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Abstract

When selecting multiple candidates based on approval pref-
erences of agents, the proportional representation of agents’
opinions is an important and well-studied desideratum. Exist-
ing criteria for evaluating the representativeness of outcomes
focus on groups of agents and demand that sufficiently large
and cohesive groups are “represented” in the sense that
candidates approved by some group members are selected.
Crucially, these criteria say nothing about the representation
of individual agents, even if these agents are members of
groups that deserve representation. In this paper, we formal-
ize the concept of individual representation (IR) and explore
to which extent, and under which circumstances, it can be
achieved. We show that checking whether an IR outcome
exists is computationally intractable, and we verify that all
common approval-based voting rules may fail to provide
IR even in cases where this is possible. We then focus on
domain restrictions and establish an interesting contrast be-
tween “voter interval” and “candidate interval” preferences.
This contrast can also be observed in our experimental re-
sults, where we analyze the attainability of IR for realistic
preference profiles.

1 Introduction
We consider the problem of selecting a fixed-size subset
of candidates (a so-called committee) based on the ap-
proval preferences of agents. This problem has been ex-
tensively studied in recent years (Lackner and Skowron
2021) and has a wide variety of applications, including
political elections (Brill et al. 2020), recommender systems
(Skowron et al. 2017), medical diagnostic decision-making
(Gangl et al. 2019), and participatory budgeting (Peters,
Pierczyński, and Skowron 2021).

A central concern in committee voting is the principle of
proportional representation, which states that the agents’
interests and opinions should be reflected proportionately
in the committee. While proportional representation is intu-
itive to understand in scenarios such as apportioning par-
liamentary seats based on vote shares (Balinski and Young
1982; Pukelsheim 2014), it is less straightforward to formal-
ize in the context of approval-based committee elections.
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Indeed, the literature has defined a number of different
concepts aiming to capture proportional representation.

Most (if not all) of these approval-based proportional-
ity notions focus on the representation of groups of agents.
Specifically, it is usually required that each sufficiently large
group of agents is “represented” in the committee,1 where
the interpretation of “representation” differs across differ-
ent notions. For example, extended justified representation
(Aziz et al. 2017) prescribes that there exists at least one
agent in the group approving a certain number of commit-
tee members, whereas proportional justified representation
(Sánchez-Fernández et al. 2017) demands that there are
sufficiently many committee members that are each ap-
proved by at least one agent in the group. Notably, neither
definition comprises any representation requirements for
individual agents in a group. Thus, a group may count as
“represented” even though some agents in the group do not
approve a single committee member.

In this paper, we adopt an individualistic point of view:
our goal is to provide all members of a voter group equal
guarantees. Intuitively, when a population consists of n
agents and a committee of k representatives is elected, we
expect every cohesive voter group of size ` · n/k to be
represented by ` representatives in the committee; thus,
each individual group member might reasonably hope that
at least ` candidates represent her in the committee. This
notion, which we call individual representation, is aligned
with the notion of “individual fairness” that was recently
introduced in clustering (and in particular in facility loca-
tion problems) by Jung, Kannan, and Lutz (2020): there,
each individual expects to be served by a facility in distance
proportional to the radius of the ball that captures its n/k
closest neighbors, where n is the number of individuals and
k is the number of facilities.

Individual representation, as defined in this paper, is a
strengthening of a notion called semi-strong justified repre-
sentation by Aziz et al. (2017). The latter property requires
that all members of a group are represented in the commit-
tee at least once, given that the group is large and cohesive

1Often, there is also a condition on the “cohesiveness” of the
group, stating that the approval preferences of group members
need to be sufficiently aligned.
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enough. Individual representation strengthens this require-
ment by demanding that all members of cohesive groups
are represented multiple times (in proportion to the group
size). Aziz et al. (2017) observed that semi-strong JR can-
not be provided in all instances; this immediately implies
our stronger requirement is not universally attainable either.

