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Abstract

We study a participatory budgeting problem, where a set of
strategic agents wish to split a divisible budget among dif-
ferent projects by aggregating their proposals on a single di-
vision. Unfortunately, the straightforward rule that divides
the budget proportionally is susceptible to manipulation. Re-
cently, a class of truthful mechanisms has been proposed,
namely the moving phantom mechanisms. One such mech-
anism satisfies the proportionality property, in the sense that
in the extreme case where all agents prefer a single project to
receive the whole amount, the budget is assigned proportion-
ally.
While proportionality is a naturally desired property, it is de-
fined over a limited type of preference profiles. To address
this, we expand the notion of proportionality, by proposing
a quantitative framework that evaluates a budget aggregation
mechanism according to its worst-case distance from the pro-
portional allocation. Crucially, this is defined for every pref-
erence profile. We study this measure on the class of moving
phantom mechanisms, and we provide approximation guar-
antees. For two projects, we show that the Uniform Phantom
mechanism is optimal among all truthful mechanisms. For
three projects, we propose a new, proportional mechanism
that is optimal among all moving phantom mechanisms. Fi-
nally, we provide impossibility results regarding the approx-
imability of moving phantom mechanisms.

Introduction
Participatory budgeting is an emerging democratic process
that engages community members with public decision-
making, particularly when public expenditure should be al-
located to various public projects. Since its initial adop-
tion in the Brazilian city of Porto Alegre in the late
1980s (Cabannes 2004), its usage has been spread in var-
ious cities across the world. Madrid, Paris, San Francisco,
and Toronto provide an indicative, but far from exhaustive,
list of cities that have adopted participatory budgeting pro-
cedures. See (Aziz and Shah 2021) for more examples.

In this paper, we follow the model of (Freeman et al.
2021), where voters are tasked to split an exogenously given
amount of money among various projects. As an illustra-
tive example, consider a city council inquiring the residents
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on how to divide the upcoming year’s budget on education,
among a list of publicly funded schools. Each citizen pro-
poses her preferred allocation of the budget and the city
council uses a suitable aggregation mechanism to allocate
the budget among the schools.

A natural way to aggregate the proposals is to compute
the arithmetic mean for each project and assign to each
school exactly that proportion of the budget. This method,
(or variations1 of it) is used in practice in economics and
sports. See (Rosar 2015; Renault and Trannoy 2005, 2011)
for some applications. Assigning the budget proportionally
comes with some perks: It can be easily described, it’s cal-
culated efficiently and it scales naturally to any number of
projects.

Unfortunately, allocating the budget proportionally comes
with a serious drawback; namely, it is susceptible to manip-
ulation. Indeed, consider a simple example with two projects
and one hundred voters. Fifty voters propose a 50% − 50%
allocation, while the other fifty voters propose a 100%−0%
allocation. Hence, the proportional allocation is 75%−25%.
Assume now, that one voter changes her 50% − 50% pro-
posal to 0% − 100%. This turns the aggregated division to
74.5%−25.5%, a division which is closer to the 50%−50%
proposal that she prefers. Hence, she may have an incentive
to misreport her most preferred allocation to obtain a better
outcome, according to her preference.

Truthful mechanisms, i.e. mechanisms nullifying the in-
centives for strategic manipulation have already been pro-
posed in the literature, for voters with `1 preferences. Under
`1 preferences (Freeman et al. 2021), a voter has an ideal
division in mind and suffers a disutility equal to the `1 dis-
tance from her ideal division. (Lindner, Nehring, and Puppe
2008) and (Goel et al. 2019) proposed truthful budget aggre-
gation mechanisms that minimize the sum of disutilities for
the voters, a quantity known in the literature as the utilitar-
ian social welfare.

Recently, (Freeman et al. 2021) observed that these mech-
anisms are disproportionately biased towards the majority.
This lead them to propose the property of proportionality. A
mechanism is proportional if, in any input consisted only by

1A usual variation is the trimmed mean mechanism, where
some of the extreme bids are discarded. This is done to discour-
age a single voter to heavily influence a particular alternative.
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single-minded voters (voters which fully assign the budget
to a single project), each project receives the proportion of
the voters supporting that project. They proposed a truthful
and proportional mechanism, called the Independent Mar-
kets mechanism.

The Independent Markets mechanism belongs to a
broader class of truthful mechanisms, called moving phan-
tom mechanisms. A moving phantom mechanism for n vot-
ers and m projects, allocates to each project the median be-
tween the voters’ proposals for that project and n + 1 care-
fully selected phantom values. The selection of the phan-
tom values is crucial: it ensures both the strategy-proofness
of the mechanism, as well as its ability to return a feasible
aggregated division, i.e. that the portions sum up to 1. For
example, The Independent Markets mechanism, places the
n + 1 phantom values uniformly in the interval [0, x], for
some x ∈ [0, 1], that guarantees feasibility.

