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Abstract

Liquid democracy is a novel paradigm for collective decision-
making that gives agents the choice between casting a direct
vote or delegating their vote to another agent. We consider
a generalization of the standard liquid democracy setting by
allowing agents to specify multiple potential delegates, to-
gether with a preference ranking among them. This general-
ization increases the number of possible delegation paths and
enables higher participation rates because fewer votes are lost
due to delegation cycles or abstaining agents. In order to im-
plement this generalization of liquid democracy, we need to
find a principled way of choosing between multiple delega-
tion paths. In this paper, we provide a thorough axiomatic
analysis of the space of delegation rules, i.e., functions as-
signing a feasible delegation path to each delegating agent.
In particular, we prove axiomatic characterizations as well
as an impossibility result for delegation rules. We also an-
alyze requirements on delegation rules that have been sug-
gested by practitioners, and introduce novel rules with at-
tractive properties. By performing an extensive experimental
analysis on synthetic as well as real-world data, we compare
delegation rules with respect to several quantitative criteria
relating to the chosen paths and the resulting distribution of
voting power. Our experiments reveal that delegation rules
can be aligned on a spectrum reflecting an inherent trade-off
between competing objectives.

1 Introduction
Liquid democracy is a novel decision-making paradigm that
aims to reconcile the idealistic appeal of direct democracy
with the practicality of representative democracy by giving
agents a choice regarding their mode of participation: For
every given issue, agents can choose whether they want to
vote directly or whether they want to delegate their vote to
another agent. The mode of participation can differ for dif-
ferent issues and the choice of mode (including the choice
of whom to delegate to) can be altered at any time. This en-
ables a flexible and dynamic scheme of representation on a
per-issue basis (Blum and Zuber 2016).

An important principle of liquid democracy is the transi-
tivity of delegation (sometimes called metadelegation): if A
delegates to B and B delegates to C, then C has a total vot-
ing weight of 3 (her own vote plus those of A and B). More
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generally, delegated votes travel along delegation paths un-
til they reach an agent who votes directly. This agent at the
endpoint of the path (sometimes referred to as “guru”) then
has a voting weight corresponding to all the agents whose
delegation paths end up with him or her.

Introducing the option of delegating one’s vote arguably
lowers the bar for participation, as it does not require agents
to get informed about an issue before making their vote
count (Ford 2002; Boldi et al. 2011; Valsangiacomo 2021).
This is particularly true if delegations can be declared glob-
ally and/or for whole subject areas.1 As a result, liquid
democracy has the potential to achieve substantially higher
rates of (direct and indirect) participation than direct voting.

However, vote delegations do not always work out as in-
tended. For instance, if a delegation path ends in an agent
who abstains (i.e., neither delegates nor votes directly), the
vote is inevitably lost. Moreover, if a group of agents dele-
gate to each other in a cyclic fashion and no group member
votes directly, they form a “delegation cycle” and all their
votes, together with the votes of agents whose delegation
paths lead to the cycle, are lost. Finally, delegation paths can
potentially get very long, calling into question the degree of
trust between the agents at the beginning and end of the path.

To address these issues, we consider an extension of liq-
uid democracy that lets agents declare multiple potential del-
egates, together with a ranking among them specifying the
agent’s delegation preferences: By ranking potential dele-
gate X higher than potential delegate Y , an agent indicates
that she would prefer delegating her vote to X , but would
also be happy with a delegation to Y in the case that the
delegation to X leads to one of the problems mentioned in
the previous paragraph. This functionality was implemented,
e.g., in a liquid democracy experiment at Google (Hardt and
Lopes 2015). Allowing agents to declare ranked delegations
enlarges the space of possible delegation paths and thereby
increases the likelihood of “successful” delegation paths. In
the case that multiple such paths exist, however, we need a
principled way to choose among them. This is accomplished
by so-called delegation rules, which select delegation paths
based on the delegation preferences of agents.