Our contribution. In this paper, we systematically study
individual representation (IR). Notwithstanding the obser-
vation that IR demands cannot always be met, we clarify
how IR relates to existing axioms and we show that a large
range of common approval-based committee voting rules
can fail to provide IR even in cases where IR is achievable.
We observe that even committees approximating IR may
fail to exist. Moreover, we answer a question by Aziz et al.
(2017) by showing that it is computationally intractable
to decide whether a given instance admits a committee
providing semi-strong JR or individual representation. We
then turn our attention to restricted domains of preferences
(Elkind and Lackner 2015; Yang 2019) and demonstrate
that positive results can be obtained. Doing so, we uncover
a striking difference between the candidate interval and
voter interval domains: whereas the former restriction does
not admit any non-trivial approximation of IR, we devise an
efficient algorithm for selecting committees approximating
IR for the latter. This is surprising insofar as these two do-
main restrictions often exhibit similar behavior (Pierczyński
and Skowron 2021; Terzopoulou, Karpov, and Obraztsova
2021). Finally, we experimentally study how often IR is
achievable for a wide variety of generated preference data,
and how often established voting rules select IR outcomes.

2 Preliminaries
For t ∈ N = {1, 2, . . . }, let [t] denote the set {1, 2, . . . , t}.

Let N = [n] be a set of n voters (or agents) and C =
{c1, . . . , cm} be a set of m candidates. Each voter i ∈ N
approves a subset Ai ⊆ C of candidates. An (approval)
profile A = (A1, . . . , An) contains the approval set Ai for
each i ∈ N .

Given a committee size k ∈ [m], we want to select a
subset W ⊆ C of size |W | = k, referred to as a committee.
We call (A, k) an approval-based committee (ABC) elec-
tion. An ABC voting rule takes as input an ABC election
(A, k) and outputs one or more committees of size k.

As is standard in the ABC election literature, we assume
that voters only care about the number of approved candi-
dates in the committee, i.e., voter i evaluates a committee
W by |Ai∩W |. Given a subset S ⊆ C of candidates, we let
N(S) denote the set of voters who approve all candidates
in S, i.e., N(S) = {i ∈ N : S ⊆ Ai}.

Given an ABC election (A, k) and ` ∈ N, we call a
group V ⊆ N of voters `-cohesive if

|V | ≥ ` · n
k

and |
⋂
i∈V

Ai| ≥ `.

The following representation notions are due to Aziz et al.
(2017). A committee W ⊆ C of size k provides

• justified representation (JR) if for each 1-cohesive group
V ⊆ N , there is a voter i ∈ V with |W ∩Ai| ≥ 1;

• extended justified representation (EJR) if for each ` ∈ N
and each `-cohesive group V ⊆ N , there is a voter
i ∈ V with |W ∩Ai| ≥ `; and

• core stability if for each group V ⊆ N (independent
of V being `-cohesive) and S ⊆ C with |S| ≤ |V | · nk
there is a voter i ∈ V with |W ∩Ai| ≥ |S ∩Ai|.

All of these notions have in common that they consider
a group of voters “represented” as long as at least one voter
in the group is sufficiently represented. This point of view
might be hard to justify in many contexts. In the following
section, we present our approach to representation that
takes into account every voter in a group individually.

3 Individual Representation
In this section, we define the main concept of this paper:
individual representation. This notion builds on the idea of
(semi-)strong justified representation defined by Aziz et al.
(2017) and the notion of individual fairness in clustering as
defined by Jung, Kannan, and Lutz (2020).

Similarly to the proportionality notions defined above,
we assume that a voter i ∈ N deserves some representation
in an ABC election if i can find enough other voters who all
approve a subset of candidates in common. This follows the
rationale that everyone in a group of voters that makes up a
sizable part of the electorate and can come to an agreement
on how (part of) the committee ought to be filled, should
be represented accordingly.

Given an ABC election (A, k), we determine the number
of seats that voter i ∈ N can justifiably demand as

fi := max
S⊆Ai

{|S| : |N(S)| ≥ |S| · n/k}.

In words, fi is the largest value f such that voter i can find
enough like-minded voters to form an f -cohesive group.
Definition 1 (Individual Representation). Given an ABC
election (A, k), a committee W ⊆ C of size at most k
provides individual representation (IR) if |W ∩ Ai| ≥ fi
for all voters i ∈ N .

When only requiring |W ∩Ai| ≥ 1 for every voter with
fi ≥ 1 we get semi-strong justified representation (semi-
strong JR) as defined by Aziz et al. (2017). The authors of
that paper provide an example showing that semi-strong JR
committees do not always exist. Since individual represen-
tation clearly is a more demanding property, it immediately
follows that IR committees (i.e., committees providing IR)
do not need to exist either.