While proportionality is a natural fairness property, it is
defined only under a limited scope: A proportional mech-
anism guarantees to provide the proportional division only
when all voters are single-minded, and provides no guar-
antee for all other inputs. In this paper, we move one step
further and we address the question: “How far from the pro-
portional division can the outcome of a truthful mechanism
be?”

Building on the work of (Freeman et al. 2021), we
propose a more robust measure, and we extend the no-
tion of proportionality as follows: Given any input of bud-
get proposals, we define the proportional division as the
coordinate-wise mean of the proposals and then we mea-
sure the `1 distance between the outcome of any mechanism
and the proportional division. We call this metric the `1-loss.
We say that a mechanism is α-approximate if the maximum
`1-loss, over all preference profiles, is upper bounded by α.
So, α = 0 implies that the mechanisms always achieves the
proportional solution, while α = 2 implies nothing.

Our Contribution
In this paper, we expand the notion of proportionality due
to (Freeman et al. 2021), by proposing a quantitative worst-
case measure that compares the outcome of a mechanism
with the proportional division. We evaluate this measure
on truthful mechanisms, focusing on the important class of
moving phantom mechanisms (Freeman et al. 2021). Our
main objective is to design truthful mechanisms with small
α-approximation. We are able to provide effectively optimal
mechanisms for the case of two and three projects.

For the case of two projects, we show that the Uni-
form Phantom mechanism (Freeman et al. 2021) is 1/2-
approximate. Then, for the case of three projects, we
first examine the Independent Markets mechanism and we
show that this mechanism cannot be better than 0.6862-
approximate. We then propose a new, proportional moving
phantom mechanism which we call the Piecewise Uniform
mechanism which is (2/3 + ε)-approximate, where ε is a
small constant2. The analysis of this mechanism is substan-

2This constant is at most 10−5, and arises because we are using
a computer-aided proof.

tially more involved than the case of two projects and en
route to proving the approximation guarantee we character-
ize the instances bearing the maximum `1-loss, for any mov-
ing phantom mechanism.

We complement our results by showing matching im-
possibility results: First, we show that there exists no α-
approximate moving phantom mechanism for any α <
1 − 1/m. This implies that our results for two and three
projects are essentially optimal, within the family of mov-
ing phantom mechanisms. Furthermore, we show that no α-
approximate truthful mechanism exists, for α < 1/2, imply-
ing that the Uniform Phantom mechanism is the best possi-
ble among all truthful mechanisms.

Further Related Work
Arguably the work closest to our work is (Freeman et al.
2021). Apart from the Independent Markets mechanism they
propose and analyze another moving phantom mechanism,
which turned to be equivalent to the truthful mechanism
from (Goel et al. 2019) and (Lindner, Nehring, and Puppe
2008), at least up to tie-breaking rules. The family of mov-
ing phantom mechanisms is broad, and it is an open question
whether this class includes all truthful mechanisms, under
some mild assumptions.

For a survey on Participatory Budgeting, the reader is re-
ferred to (Aziz and Shah 2021). Our approach falls under the
Divisible Participatory Budgeting class, according to their
taxonomy. Other examples in the same class, but for differ-
ent utility models, include (Fain, Goel, and Munagala 2016;
Garg et al. 2019; Aziz, Bogomolnaia, and Moulin 2019;
Airiau et al. 2019; Bogomolnaia, Moulin, and Stong 2005;
Duddy 2015; Michorzewski, Peters, and Skowron 2020).
Among others, these works analyze mechanisms with var-
ious fairness notions, some of which are in the spirit of pro-
portionality.

A large part of the literature concerning Participatory
Budgeting covers a model where projects cannot be funded
partially, but instead are either fully funded or not funded at
all. Part of the work of (Goel et al. 2019) is dedicated to this
model. Other notable examples include (Benade et al. 2020;
Aziz, Lee, and Talmon 2018; Lu and Boutilier 2011).

The `1 preferences are a special case of the well-studied
single-peaked preferences (Moulin 1980) and have some
precedence in public policy literature (Goel et al. 2019). Re-
cently, (Nehring and Puppe 2019) proposed a natural utility
model, equivalent to `1 preferences.

Preliminaries
Let [k] = {1, ..., k} and [k]0 = {0, ..., k} for any k ∈ N.
Let [n] be a set of voters and [m] be a set of projects,
for n ≥ 2 and m ≥ 2. We call a division among m
projects a vector x ∈ [0, 1]m such that

∑
j∈[m] xj = 1.