1For instance, this is possible in the open-source software Liq-
uidFeedback (Behrens et al. 2014), where more fine-grained dele-
gations override global delegations, and direct voting on any par-
ticular issue overrides all delegations.
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Our Contribution We propose a graph-theoretic model
capturing the ranked delegation setting and study the space
of delegation rules. We define sequence rules as the subclass
of delegation rules that can be rationalized by an ordering
over delegation paths that only takes the ranks of edges into
account. For most delegation rules considered in the litera-
ture, we establish their membership in this class by uncover-
ing their respective order. Our systematic approach leads us
to introduce novel sequence rules with attractive properties.

In our axiomatic analysis, we generalize a result by Kot-
sialou and Riley (2020), showing that all but one rule stud-
ied in our paper satisfy guru-participation. We also study
the axiom copy-robustness, which is motivated by practical
considerations. Notwithstanding a strong impossibility re-
sult for the subclass of sequence rules, we construct a copy-
robust delegation rule by taking a “global” approach. Lastly,
we give axiomatic characterizations for two sequence rules.

We complement our theoretical results with an extensive
experimental analysis using synthetic and real-world data.
We empirically compare delegation rules with respect to
several quantitative criteria such as the length of chosen
paths or the distribution of voting power that results from
those paths. Interestingly, we find that the delegation rules
form a spectrum, reflecting an inherent trade-off between
short paths and paths containing top-ranked delegations.

Related Work As illustrated by Behrens (2017), some of
the ideas underlying liquid democracy date back to Dodgson
(1884), Tullock (1967), and Miller (1969). Liquid democ-
racy has been studied theoretically, and applied practically,
in various ways in recent years (Paulin 2020).

Liquid democracy settings with ranked delegations have
been considered by several authors. Behrens and Swierczek
(2015) illustrate the incompatibility of a set of axioms, sev-
eral of which we discuss in Section 4. Kotsialou and Riley
(2020) focus on two simple delegation rules and on partic-
ipation axioms. Their observation that breadth-first delega-
tion satisfies guru-participation also follows from our more
general result in Section 4. Kavitha et al. (2021) establish
a connection between ranked delegations and branchings in
directed graphs, which we build upon in Section 3.3, and fo-
cus on the computational complexity of finding “popular”
branchings. Colley, Grandi, and Novaro (2020) propose a
generalisation of the ranked delegations setting where agents
can express complex delegations involving sets of delegates
on each level of the ranking. When restricted to our setting,
their “unravelling procedures” reduce to variants of the rule
we call Diffusion. Both Kavitha et al. and Colley et al. as-
sume that agents specify backup votes, i.e., votes that are
used when no delegation path exists. In contrast, our model
does not necessitate this rather demanding assumption.

Other settings with multiple delegations have been con-
sidered as well. Gölz et al. (2018) let agents specify mul-
tiple delegation options, but without specifying preferences
among them. Their objective is to assign delegations in such
a way as to minimize the maximal voting weight of agents.
Kahng, Mackenzie, and Procaccia (2021) consider an epis-
temic setting in which each agent has a competence level
(i.e., probability of making the “correct” voting decision)

and an approved subset of other agents. They are interested
in (possibly randomized) delegation mechanisms that in-
crease the likelihood of a correct decision compared to di-
rect voting. Since delegation is only allowed to more compe-
tent agents, there can be no delegation cycles in their model.
Finally, Christoff and Grossi (2017) and Brill and Talmon
(2018) let agents delegate different decisions to different
delegates and explore ways to ensure individual rationality.

2 The Model
We start our exploration of the ranked delegation setting by
presenting a graph-theoretic model. We focus on a single is-
sue that is to be decided upon and assume that we are given
(1) the set of agents that are casting a direct vote (casting
voters) as well as (2) for each non-casting agent, a (possibly
empty) set of other agents together with a ranking over them
representing delegation preferences.2 Based on this informa-
tion, we want to assign non-casting agents to casting voters
by choosing delegation paths. Our model focuses on deter-
mining the voting weights of casting voters and is, therefore,
independent of any particular method for aggregating the
votes of the casting voters. Separating the delegation mecha-
nism from the voting method allows us to analyze the former
in isolation, and also simplifies the model.3

We represent a ranked delegation instance as a pair
(G, r), where G = (C ∪ D ∪ I, E) is a directed graph.
The set of vertices of G corresponds to the set of all voters
(agents) and is partitioned into three sets C, D, and I with
the following properties:

• nodes in C have no outgoing edges in G (we refer to
voters in C as casting voters);

• for each node in D, there exists at least one path in G to a
voter in C (we refer to voters in D as delegating voters);

• for each node in I , there exists no path in G leading to a
voter in C (we refer to voters in I as isolated voters).