IR not only implies semi-strong JR, but also EJR. More
precisely, every IR committee also provides EJR. To build
intuition on how our notion differs from established ones,
and on how it leads to the election of committees that are
“fair” from an individual voter perspective, consider the
following examples, illustrated in Figure 1.
Example 1. The first part of Figure 1 shows an approval
profile with 8 voters and 3 candidates. Assuming k = 2,
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Figure 1: Two profiles admitting IR committees that are
not identified by common voting rules or other representa-
tion axioms. Voters correspond to integers and approve all
candidates placed above them.

every voter i ∈ N has fi = 1. Thus, the only committee
providing IR isW = {c1, c2}, which represents every voter
once and, moreover, satisfies core stability. However, both
W ′ = {c1, c3} and W ′′ = {c2, c3} are core stable as well
(and in fact would be selected when choosing a committee
maximizing social welfare). Many common ABC voting
rules would select either W ′ or W ′′ (see Proposition 4).
One can argue that committee W is a much “fairer” or

“more representative” choice in this example.
Example 2. The second part of Figure 1 shows an ap-
proval profile with 12 voters and 10 candidates. For k = 6
we have fi = 1 for i ∈ {1, . . . , 4} and fi = 2 for
i ∈ {5, . . . , 12}. Here, the only committee providing IR
is W = {c1, c2, c3, c4, c9, c10} representing each of the
first four voters once, while representing all other voters
at least twice. This committee is not core stable, because
the voter group {5, . . . , 12} would prefer {c5, c6, c7, c8} to
W . In order to appreciate the IR committee W , consider
voters 1 to 4 and observe that these voters are completely

“symmetric.” Hence, from an “equal treatment of equals”
perspective, if one of them is represented by an approved
candidate in the committee, the same should hold for the
others. In fact, the only core-stable committees that provide
this kind of symmetry are {c5, . . . , c10}, in which one third
of the electorate is not represented at all, or committees
containing only two candidates among c5 to c8. In the latter
case, by noticing that voters 9 to 12 are “symmetric” as
well, we can argue similarly as above that they are not
treated equally. Thus, the committee W that uniquely pro-
vides IR can be considered the “fairest” choice under an
individualistic point of view.

The instance in Example 2 shows that core stability and
individual representation are incompatible, in the strong
sense that the (nonempty) set of IR committees and the
(nonempty) set of core-stable committees are disjoint.

core stability EJR JR

IR semi-strong JR

Figure 2: Relationships between individual representation
(IR) and the representation notions introduced by Aziz et al.
(2017). An arrow from X to Y depicts that X implies Y
(if X is possible in the given instance).

Proposition 1. IR is incompatible with core stability.
Next, we show a further incompatibility result.

Proposition 2. Semi-strong JR is incompatible with EJR.

Proof. Consider an ABC election with n = 8, k = 4 and
the following approval profile: A1 = · · · = A4 = {c1, c2},
A5 = {c3, c4, c5}, A6 = {c3}, A7 = {c4}, and A8 =
{c5}. As f6 = f7 = f8 = 1, every committee W that
provides semi-strong JR must satisfy {c3, c4, c5} ⊆ W .
But then we have |W ∩Ai| < 2 for all i ∈ [4], even though
these four voters form a 2-cohesive group.

A graphical representation of these results can be found
in Figure 2.

Approximate notions. As we mentioned above, IR is not
always attainable. The immediate next question is whether
we can guarantee IR in an approximate sense. To study
this question, we introduce the notion of (α, β)-individual
representation, which uses additive and multiplicative ap-
proximation parameters.
Definition 2 ((α, β)-Individual Representation). Given
an ABC election (A, k), a committee W provides (α, β)-
individual representation ((α, β)-IR) if for every voter
i ∈ N , α · |Ai ∩W |+ β ≥ fi, with α ≥ 1 and β ≥ 0.

Unfortunately, non-trivial approximation guarantees are
impossible to obtain without restricting the set of profiles.
Theorem 3. There exists an instance that does not admit
an (α, β)-IR committee for β < k − 1, and any α ≥ 1.

Proof. Assume that n = k · (k + 1). Then it holds that
n/k = k+1 > k. Consider a profile in which for each voter
i ∈ [n/k], Ai = {c(k−1)·(i−1)+1, . . . , c(k−1)·i} and all
remaining n−n/k voters approve all candidates. Thus, for
every voter i ∈ [n/k] we get that |N(Ai)| = 1+n−n/k =
1 + (k − 1)(k + 1). Since n/k = k + 1, this implies that
fi ≥ k − 1. Further, for all distinct voters i, i′ ∈ [n/k] it
holds that |Ai ∩ Ai′ | = 0. However, since n/k > k, for
each W ⊆ C with |W | = k there is a voter i ∈ [n/k] with
|Ai ∩W | = 0. Thus, for any α ≥ 1 and β < k − 1 this
instance does not admit a (α, β)-IR committee.