Let d(x,y) =
∑
j∈[m] |xj − yj | denote the `1 distance be-

tween the divisions x and y. Voters have structured prefer-
ences over budget divisions. Each voter i ∈ [n] has a most
preferred division, her peak, v∗i , and for each division x, she
suffers a disutility equal to d(v∗i ,x), i.e. the `1 distance be-
tween her peak v∗ and x.
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Each voter i ∈ [n] reports a division vi. These divisions
form a preference profile V = (vi)i∈[n]. A budget aggrega-
tion mechanism f uses the proposed divisions to decide an
aggregate division f(V).

In this paper, we focus on truthful mechanisms, i.e. mech-
anisms where no voter can alter the aggregated division to
her favor, by misreporting her preference.
Definition 1. (Freeman et al. 2021) A budget aggrega-
tion mechanism f is truthful if, for all preference profiles
V, voters i, and divisions v∗i and vi, d(f(V−i,vi)) ≥
d(f(V−i,v

∗
i )).

We are mainly interested in the class of moving phantom
mechanisms.
Definition 2 (Moving phantom mechanisms). (Freeman
et al. 2021) Let Y = {yk : k ∈ [n]0 , } be a family of func-
tions such that, for every k ∈ [n]0, yk : [0, 1] → [0, 1] is a
continuous, weakly increasing function with yk(0) = 0 and
yk(1) = 1. In addition, y0(t) ≤ y1(t) ≤ ... ≤ yn(t) for
every t ∈ [0, 1]. The set Y is called a phantom system. For
a valid phantom system, a moving phantom mechanism fY ,
is defined as follows: For a profile V and a project j ∈ [m],

fYj (V) = med
(
Vi∈[n],j , (yk(t∗))k∈[n]0

)
(1)

for some

t∗ ∈

t :
∑
j∈[m]

med
(
Vi∈[n],j , (yk(t))k∈[n]0

)
= 1

 .

The function yk(t) returns the value of the k-th phantom.
For each t ∈ [0, 1], the phantom system returns the tuple
(y0(t), ..., yn(t)) with n+1 phantom values. We denote with
t∗, any value in [0, 1] where the tuple of phantom values
is sufficient for the sum of the coordinate-wise medians in
equation 1 to be equal to 1. (Freeman et al. 2021) show that
one such t∗ always exists and, in case of multiple candidate
values, the specific choice of t∗ does not affect the outcome.

Each median in Definition 2 can be computed using a
sorted array with 2n + 1 slots. The median value is located
in slot n+ 1. Throughout this paper we refer to the slots 1 to
n as the lower slots, and n+ 2 to 2n+ 1 as the upper slots.
Theorem 1. (Freeman et al. 2021) Every moving phantom
mechanism is truthful.

For a given preference profile V, let

V̄ =

 1

n

∑
i∈[n]

vi,j


j∈[m]

,

be the proportional division. A single-minded voter is a
voter i ∈ [n] such that vi,j = 1 for some project j ∈ [m]. A
budget aggregation mechanism is called proportional, if for
any preference profile V consisted solely by single-minded
voters, it holds f(V) = V̄.

Consider any budget aggregation mechanism f and any
preference profile V. Then the `1-loss for V is the `1 dis-
tance between the outcome f(V) and the proportional divi-
sion V̄, i.e.

`(V) = d(f(V), V̄) =
∑
j∈[m]

∣∣fj(V)− V̄j

∣∣ . (2)

We say that a budget aggregation mechanism is α-
approximate when the `1-loss for any preference profile is
no larger than α. We note that no mechanism can be more
than 2-approximate, as the `1 distance between any two ar-
bitrary divisions is at most 2.

Upper Bounds
In this section we present mechanisms with small approxi-
mation guarantees for m = 2 and m = 3. As we will see
later on, these guarantees are virtually optimal.

Two Projects
For the case of two projects, we focus on the Uniform Phan-
tom mechanism (Freeman et al. 2021), for which we show
a 1/2-approximation. This mechanism is the unique truth-
ful and proportional mechanism for m = 2 (Freeman et al.
2021).

The Uniform Phantom mechanism places n+1 phantoms
uniformly over the [0, 1] line, i.e.

fj = med
(
Vi∈[n],j , (k/n)k∈[n]0

)
,

for j ∈ {1, 2}. Later, in Theorem 6, we show that 1/2 is the
best approximation we can achieve by any truthful mecha-
nism.

Theorem 2. For m = 2, the Uniform Phantom mechanism
is 1/2-approximate.