For the set of all voters we write V = C ∪ D ∪ I . Note
that for any graph G = (V,E) with a distinguished set C ⊆
V of casting voters, the sets D and I are uniquely defined.
The second element of the instance, r, is a rank function on
the set of edges that encodes, for every node, a linear order
over its set of outgoing edges. Formally, r : E → N≥1 is a
function such that {r(e) | e ∈ δ+G(v)} = {1, . . . , |δ+G(v)|}
for all v ∈ V \ C, where δ+G(v) is the set of outgoing edges
of v in G. If r((v, x)) < r((v, y)) this is interpreted as voter
v preferring to delegate to voter x over delegating to voter y.
For an example of a ranked delegation instance, see Figure 1.

For a non-casting voter v ∈ V \ C, we denote the set of
all simple paths from v to some casting voter by

Pv := {P | P is a simple v-w-path and w ∈ C}.

Observe that Pv is empty if and only if v ∈ I . This is in par-
ticular the case when δ+G(v) = ∅ (in which case we call v an

2An empty set of potential delegates corresponds to abstaining.
3As we will see in Section 4, axioms formulated in more com-

plex models (Behrens and Swierczek 2015; Kotsialou and Riley
2020; Colley, Grandi, and Novaro 2020) can be translated into ours.
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Figure 1: Example of a ranked delegation instance (G, r).
Casting voters are indicated by squares, delegating voters
by circles and isolated voters by triangles.

abstaining voter), but it also happens if v has only outgoing
edges towards other isolated voters. In Figure 1, Pg = ∅ and
Pd = {(d, j), (d, e, b, c, i), (d, e, f, k)}. 4

Our task is now to define sensible rules which assign del-
egating voters to casting ones (via a path in G).

Definition 1. A delegation rule f is a function that takes as
input a ranked delegation instance (G, r) and a delegating
voter v ∈ D and outputs a path from v to a casting voter,
i.e., f(G, r, v) ∈ Pv for all v ∈ D. We also write f(v),
whenever the instance (G, r) is clear from the context.

Since isolated voters cannot be contained in any of the
paths in Pv , their influence on the problem is limited. Thus,
it will often be convenient to omit the isolated voters from
the instance. However, we argue that the information about
their existence should still be reflected within the rank func-
tion r.5 More formally, we define the graph Ḡ = (V̄ , Ē)
with V̄ = C ∪ D and Ē = {(u, v) ∈ E | u, v ∈ V̄ }, and
r̄(e) = r(e) for all e ∈ Ē and refer to (Ḡ, r̄) as the reduced
instance of (G, r).

3 Delegation Rules
Before introducing and analyzing several delegation rules,
we formalize two fundamental concepts that will help us to
classify delegation rules: confluence and sequence rules.

To motivate the former, observe that the definition of a
delegation rule does not forbid that selected paths cross.
Consider for example the instance in Figure 1: There exists a
delegation rule assigning path (c, d, e, f, . . . ) to agent c but
path (d, e, b, . . . ) to agent d. This can be seen as counter-
intuitive as it is incompatible with the view that voter e takes
the decision on how to delegate incoming delegations based
on its delegation preferences. Also, it can be difficult for
voter e to keep track and evaluate the decisions made by all
casting voters who have been reached via delegation paths
passing through e. In this context, Gölz et al. (2018) argue
that a single representative per delegating voter is needed “to

4We interpret paths as edge sequences. However, for brevity, we
state node sequences whenever referring to paths in Figure 1. For
convenience, we interpret paths as sets of edges in Definition 2.