To see that this bound is worst-possible, note that if
fi = k for some voter i, this means that all voters have a set
of at least k jointly approved candidates (and a committee
consisting of such candidates would provide IR). On the
other hand, every committee trivially provides (1, k−1)-IR
whenever fi < k for all i ∈ N .
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3.1 ABC Rules Violating IR
While the inapproximability result in the previous section is
quite discouraging, a natural follow-up question is whether
we can at least find IR committees whenever they exist.
This question was already raised by Aziz et al. (2017) in
the context of semi-strong JR, but remained open. In other
words, we look for rules that are “consistent” with individ-
ual representation.
Definition 3 (IR-consistency). An ABC rule is consistent
with individual representation, or short IR-consistent, if it
outputs at least one IR committee for every ABC election
that admits one.

Consistency with semi-strong JR can be defined analo-
gously. We show that all common ABC voting rules fail
consistency with respect to both IR and semi-strong JR.2

Example 1 already rules out any rule that always selects
one of the candidates with the highest numbers of approvals,
so-called approval winners. In particular, this class of rules
includes all common committee-monotonic ABC rules as
well as other “sequential” rules like Rule X, as these rules
select one of the approval winners in the very first round. 3

Proposition 4. No ABC voting rule that always selects
one of the approval winners into the winning committee is
IR-consistent.

Moreover, the rules PAV, Satisfaction-AV, and reverse-
seqPAV select only committees including c3 in Example 1,
and thus fail IR-consistency. In the full version of the paper
(Brill et al. 2021), we provide additional examples showing
that all remaining ABC rules mentioned in Table 1 of the
survey by Lackner and Skowron (2021) fail IR-consistency
as well.

3.2 Computational Complexity
Another open problem stated by Aziz et al. (2017) concerns
the computational complexity of deciding whether a given
ABC election admits a committee providing semi-strong JR.
We settle this question and the analogous one for individual
representation by showing that both problems are NP-hard.
Theorem 5. It is NP-hard to decide whether an ABC elec-
tion admits an IR committee or a semi-strong JR committee.

Proof. We reduce from exact cover by 3-sets. Here, we are
given a set of elements X = {x1, . . . , x3`} and a family of
sets T ⊆ 2X such that |T | = 3 for all T ∈ T . The goal is
to find a partition of X into sets from T . The problem is
NP-hard even if each element appears in exactly three sets
(Garey and Johnson 1979). We construct an ABC instance
by setting N = X and C = T . Further, each set T ∈ T =

2Since neither IR nor semi-strong JR is always achievable (and
semi-strong JR may be achievable in instances where IR is not)
we can, in general, not deduce consistency regarding one of the
notions from consistency regarding the other. However, all our
examples in this section satisfy fi ≤ 1 for all voters i, such that
semi-strong JR and IR coincide.

3For the common rules defined in this paper, we refer the
reader to the survey (Lackner and Skowron 2021).

{xi, xj , xl} is approved exactly by voters xi, xj , and xl.
We set k = `. Hence, only groups of 3 voters corresponding
to sets in T are 1-cohesive, and we get fxi

= 1 for each
xi ∈ X .

Every exact cover by 3-sets corresponds to a committee
of size k where every voter is represented exactly once
and thus provides IR in this instance. Conversely, every IR
committee of the constructed ABC instance corresponds
to a selection of sets from T such that every element in X
is covered exactly once. Since fi = 1 for every voter, the
same argument holds for semi-strong JR as well.

Moreover, it is hard to decide whether a given voter’s
fi-value exceeds a given value.

Theorem 6. Given an ABC instance, a voter i, and j ∈ N,
it is NP-complete to decide whether fi ≥ j.

Proof. It is easy to see that this problem is in NP since
any subset of voters including voter i of size j · |N |k and
any subset of candidates of size j approved by all selected
voters serves as a witness.