Proof. Let f be the Uniform Phantom mechanism, and let
V be a preference profile. Let f(V) = (x, 1− x) and V̄ =
(v̄, 1− v̄). The loss of the mechanism for V is

`(V) = 2 |x− v̄| . (3)

Let k ∈ [n]0 be the minimum phantom index such that
x ≤ k

n . This implies that the phantoms with indices k, ..., n
are located in the slots n+ 1 to 2n+ 1. These phantoms are
exactly n + 1 − k i.e. exactly k voters’ reports are located
in the same area. Since all values in these slots are at least
equal to the median we get that

k

n
· x ≤ v̄ ≤ n− k

n
· x+

k − 1

n
+

1

n
· 1 {x = k/n}

+
x

n
· 1 {x < k/n} (4)

First inequality holds, since exactly k voters’ reports have
value at least equal to the median x. For the second inequal-
ity, we note that exactly n − k voters’ reports have value at
most x, while at least k − 1 voters’ reports can have value
at most 1. If the median is equal to k/n, we can safely as-
sume that this is a phantom value, and there should be ex-
actly k values upper bounded by 1. Otherwise, if the median
is strictly smaller than k/n, then x should be a voter’s report
and exactly k − 1 voters’ reports are located in the upper
slots.
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By removing x from both inequalities in 4 we get:

k

n
· x− x ≤ v̄ − x ≤ k − 1

n
+

1

n
· 1 {x = k/n}

+
x

n
· 1 {x < k/n} − k

n
· x. (5)

When the median is a phantom value, i.e. x = k
n , inequal-

ities 5 imply that

|v̄ − x| ≤ max

{
x

(
1− k

n

)
,
k

n
(1− x)

}
=
k

n

(
1− k

n

)
,

which is maximized to for k = n/2 to a value no greater
than 1/4. When x is a voter’s report, i.e. k−1n < x < k

n ,
inequalities 5 imply that

|v̄ − x| ≤ max

{
x

(
1− k

n

)
,
k − 1

n
(1− x)

}
< max

{
k

n

(
1− k

n

)
,
k − 1

n

(
1− k − 1

x

)}
.

Both quantities in the maximum operator are upper
bounded by 1/4. The theorem follows.

Three Projects
In this subsection we provide a (2/3+ε)-approximate truth-
ful mechanism for some ε ≤ 10−5. This mechanism belongs
to the family of moving phantom mechanisms, and it is also
proportional. In the following, we describe the mechanism,
and then we prove the approximation guarantee. Later, in
Theorem 7 we show that 2/3 is the best possible guarantee
among the class of moving phantom mechanisms.

The Piecewise Uniform mechanism The Piecewise Uni-
form mechanism uses the phantom system YPU = {yk(t) :
k ∈ [n]0}, for which

yk(t) =

{
0 k

n <
1
2

4tk
n − 2 t k

n ≥
1
2

(6)

for t < 1/2, while

yk(t) =

{
k(2 t−1)

n
k
n <

1
2

k(3−2 t)
n − 2 + 2 t k

n ≥
1
2

(7)

for t ≥ 1/2. This mechanism belongs to the family of
moving phantom mechanisms3: each yk(t) is a continuous,
weakly increasing function, and yk(t) ≥ yk−1(t) for k ∈
[n − 1]0 and any t ∈ [0, 1]. We call a phantom with index
k ≤ n/2, black, and a phantom with index k > n/2, red.

3Note that this mechanism does not entirely fit the Definition 2
since yk(t) < 1, for all k ∈ [n− 1]0. This can fixed easily how-
ever, with an alternative definition, where all phantom functions
are shifted slightly to the left and a third set of linear functions
are added, such that and yk(1) = 1 for all k ∈ [n]0. A detailed
explanation appears in the full version of the paper.

0 1

j1

j2

j3

(a)

0 1

j1

j2

j3

(b)

Figure 1: Examples of the Piecewise Uniform mechanism,
with 5 voters. The dashed lines correspond to the phantom
values, the small rectangles correspond to the medians, and
the thick lines correspond to the voters’ reports. In Figure 1a,
t∗ = 3/8 and two voters propose the same division. In Fig-
ure 1b, t∗ = 49/64.

This mechanism can been seen as a combination of two
different mechanisms: For t < 1/2, the mechanism uses n/2
phantom values equal to 0, and the rest are uniformly located
in [0, yn(t)]. For t ≥ 1/2, the mechanism assigns half of
the phantoms uniformly in [0, ybn/2c(t)], while the rest are
uniformly distributed in [ydn/2e(t), 1]. See the examples of
Figure 1, for an illustration.

We emphasize here that the Piecewise Uniform mecha-
nism admits polynomial time-computation using a binary
search algorithm, since YPU is a piecewise linear phantom
system (see Theorem 4.7 from (Freeman et al. 2021)).

We continue by showing that this mechanism is propor-
tional. Note that this does not necessarily need to hold to
show the desired approximation guarantee, but it is a nice
extra feature of our mechanism.

