fundamental case
where there are two facilities and one of them must be lo-
cated. In this section, we define and make initial progress
for natural generalizations when there are m ≥ 2 different
facilities from which we can choose to locate k < m. There
is a plethora of ways to define the utility of an agent. For in-
stance, we can define it as the utility the agent derives from
a subset of the facilities that are located and are among the
ones she approves. This subset may include all such facili-
ties, or just the facility that is the closest or the farthest from
the agent’s position. For such cases, it is quite easy to see that
a straightforward adaptation of the Middle mechanism satis-
fies strategyproofness constraints and has an approximation
ratio of at most 2. In addition, by extending the proof of The-
orem 2, we can show for particular values of m and k that
this is the best-possible approximation among deterministic
mechanisms, even when the preferences of the agents are
assumed to be known.

Formally, let I = (x, t,m, k) be an instance with posi-
tion profile x, preference profile t, and m ≥ 2 facilities out
of which we must chose and locate k ≥ 1. Let S a subset
of k facilities that are chosen to be located, and denote by
yj ∈ [0, 1] the location of facility j ∈ S; let y = (yj)j∈S .
Then, we can define the following three classes of utilities
functions, to which we refer as sum, min and max:

usum
i (S,y|I) =

∑
j∈S

tij ·
(
1− d(xi, yj)

)
umin
i (S,y|I) = max

j∈S

{
tij ·

(
1− d(xi, yj)

)}
umax
i (S,y|I) = min

j∈S

{
tij ·

(
1− d(xi, yj)

)}
.

4971



For these three classes of utility functions, we will show
that the (k,m)-Middle mechanism defined below is ei-
ther group-strategyproof or strategyproof (depending on the
number of facilities it must choose) and has an approxima-
tion ratio of 2.

(k,m)-Middle mechanism

1. Count the number nj of agents that approve each
facility j ∈ {1, . . . ,m}.

2. Locate the k most preferred facilities at location
1
2 , breaking ties arbitrarily.

Theorem 8. For any utility class C ∈ {sum,min,max},
the (k,m)-Middle mechanism is group-strategyproof when
k = 1, strategyproof when k ≥ 2, and has an approxima-
tion ratio of at most 2.

For completeness, we present a simple instance show-
ing that the (k,m)-Middle mechanism is not group-
strategyproof when k ≥ 2 for any of the utility classes we
consider.
Lemma 9. For any utility class C ∈ {sum,min,max}, the
(k,m)-Middle mechanism is not group-strategyproof when
k ≥ 2.

By appropriately extending the proof of Theorem 2, we
can show that, for any m and k ≥ 1 such that m ≥ 2k,
the approximation ratio of any deterministic mechanism is at
least 2, even when the preferences of the agents are known.
As a result, the (k,m)-Middle mechanism is the best pos-
sible strategyproof deterministic mechanism in terms of ap-
proximation in the general and in the known-preferences set-
tings for any such choice of m and k.
Theorem 10. For any utility class C ∈ {sum,min,max}
and any m, k such that m ≥ 2k, the approximation ratio of
every deterministic strategyproof mechanism that locates k
out of m facilities is at least 2− δ, for any δ > 0, even when
the preferences of the agents are known.

7 Conclusion and Open Problems
There are several interesting problems that either remain
open or arise from our work. The first natural direction is to
tighten our results for deterministic and randomized mecha-
nisms for the different settings we have considered. For de-
terministic mechanisms, while the general and the known-
preferences settings are resolved by our work, it would still
be quite interesting to close the gap between 13/11 and
2 for the known-positions setting. For randomized mecha-
nisms, the most intriguing open question is whether there
exists such a mechanism with approximation ratio signifi-
cantly smaller than 2 in the general setting. An obvious can-
didate is the RD mechanism that we presented in the context
of the known-positions setting. Unfortunately, the particular
variant of RD is no longer strategyproof when both the posi-
tions and the preferences of the agents are private, as shown
by the following lemma.
Lemma 11. RD is not strategyproof in the general setting.

Intuitively, the reason that makes RD manipulable in the
general setting is the tie-breaking rule that we use for the
agents who approve both facilities; recall that such ties are
broken in favor of the optimal facility. Breaking ties in this
way is crucial for our characterization of the worst-case in-
stances in Section 5, but can be exploited by agents who are
allowed to misreport their positions. Designing a variant of
RD that is strategyproof in the general setting is straightfor-
ward, for example, by breaking ties between the two facili-
ties equiprobably. Importantly however, the aforementioned
characterization no longer holds in that case, which makes
the analysis much more challenging. As a matter of fact, we
can show that for any variant that uses a fixed probabilistic
tie-breaking rule, the approximation ratio is strictly larger
than 3/2! In the following theorem, we show this for the
version of RD that breaks ties by locating facility 1 with
probability p and facility 2 with probability 1 − p; we refer
to this mechanism as p-RD.
Lemma 12. p-RD has approximation ratio at least 1.518,
for every fixed p ∈ [0, 1].

Finding the exact approximation ratio of p-RD is an in-
triguing open question. Perhaps more interestingly, one can
define yet another strategyproof variant of RD, whose ap-
proximation ratio is not ruled out by Lemma 12. For exam-
ple, we can count how many agents approve each facility and
break ties proportionally to those numbers. It is quite easy to
observe that the RD mechanism using the proportional tie-
breaking rule is strategyproof for the general setting, and is
a promising candidate for achieving a better approximation
ratio. To this end, we state the following conjecture.
Conjecture 13. For the general setting, the RD mechanism
with the proportional tie-breaking rule has approximation
ratio 3/2.

Besides strengthening our results, there are several mean-
ingful extensions of our model that could be the subject of
future work. For the k out of m facilities setting, while we
have made an important first step, there is still significant
work to be done, particularly in the known-positions set-
ting. One could also consider several different variants of
our basis model. For example, the agents may have frac-
tional preferences rather than approval preferences (that is,
each agent may assign weights in [0, 1] to the facilities, in-
stead of weights in {0, 1}). Other possible variants include
settings in which some facilities are obnoxious (Mei, Ye, and
Zhang 2018; Feigenbaum and Sethuraman 2015), meaning
that agents would like to be far from them if they are built,
and discrete settings in which the facilities can only be built
at predefined locations on the line (e.g., see (Dokow et al.
2012; Feldman, Fiat, and Golomb 2016; Serafino and Ven-
tre 2015, 2016)). Finally, an interesting generalization of our
problem is when every facility comes at a different cost, and
the objective is to maximize the social welfare by choos-
ing and locating k facilities under the constraint that their
accumulated costs is below a predefined budget. This lat-
ter setting is directly motivated by participatory budgeting,
which has recently drawn the attention of the computational
social choice community (Benade et al. 2020; Aziz and Shah
2020).
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