We reduce from balanced complete bipartite subgraph.
Here, we are given a bipartite graph G = (V1 ∪ V2, E) and
an integer j and the goal is to decide whether G has Kj,j

as a subgraph, i.e., a subgraph consisting of j vertices from
V1 and j vertices from V2 forming a bipartite clique. The
problem is known to be NP-hard (Garey and Johnson 1979).
We construct an ABC instance by setting N = V1 ∪ {x},
C = V2∪{y} and k = |V1|+1. Thus, n

k = 1. Each v ∈ V1
approves exactly its neighbors in G, as well as y, while x
approves all candidates. It follows that fx ≥ j + 1 if and
only if there is a set of j voters different from x approving
at least a common set of j + 1 candidates. Since all voters
approve y, this is equivalent to these j voters all approving
j candidates different from y and therefore by definition all
being connected to these j vertices in V2. Thus, they form
a Kj,j if and only if fx ≥ j + 1.

4 Domain Restrictions
We have seen in Theorem 3 that non-trivial approxima-
tions of individual representation are impossible to obtain
in general. In this section, we explore whether this negative
result can be circumvented by considering restricted do-
mains of preferences. Domain restrictions for dichotomous
(i.e., approval) preferences have been studied by Elkind and
Lackner (2015) and Yang (2019).

Restricting attention to a well-structured domain often
allows for axiomatic and algorithmic results that are not
achievable otherwise (Elkind, Lackner, and Peters 2017).
In the ABC setting, for example, it has recently been shown
that a core-stable committee always exists in certain re-
stricted domains (Pierczyński and Skowron 2021), whereas
the existence of such committees is an open problem for
the unrestricted domain.

2We start by recalling the definitions of two classic re-
stricted domains of dichotomous preferences: candidate
interval and voter interval (Elkind and Lackner 2015).
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Definition 4 (Candidate Interval). An approval profile A
satisfies candidate interval (CI) if there is a linear order
over the candidates C such that for every voter i ∈ N , Ai

consists of an interval of that order.

Definition 5 (Voter Interval). An approval profile A satis-
fies voter interval (VI) if there is a linear order over the
voters N such that for every candidate cj ∈ C, the voters
that approve cj build an interval of that order.

The profile in Example 1 satisfies both candidate interval
and voter interval. In fact, a voter order witnessing VI is
given in Figure 1. To see that the profile satisfies CI as well,
consider the order (c1, c3, c2). The profile in Example 2, on
the other hand, satisfies neither CI nor VI.

Elkind and Lackner (2015) have shown that it can be
checked in polynomial time whether a profile satisfies
CI or VI. (If the answer is yes, a linear order over can-
didates/voters can be found efficiently as well.)

Our first observation is that the candidate interval do-
main is not helpful for our purposes: Indeed, the approval
profile used to establish Theorem 3 can easily be seen to
satisfy CI. Thus, restricting preferences in this way does
not yield any improved bounds.
Corollary 7. There exists a CI profile that does not admit
an (α, β)-IR committee with β < k − 1 and any α ≥ 1.

Now, we turn our attention to the voter interval domain.
Due to the similarity between VI and CI, one might expect
a similar result here. Surprisingly, however, we can prove a
positive result for VI: We provide an algorithm that finds
a (2, 4)-IR committee in polynomial time for any VI pro-
file. (In the full version of the paper, we show that such a
guarantee cannot be provided by common ABC rules.)

Before describing the high level idea of our algorithm
we state a useful property of VI profiles. Without loss of
generality, we assume that the linear order witnessing VI
is given by (1, . . . , n). Moreover, for a, b ∈ Z with a ≤ b,
we let [a, b] denote the integer interval {a, a+ 1, . . . , b}.
Observation 8. Let i1, i2, i3 ∈ [n] such that i1 < i2 < i3.
For any S ⊆ C, if i1 ∈ N(S) and i3 ∈ N(S), then
i2 ∈ N(S).

Let S∗i := argmaxS⊆Ai
{|S| : |N(S)| ≥ |S| ·n/k}, i.e.,

a largest subset of Ai approved by sufficiently many voters
to validate the fi-value. (If multiple such sets exist, ties are
broken arbitrarily.) From Observation 8 we know that if
i1, i2, i ∈ [n] such that i1 < i2 < i or i < i2 < i1, and
if i1 ∈ N(S∗i ), then i2 ∈ N(S∗i ), i.e., N(S∗i ) forms an
interval of the order of voters including i.

Further, let N<i := {i′ ∈ N(S∗i ) : i
′ ≤ i − 1} denote

the set of voters in N(S∗i ) that are ordered before i and let
N≥i := {i′ ∈ N(S∗i ) : i

′ ≥ i} denote the set of voters in
N(S∗i ) that are ordered after i (including i itself).
Observation 9. For each voter i, there exist ai ∈ [1, i] and
bi ∈ [i, n] such that N<i = [ai, i− 1] and N≥i = [i, bi].