Theorem 3. The Piecewice Uniform mechanism is propor-
tional.

Proof. Consider any preference profile which consists ex-
clusively of single-minded voters. Note that by using t = 1,
the phantom with index k has the value k/n, for any k ∈
[n]0. Let that aj ∈ [n]0 be the number of 1-valued proposals
on project j. Consequently, n−aj is the number of 0-valued
proposals. Then the median in each project is exactly the
phantom value aj/n, i.e. the proportional allocation.

Analysis overview The analysis for the upper bound is
substantially more involved than the analysis for the case
of two projects. Here we present an outline of the proof.

We first provide a characterization of the worst-case pref-
erence profiles (i.e. profiles that may yield the maximum
loss) in Theorem 4. This characterization states that essen-
tially all worst-case preference profiles belong to a specific
family, which we call three-type profiles (see Definition 3).
The family of three-type profiles depends crucially on the
moving phantom mechanism used. Given a moving phan-
tom mechanism, Lemma 2 characterizes further the family
of three-type profiles for that mechanism.

We combine Theorem 4 and Lemma 2 to build a Non-
Linear Program (NLP; see Figure 2) which explores the
space created by the worst-case instances. Finally we present
the optimal solution of the NLP in Theorem 5. Due to lack
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of space, some proofs can be found in the full version of the
paper.

Characterization of worst-case instances We concen-
trate on a family of preference profiles which are maximal
(with respect to the loss) in a local sense: A preference pro-
file V is locally maximal if, for all voters i ∈ [n], it holds
that `(V) ≥ `(V−i,v

′
i) for any division v′i. In other words,

in such profiles, any single change in the voting divisions
cannot increase the `1-loss. Inevitably, any profile which
may yield the maximum loss belongs to this family, and we
can focus our analysis on such profiles. Our characterization
shows that the class of locally maximal preference profiles
and the class of three-type profiles are equivalent with re-
spect to `1-loss, for any moving phantom mechanism.

Definition 3 (three-type profiles). For any moving phantom
mechanism f , a preference profile V is called a three-type
profile if every voter i ∈ [n] belongs to one of the following
classes:

1. fully-satisfied voters, where voter i proposes a division
equal to the outcome of the mechanism, i.e. f(V) = vi,

2. double-minded voters, where voter i agrees with the out-
come in one project, i.e. vi,j = fj(V) for some j ∈ [3],
while vi,j′ = 1−fj(V) for some different project j′, and

3. single-minded voters, where vi,j = 1 for some project
j ∈ [3].

To build intuition, we provide the following example:

Example 1 (three-type profile). Consider a moving phan-
tom mechanism f , and the preference profile V with 5 vot-
ers: v1 = (1, 0, 0) and v2 = (0, 0, 1), which are single-
minded voters, v3 = (1/2, 1/2, 0), v4 = (0, 1/4, 3/4) and
v5 = (1/2, 1/4, 1/4). Then, if f(V) = v5, the preference
profile V is a three-type profile for mechanism f . Voter 5 is a
fully-satisfied voter, while voters 3 and 4 are double-minded
voters.

In Theorem 4 that follows, we show that for any lo-
cally maximal preference profile V, there exists a three-
type profile V̂ (not necessarily different than V) for which
`(V̂) ≥ `(V). Therefore, we can search for the maximum
`1-loss by focusing only on the profiles described in Defini-
tion 3. The following lemma is an important stepping stone
for the proof of Theorem 4. The proof is omitted due to lack
of space.

Lemma 1. Let f be a moving phantom mechanism for m =
3, V a preference profile and i ∈ [n], a voter which is neither
single-minded, double-minded nor fully-satisfied. Let vi be
voter’s i proposal. Then there exists a division v′i such that
`(V−i,v

′
i) ≥ `(V). Furthermore, when `(V−i,v′i) = `(V)

the division v′i is double-minded, single-minded or fully-
satisfied, and f(V) = f(V−i,v

′
i).

Theorem 4. Let f be a moving phantom mechanism for
m = 3 and let V be a locally maximal preference pro-
file, i.e. `(V) ≥ `(V−i,v

′
i), for any i ∈ [n] and any di-

vision v′i. Then, there exists a three-type profile V̂ such that
`(V̂) ≥ `(V).

Proof. Let S denote the set of single-minded, double-
minded or fully-satisfied voters (for mechanism f and for
profile V) and let S̄ = [n] \ S.