5E.g., consider the edge from agent f to agent k in Fig. 1. If we
were to delete all isolated agents and adjust the rank function, the
new rank of this edge would be 2, even though k is only f ’s fourth
choice. Such examples can be made arbitrarily “extreme.”

preserve the high level of accountability guaranteed by clas-
sical liquid democracy.” We define a natural subclass of del-
egation rules in which this is guaranteed. In reference to con-
fluent flows in networks (Chen, Rajaraman, and Sundaram
2006), we call such delegation rules confluent.
Definition 2. A delegation rule f is confluent if, for every
instance (G, r), every delegating voter v ∈ D has outdegree
exactly one in (V,

⋃
v∈D f(G, r, v)).

Besides confluence, two natural—and often conflicting—
objectives are minimizing the length of paths and minimiz-
ing the ranks of edges contained in paths. Short paths are
particularly motivated by the fact that delegations are a form
of trust propagation and it is debatable to what extent trust
is transitive. At the same time, votes should be delegated to
highly trusted agents, motivating the selection of paths with
top-ranked edges. Both of these objectives can be evaluated
by only considering the sequence of ranks appearing along
a path. Indeed, most delegation rules introduced in the lit-
erature can be expressed as choosing, among all available
delegation paths, the one with the “best” rank sequence. We
formalize this subclass of delegation rules as sequence rules.

To do so, we need some notation. Let S be the set of all fi-
nite sequences of numbers in N≥1.6 We define the sequence
of a path P = (e1, e2, . . . , eℓ) as s(P ) := (r(e1), . . . , r(eℓ))
and denote the set of all sequences from v to some casting
voter by Sv := {s(P ) | P ∈ Pv}. For a sequence s, we
write si to refer to the i-th element of s, |s| for the length of
s, max(s) for the maximal entry, and use the notation (s, x)
to denote s extended by a number x ∈ N≥1 or a sequence x.

We call a delegation rule a sequence rule if it, explicitly
or implicitly, defines a relation ▷ over S and, when con-
fronted with Pv , guarantees a unique maximum element of
Sv w.r.t. ▷ and selects the corresponding path. It is clearly
sufficient to define ▷ on sets of comparable sequences:
Definition 3. Two sequences s, s′ ∈ S are said to be com-
parable if there exists an instance (G, r) and a vertex v ∈ V
such that Sv = {s, s′}. A set S ⊆ S is said to be compara-
ble if all elements are pairwise comparable.

Not all pairs of sequences are comparable; e.g. , there is
no instance with Sv = {(1), (1, 2)} for some v, as the first
elements of (1) and (1, 2) would correspond to the same
edge e (of rank 1) that is outgoing from v. Thus, the head
of e is a casting voter (due to (1) ∈ Sv) but has an outgoing
edge (due to (1, 2) ∈ Sv), a contradiction. This observation
can be extended to any situation in which s is a prefix of s′
(i.e. |s| < |s′| and si = s′i for all i ∈ {1, . . . , |s|}). Proofs
for results marked by (⋆) can be found in the full version of
this paper (Brill et al. 2021).
Proposition 4 (⋆). Two distinct non-empty sequences
s, s′ ∈ S are comparable iff none is a prefix of the other.

We are now ready to define the class of sequence rules.
Definition 5. A delegation rule f is a sequence rule if there
exists a relation ▷ over S , which, if restricted to any com-
parable subset of S , is a linear order and for any instance
(G, r) and v ∈ V it holds that s(f(v)) = max▷{Sv}.

6For technical reasons, S also includes the empty sequence ()
with length 0 and (by convention) maximum rank 0.
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If a relation ▷ proves that f is a sequence rule, we also say
that ▷ induces f .

3.1 Basic Sequence Rules
In the following we describe rules which are induced by nat-
ural linear orders over the entire set S . The first two rules
have also been considered by Kotsialou and Riley (2020).
Let ▷lex be the lexicographic order over S . That is, for two
distinct sequences s, s′ ∈ S , let i be the smallest index such
that si ̸= s′i. Then, s ▷lex s

′ iff si < s′i. If no such index ex-
ists, then s ▷lex s

′ iff |s| < |s′|.
Depth-first delegation (DFD): The sequence rule induced
by the lexicographic order ▷lex over S .
Breadth-first delegation (BFD): The sequence rule in-
duced by the linear order over S that prefers shorter se-
quences over longer ones and uses ▷lex for tie-breaking.