Using this observation and the fact that fi = |S∗i | ≤
(|N<i| + |N≥i|) · k/n, Algorithm 1 returns a (2, 4)-IR
committee W for any VI profile as follows. In the first

Algorithm 1: (2, 4)-IR for Voter Interval Profiles

1: W0 ← ∅ // Round 1
2: for i = 1 to n do
3: if |Wi−1 ∩Ai| < b|N≥i| · k/(2n)c then
4: Let Si be an arbitrary subset of S∗i of size equal to

b|N≥i| · k/(2n)c − |Wi−1 ∩ Ai| such that |Si ∩
Wi−1| is minimized

5: Wi ←Wi−1 ∪ Si

6: Ŵ1 ← ∅ // Round 2
7: for i = n to 1 do
8: if |Ŵn−i ∩Ai| < b|N<i| · k/(2n)c then
9: Let Si be an arbitrary subset of S∗i of size equal to

b|N<i| · k/(2n)c − |Ŵn−i ∩ Ai| such that |Si ∩
(Ŵn−i ∪Wn)| is minimized

10: Ŵn−i+1 ← Ŵn−i ∪ Si

11: S ← an arbitrary subset of C with S∩(Wn∪Ŵn) = ∅
and |S| = k − |Wn| − |Ŵn|

12: return Wn ∪ Ŵn ∪ S

round, iterating from voter i = 1 to n, it selects at least
b|N≥i| · k/(2n)c candidates that are approved by voter i. In
the second round, iterating from voter i = n to 1, it selects
at least b|N<i| · k/(2n)c candidates that are approved by
voter i (excluding the candidates that are selected in the
first round). Together, this ensures |W ∩ Ai| ≥ fi/2 − 2,
where W is the set of selected candidates.
Theorem 10. For every approval profile satisfying voter
interval, Algorithm 1 returns a (2, 4)-IR committee in poly-
nomial time.

Proof. Let W =Wn ∪ Ŵn ∪ S be the committee returned
by Algorithm 1, and let f≥i = |N≥i| · k/n and f<i =
|N<i| · k/n. In the first round we ensure that |Wn ∩Ai| ≥
bf≥i/2c, as at iteration i if |Wi−1 ∩ Ai| < bf≥i/2c, we
include bf≥i/2c − |Wi−1 ∩ Ai| candidates into Wi that
are not already included. Similarly, in the second round we
ensure that |Ŵn∩Ai| ≥ bf<i/2c as at iteration n− i+1 if
|Ŵn−i∩Ai| < bf≥i/2c, we include bf≥i/2c−|Ŵn−i∩Ai|
candidates that are not already included. As fi ≤ f≥i+f<i,
for each i ∈ N we have that

|W ∩Ai| ≥ bf≥i/2c+ bf<i/2c ≥ fi/2− 2,

and therefore 2 · |W ∩ Ai| + 4 ≥ fi. Thus, we conclude
that W provides (2, 4)-IR.

Now we show that |Wn| ≤ k/2 and |Ŵn| < k/2. We
first consider Wn.

Lemma 11. |Wi| ≤
((i−1)+|N≥i|)·k

2n for all i ∈ [n].

Proof. We prove the lemma using induction. For i = 1,
W1 = bf≥1/2c ≤

|N≥1|·k
2n and the statement holds. As-

sume that for all t′ < t, we have |Wt′ | ≤
((t′−1)+|N≥t′ |)·k

2n .
We show that the statement holds for Wt. Note that

|Wt| = |Wt−1|+ bf≥t/2c − |Wt−1 ∩At| (1)
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as at iteration t, the algorithm adds bf≥t/2c − |Wt−1 ∩
At| candidates to Wt. Let t∗ = max{r ∈ [t − 1] : t ∈
N(S∗t−r)}. If t∗ = 0, from Equation (1) we get that

|Wt| ≤
((t− 2) + |N≥t−1|) · k

2n
+ bf≥t/2c − |Wt−1 ∩At|

≤ ((t− 2) + 1) · k
2n

+ bf≥t/2c − |Wt−1 ∩At|

≤ (t− 1 + |N≥t|) · k
2n

,

where the last inequality follows from the fact that
|N≥t−1| = 1, as t /∈ N(S∗t−1). Now assume that t∗ > 0.
First, using induction, we show that

|Wt| = |Wt−r|+ bf≥t/2c − |Wt−r ∩At|
for any r ∈ [1, t∗ + 1].