If S̄ = ∅, V is a three-type profile, hence V̂ = V and
the theorem holds trivially. Otherwise, let i ∈ S̄. By Lemma
1, we know that we can transform vi to v′i such that either
(a) `(V−i,v′i) > `(V) or (b) i becomes a double-minded,
single-minded or fully-satisfied voter, f(V) = f(V−i,v

′
i)

and `(V) = `(V−i,v
′
i). When (a) holds, clearly profile

V is not locally maximal. Hence, we can assume that (b)
holds for all voters in S̄ and we can create V̂ by trans-
forming all voters in S̄ to single-minded, double-minded or
fully satisfied, one-by-one. By Lemma 1, both the outcome
and the loss stay invariant in each transformation. Hence,
f(V̂) = f(V) and `(V̂) = `(V). The theorem follows.

From now on, we focus on three-type profiles, and in the
following we define variables to describe them. A three-type
profile can be presented using 13 independent variables:

• x = (x1, x2, x3), the division of the fully satisfied voters,
• a1, a2, a3, three integer variables counting the single-

minded voters towards each project,
• b1,2, b1,3, b2,1, b2,3, b3,1, b3,2, six integer variables count-

ing the double-minded voters (e.g. b2,1 counts the voters
proposing (1− x2, x2, 0))
• and the total number of voters n.

We also use A =
∑
j∈[3] aj and B =

∑
j,k∈[3],k 6=j bk,j to

count the single-minded and the double-minded voters, re-
spectively. Consequently, the number of fully satisfied vot-
ers is C = n − A − B. These profiles can have at most
8 distinct voters’ reports: values x1, x2 and x3, from fully-
satisfied and double-minded voters, values 1 − x1, 1 − x2
and 1 − x3, which we call complementary values, from the
double-minded voters and, reports with values equal to 1 and
0. Note that, apart from values 0 and 1, in project 1 we can
find values x1, 1 − x2 and 1 − x3, in project 2 values x2,
1 − x1 and 1 − x3 and finally in project 3 the values x3,
1− x1 and 1− x2.

Recall that Definition 3 demands that f(V) = x. To en-
sure this, we prove the following lemma.

At this point, we assume that xj > 0, for all j ∈ [3] from
now on. We will examine the cases were xj = 0 for some
j ∈ [3] independently.

Lemma 2. Let that xj > 0, for all j ∈ [3]. Let zj =
aj+

∑
k∈[3]\{j} bk,j and qj =

∑
k∈[3]\{j} bj,k. For any mov-

ing phantom mechanism f , defined by the phantom system
Y = {yk(t) : k ∈ [n]0}, and any three-type profile V, then
f(V) = x if and only if

yzj (t∗) ≤ xj ≤ yzj+qj+C(t∗) (8)

for any t∗ ∈ [0, 1] which guarantees a feasible outcome
(see Definition 2).

Proof. First note that for xj > 0 for all j ∈ [3], all comple-
mentary values 1− x1, 1− x2 and 1− x3 are located in the
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upper slots. Assume otherwise, that there exists some com-
plementary value, say 1 − x2 such that 1 − x2 ≤ x1. Then
1 ≤ x1+x2, which is not possible when x3 > 0. In addition,
all 1-valued voters’ reports should be located in the upper
slots, while all 0-valued voters’ reports should be located in
the lower slots. Note also that zj = aj +

∑
k∈[3]\{j} bk,j

counts exactly the voters’ reports located in the upper slots.
(if direction) Let V be a three-type profile and let f(V) =

x for some t∗ ∈ [0, 1]. Assume, for the sake of contradiction
that yzj (t∗) > xj for some j ∈ [3]. This implies that the n+
1−zj phantom values are located in the upper slots. Since zj
voters’ reports are also located in the upper slots there exists
n + 1 values for n slots. A contradiction. Suppose now that
that yzj+qj+C(t∗) < fj(V). This implies that zj+qj+C+1
phantom values are located in the lower slots. Furthermore,
there exists n−C−qj−zj voters’ reports with value 0, which
must be located in the n lower slots. A contradiction.

The only-if direction of the above lemma is presented in
the full version of the paper. We note that this is not required
for the proof of Theorem 5, and we include it for the sake of
completeness.

A Non-Linear Program We show that the Piecewise Uni-
form mechanism is (2/3 + ε)-approximate by maximizing a
Non-Linear Program. The feasible region of this program is
defined by the class of three-type profiles, and we search for
the maximum `1-loss among them. First, we normalize our
variable: we introduce new variables âj = aj/n for j ∈ [3]

and b̂j,j′ = bj,j′/n for j, j′ ∈ [3], j 6= j, and Ĉ = C/n. We
also use a relaxed version of the Piecewise Uniform mecha-
nism: For every x ∈ [0, 1]:

ŷ(x, t) =


0 0 ≤ t < 1

2 and x < 1
2

4tx− 2t 0 < t < 1
2 and x ≥ 1

2

x(3− 2t)− 2 + 2t 1
2 ≤ t ≤ 1 and x ≥ 1

2

x(2t− 1) 1
2 ≤ t ≤ 1 and x < 1

2 .