For r = 1, the claim immediately follows from Equa-
tion (1). Assume that for all q′ < q it holds that |Wt| =
|Wt−q′ |+ bf≥t/2c − |Wt−q′ ∩At|. Now, we have

|Wt−(q−1) ∩At| =
⌊
f≥t−(q−1)/2

⌋
− |Wt−q ∩At−(q−1)|

+ |Wt−q ∩At| (2)

as at iteration t − (q − 1),
⌊
f≥t−(q−1)/2

⌋
−

|Wt−q ∩At−(q−1)| candidates from S∗t−(q−1) are
added to Wt−(q−1), and as t ∈ N(S∗t−(q−1)), these
candidates are approved by t, too. Then,
|Wt| = |Wt−(q−1)|+ bf≥t/2c − |Wt−(q−1) ∩At|

= |Wt−q|+
⌊
f≥t−(q−1)/2

⌋
− |Wt−q ∩At−(q−1)|

+ bf≥t/2c − |Wt−(q−1) ∩At|
= |Wt−q|+ bf≥t/2c − |Wt−q ∩At|,

where the second transition follows since at iteration t −
(q−1),

⌊
f≥t−(q−1)/2

⌋
−|Wt−q∩At−(q−1)| candidates are

added to Wt−(q−1), and the third transition follows from
Equation (2).

Now, we distinguish two cases.

Case 1: t∗ = t− 1. Here, we have
|Wt| = |Wt−(t∗+1)|+

⌊
f≥t/2

⌋
− |Wt−(t∗+1) ∩At|

= |W0|+
⌊
f≥t/2

⌋
− |W0 ∩At| =

|N≥t| · k
2n

.

Case 2: t∗ > 1. Here, we have
|Wt| =|Wt−(t∗+1)|+

⌊
f≥t/2

⌋
− |Wt−(t∗+1) ∩At|

≤
(t− (t∗ + 1)− 1 + |N≥t−(t∗+1)|) · k

2n

+
|N≥t| · k

2n

≤ (t− 1 + |N≥t|) · k
2n

,

where the third inequality follows from the fact that
|N≥t−(t∗+1)| ≤ t − (t − (t∗ + 1)), as t is not in
N(S∗t−(t∗+1)).

As Rounds 1 and 2 of Algorithm 1 are symmetric, with
similar arguments, we can show the following lemma.

Lemma 12. |Ŵi| ≤ ((i−1)+|N<n−i+1|)·k
2n for all i ∈ [n].

From Lemma 11, for i = n, we have |N≥n| ≤ 1, and
hence

|Wn| ≤
((n− 1) + 1) · k

2n
≤ k/2.

From Lemma 12, for i = n, we have that |N<1| = 0, and
hence

|Wn| ≤
((n− 1) + 0) · k

2n
< k/2.

Thus, |W | = |Wn|+ |Ŵn| < k.
Lastly, we show that S∗i , and thus fi, can be computed

in polynomial time. For this, we employ Observation 9,
i.e., the fact that N(S∗i ) forms an interval of voters that
includes i. We consider all such intervals and for each of
them calculate the maximum subset of candidates that the
voters in this interval deserve due to their size.

Lemma 13. For any voter i, fi and S∗i can be computed
in polynomial time.

This concludes the proof of Theorem 10.

Further, we can show that the bound provided by Theo-
rem 10 is almost tight up to the additive part of 4.

Theorem 14. There exists a VI approval profile that does
not admit an (α, 0)-IR committee with α < 2− 2/k.

Proof. Consider the following instance with k > 2 and
m = 2(k − 1). All the voters i ∈ [2, n − 1] approve all
the candidates, while A1 = {c1, . . . , ck−1} and An =
{cm−k+2, . . . , cm}. Notice that this profile is VI. Indeed,
if we order the voters as 1, 2, . . . , n, then the voters that
approve each candidate form an interval of the ordering.
Now, we can see that f1 = fn = k−1, but for eachW ⊆ C,
with |W | = k, either |A1 ∩W | ≤ k/2 or |An ∩W | ≤
k/2.

Beyond VI and CI, many other domain restrictions have
been studied in the literature. In the full version of the paper,
we provide lower and upper bounds for (α, β)-IR for all do-
main restrictions introduced by Elkind and Lackner (2015)
and Yang (2019). Any domain that is more restrictive than
VI inherits the guarantee of a (2, 4)-IR committee from
VI—but we show that in some cases we can achieve better
approximation guarantees. On the other hand, any domain
that is more general than CI inherits the inapproximability
from CI. In fact, we show that the same lower bound ap-
plies even in a slightly more restricted domain introduced
by Yang (2019). We also determined for which of the con-
sidered domain restrictions a semi-strong JR committee is
guaranteed to exist.
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Figure 3: The figure on the left shows the ratio of generated profiles that admit an IR committee. In the figure on the right,
for each model and each voting rule, the bold colored part of the bar indicates the ratio of instances the rule returned an
IR committee, while the pale-colored part indicates the same ratio for semi-strong JR, averaged over all values k with
2 ≤ k ≤ 20. For each model, the black line indicates the fraction of instances admitting an IR committee, while the gray
dashed line indicates the ratio of instances admitting a semi-strong JR committee.

5 Experimental Results
To complement our theoretical results, we performed ex-
periments on generated approval profiles.

Setup. Inspired by Peters et al. (2021), we used six mod-
els to generate approval profiles: a voter-interval model
(VI), a candidate-interval model (CI), a two-dimensional
Euclidean model (2D), an impartial culture model (IC), an
urn model (Urn), and a Mallows model (Mallows). For
detailed descriptions of these models, we refer to the full
version of the paper. We considered the ABC rules AV, PAV,
seq-PAV, greedy Monroe, Rule X, seq-Phragmén, and se-
quential Chamberlin–Courant (seq-CC). For all conducted
experiments, we have 100 voters and 50 candidates and gen-
erated 500 instances for each model and for each k ∈ [50].

Results. First, we studied how often the generated ap-
proval profiles admit an IR committee. The results are
shown in the left graph of Figure 3. We found that IR
committees exist quite often, especially for larger values
of k. In particular, profiles generated by the VI model or
by the urn model almost always admit IR committees. On
the other hand, profiles generated by the CI model almost
never admit IR committees (except for k ≥ 35). This strik-
ing contrast between VI and CI, which is reminiscent of
our theoretical results in Section 4, can be explained with a
feature of the preference generation model: Due to the way
we generate CI preferences, almost 20% of voters have an
approval set spanning at least 20% of the candidates. These
voters approving many candidates are then part of multiple
cohesive groups, not all of which can be represented in
an IR manner. (A similar situation can be observed in the
profile that proves Theorem 3.)

Second, we studied how often different ABC rules select
a committee providing IR (or semi-strong JR). In order
not to dilute our results, we restricted k to the “interesting”
range between 2 and 20. The results are shown in the right

graph of Figure 3. Of course, the fraction of profiles for
which a rule selects an IR (or semi-strong JR) committee is
upper-bounded by the fraction of profiles that admit such a
committee. For each model, the latter fraction is depicted
in the graph as a solid black line for IR, and a dashed
gray line for semi-strong JR. While no rule manages to
find an IR committee every time one exists, the rules PAV,
sequential PAV, sequential Phragmén, and Rule X select IR
committees often. For the small fraction of CI profiles that
admit an IR committee, all considered rules do a good job in
finding one. Since seq-CC greedily optimizes the amount of
voters that are represented at least once, it finds a committee
providing semi-strong JR in almost all profiles that admit
one. But as the rule does not aim at representing voters
more than once, it almost never produces IR committees. In
the profiles generated by the IC model, IR often coincides
with semi-strong JR (for k ≤ 20) because almost all non-
zero fi-values are 1. This is in line with the effect noticed
by Bredereck et al. (2019), whose experiments showed that
EJR and JR are very likely to coincide under IC.

6 Discussion
Based on the observations that common axioms in approval-
based committee voting do not address the representation of
individual voters, and that common voting rules sometimes
unfairly distinguish between such voters, we formalize in-
dividual representation (IR) as a requirement for commit-
tees. We find that all common voting rules fail to provide
IR committees, even when these exist. Nevertheless, for
some restricted domains—most prominently, voter interval
preferences—we provide polynomial-time algorithms for
finding committees that provide a good approximation to
IR. Our experimental results suggest that IR is achievable in
many instances that follow somewhat realistic preferences.
It remains an open problem to find intuitive voting rules
that provide (approximate) IR whenever possible.
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