We introduce also variables for the mean of each project
j ∈ [3]:

v̄j = âj +
∑

k∈[3]\{j}

(1− xk)b̂k,j + xj

Ĉ +
∑

k∈[3]\{j}

b̂j,k


The Non-Linear Program is presented in Figure 2. In-

equalities 10 and 11 ensure that we are searching over all
three-type profiles for the Piecewise Uniform mechanism.
Crucially, any profile which does not meet these two condi-
tions cannot have x as the outcome (see Lemma 2). Finally,
we let the program optimize over any t∗ ∈ [0, 1]. Lemma 2
ensures that any value t∗ that satisfies inequalities 10 and 11
will return a valid outcome.

Upper bound computation To compute the maximum
value of the NLP in Figure 2, we break this program in sim-
pler programs, based on 3 conditions; first, depending on
whether t∗ < 1/2 or not, second, according to the signs of
the v̄j − xj terms on the objective function (in order to re-
move the absolute values), and finally, according to the types
of the phantoms enclosing the medians.

maximize
3∑
j=1

|v̄j − xj | (9)

subject to
3∑
j=1

xj = 1,

Â =
3∑
j=1

âj ,

B̂ =
∑

j,k∈[3],j 6=k

b̂k,j ,

ẑj = âj +
∑

k∈[3]\{j}

b̂k,j , ∀j ∈ [3]

q̂j =
∑

k∈[3]\{j}

b̂j,k, ∀j ∈ [3]

xj ≥ ŷ (ẑj , t
∗) , ∀j ∈ [3] (10)

xj ≤ ŷ
(
Ĉ + q̂j + ẑj , t

∗
)
, ∀j ∈ [3] (11)

Â+ B̂ ≤ 1,

xj ≥ 0, aj ≥ 0, ∀j ∈ [3]

bk,j ≥ 0, ∀j, k ∈ [3], j 6= k

0 ≤ t∗ ≤ 1.

Figure 2: The Non-Linear Program used to upper bound the
maximum `1-loss for the Piecewise Uniform mechanism.

To deal with the signs of the v̄j − xj terms, we define
sign patterns, as tuples in {+,−}3. E.g. the sign pattern
(+,+,−) shows that v̄1 ≥ x1 and v̄2 ≥ x2, while x3 ≥ v̄3.
Observe that we cannot have the same sign is all projects,
unless the loss is 0. Hence, we only need to check the pat-
terns (+,−,−) and (+,+,−).

We also address the discontinuities in function ŷ, with re-
spect to the first argument. For this, we use the tuple (b, r)
to distinguish when the median lies between two red, two
black, or between a black and a red phantom and we define
phantom patterns, as tuples in {(b, b), (b, r), (r, r)}3 to build
a quadratic program for each phantom pattern.

In total, we end up with 2× 2× 27 = 108 Quadratic Pro-
grams with Quadratic Constraints (QPQC). We solve these
programs using the Gurobi Solver (Gurobi Optimization,
LLC 2021). The solver uses the spatial Branch and Bound
Method (see (Liberti 2008)), which returns a global maxi-
mum, if the program is feasible. The solver returns solutions
with 10−5 error tolerance.

Theorem 5. The Piecewise Uniform mechanism is (2/3 +
ε)-approximate, for some ε ≤ 10−5.

Proof. The constant ε is due to the error tolerance of the
solver. Theorem 4 states that the maximum loss for any mov-
ing phantom mechanism happens in a three-type profile. The
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NLP in Figure 2 searches for the profile with maximum loss,
over all three-type profiles. We first solve 27 QPQCs, corre-
sponding to the sign pattern (+,−,−) and t∗ ≥ 1/2. The
maximum value is no higher than 2/3 + ε. For the remain-
ing QPQCs, we show that no-one yields a higher loss. To
complete our analysis we need to address the case where
the outcome includes at least one 0 value. By using similar
techniques, we get a maximum of 1/2 plus a small compu-
tational error term. We present this part of the proof in the
full version of the paper.

Lower Bounds
In this section, we provide impossibility results for our pro-
posed measure. Theorem 6 shows that no truthful mecha-
nism can be less than 1/2-approximate. Theorem 7 focuses
on moving phantom mechanisms and shows that no such
mechanism can be less than (1−1/m)-approximate. Finally,
Theorem 8 shows that the Independent Markets mechanism
is 0.6862-approximate.

A Lower Bound for any Truthful Mechanism
In the following, we show that truthfulness inevitably admits
`1-loss at least 1/2 in the worst case. We recall that the Uni-
form Phantom mechanism achieves this bound for m = 2.

Theorem 6. No truthful mechanism can achieve `1-loss less
than 1/2.

Proof. Let f be a truthful mechanism. Consider a profile
V = (v1,v2) such that v1 = (1, 0) and v2 = (0, 1) and
let that f(V) = (x, 1 − x) = x for some x ∈ [0, 1]. Con-
sider also the profile V′ = (x,v2). Due to truthfulness, then
f(V′) = x. Assume otherwise that f(V′) = (x′, 1 − x′)
for some x′ 6= x; when voter’s 1 peak is equal x, she would
suffers a positive disutility by proposing x, while by propos-
ing (1, 0) she would have a disutility of 0, a contradiction.
Similarly, for V′′ = (v1,x), f(V′′) = x and:

`(V′) =
∣∣∣x− x

2

∣∣∣+

∣∣∣∣1− x− 2− x
2

∣∣∣∣ = x

`(V′′) =

∣∣∣∣x− 1 + x

2

∣∣∣∣+

∣∣∣∣1− x− 1− x
2

∣∣∣∣ = 1− x.

The best x mechanism f could choose to minimize
max{x, 1− x} is x = 1/2, for a loss equal to 1/2.

A Lower Bound for any Moving Phantom
Mechanism
In this subsection we present a preference profile where any
moving phantom mechanism yields loss equal to 1 − 1/m.
We recall that the Piecewise Uniform mechanism achieves
this bound for m = 3.

Theorem 7. No moving phantom mechanism can achieve
`1-loss less than 1− 1/m, for any m ≥ 2.

Proof. Let f be a moving phantom mechanism with m
projects and consider the profile V = (v1,v2) with two

voters, such that v1 = (1, 0, .., 0) and v2 = (1/m, ..., 1/m)
for any integer m ≥ 2. Let y0, y1 and y2 be phantom values,
such that

∑m
j=1 fj(V) = 1. Hence

f1(V) = med
(

1
m , y0, y1, y2, 1

)
= x

while, for j ∈ {2, ...,m}

fj(V) = med
(
0, 1

m , y0, y1, y2
)

= z.

We will show that both x ≤ 1/m and z ≤ 1/m, which
implies that x = z = 1/m for the outcome to sum up to
1. Assume otherwise, that either x > 1/m or z > 1/m.
If x > 1/m, then y1 > 1/m. Also, for x > 1/m, then
z < 1/m (otherwise x + (m − 1)z > 1) and y1 < 1/m. A
contradiction. If z > 1/m, then x < 1/m, for the outcome
to be a valid division. However, z ≤ x, a contradiction.

`(V) =

∣∣∣∣12 − 1

m

∣∣∣∣+ (m− 1)

∣∣∣∣ 1

2 ·m

∣∣∣∣ = 1− 1

m
. (12)

A Lower Bound for the Independent Markets
Mechanism
In this subsection, we present a class of instances where the
Independent Markets mechanism from (Freeman et al. 2021)
yields loss at least 0.6862, for large enough n. The Inde-
pendent Markets mechanism utilizes the phantoms (min{k ·
t, 1})k∈[n]0 .
Theorem 8. The Independent Markets mechanism is at least
0.6862-approximate for three projects.

Proof. Let f be the Independent Markets mechanism and
let ρ = 2−

√
2. Consider a preference profile V with n vot-

ers, where bnρc voters propose the division (1, 0, 0) while
dn(1− ρ)e voters propose the division x = (

√
2 − 1, 1 −√

2/2, 1 −
√

2/2). Let that t =
√
2

2n . Then, x1 = nρt ≥
bnρc t, i.e bnρc+ 1 phantom values with indexes 0 to bnρc
are at most equal to x1. Hence, there exists n + 1 values
(phantoms and voters’ reports) at most equal to x1, thus
f1(V) = x1. Similarly, xj = n(1− ρ) t ≤ dn(1− ρ)e t for
j ∈ {1, 2}, i.e. the n+1−bnρc phantom values with indices
bnρc to n are at least equal to xj . Hence there exists n + 1
values at least equal to xj , thus fj(V) = xj for j ∈ {2, 3}.
The loss is `(V) =

(
3− 2

√
2
) (

1− dn(1−ρ)en

)
+ bnρc

n ≥
0.6862, for n ≥ 2 · 104.

Discussion
This paper proposes an approximation framework that rates
budget aggregation mechanisms according to the worst-case
distance from the proportional allocation, a natural fairness
desideratum. We propose optimal mechanisms within the
class of moving phantom mechanisms for the cases of two
and three projects. The most interesting open question is
whether there exists any (2−ε)-approximate mechanism, for
some constant ε > 0, with an arbitrary number of projects.
In the full version of the paper, we present various known
mechanisms whose loss approaches 2 for large m.
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