While DFD focuses on the objective of selecting delega-
tions with top ranks, BFD primarily selects short paths. As a
consequence, each of them have at least one obvious draw-
back: DFD is mostly indifferent about the length of a path
and may select very long paths, whereas BFD mostly ig-
nores the ranks of a path and hence can select paths contain-
ing edges that are ranked extremely low.

We propose a third, natural delegation rule, which ar-
guably strikes a better balance between the two objectives
of minimizing the length and the ranks of a path.
MinSum: The sequence rule induced by the linear order
over S that orders sequences by their sum of ranks and uses
the lexicographic order for tie-breaking.

To illustrate these rules, consider again the example in-
stance in Figure 1. For delegating voter a, DFD selects
the path (a, b, c, d, e, f, k) (with sequence (1, 1, 1, 1, 2, 4)),
BFD selects the path (a, b, c, i) (with sequence (1, 1, 3)), and
MinSum selects (a, b, c, d, j) (with sequence (1, 1, 1, 2)).

Next, we characterize confluent sequence rules.

Theorem 6 (⋆). A sequence rule induced by ▷ is confluent
if and only if for all s ∈ S we have (i) if s is comparable to
some s′ ∈ S and x ∈ N≥1, then s▷s′ ⇔ (x, s)▷(x, s′) and
(ii) if s′ ∈ S and s is comparable to (s′, s), then s ▷ (s′, s).

Making use of this characterization we show:

Corollary 7 (⋆). BFD and MinSum are confluent. DFD is
not confluent.

3.2 Advanced Sequence Rules
We introduce the new delegation rule Diffusion which is in-
spired by a propagation process similar to those studied in
the opinion diffusion literature. We give a motivation for this
connection upfront, and then define the rule formally.

Confronted with an instance of our setting, we argue that
there are certain delegation paths which are, in a sense, best
possible: Let x be the minimum rank of an incoming edge
of any casting voter. Then, all delegating voters that have a
direct edge to a casting voter with rank x should be assigned
this path. The rationale behind this statement is that for ev-
ery voter v, every path in Pv contains at least one edge with
rank at least x. Hence a one-step path with rank x seems

preferable to any other path. However, typically, not all vot-
ers have such a path. A natural continuation of our argument
goes as follows: In a second round, we call casting voters
and delegating voters that already got assigned to a casting
voter assigned. We treat all assigned voters as casting vot-
ers and repeat the process until all delegating voters become
assigned. The path assignment is then derived by following
the one-step paths. A similar process has been described by
Colley, Grandi, and Novaro (2020) within their unravelling
procedures “basic update” and “direct vote priority.”7

Diffusion: Initialize the set of assigned voters: A← C.
While (A ̸= V \ I), repeat the following steps:

1. F ← argmin{r(e) | e ∈ δ−G(A)}, where δ−G(A) is the
set of edges in G having their head in A and tail in V \A.

2. A← A ∪ {v | (v, w) ∈ F}
3. f(v) = ((v, w), f(w)) for all (v, w) ∈ F

The assignment in step 3 is well defined as voters’ pref-
erences are strict orders and thus there exist no two edges
(v, w), (v, w′) ∈ F . This immediately implies confluence.

Proposition 8. Diffusion is confluent.

One may wonder whether this seemingly “global” process
(in the sense that we need to know the entire graph to deter-
mine the minimal rank x) can be explained by an order over
S that can be applied to each delegating voter “locally.”
Stated differently, is diffusion a sequence rule? Surprisingly,
we answer this question in the affirmative: We define the or-
der ▷diff (which will prove our claim) for sequences without
a joint prefix first and then later extend it to any two com-
parable sequences in a straightforward way. Let s and s′ be
two comparable sequences with no joint prefix. We define
s ▷diff s

′ if one of the following conditions holds:

(i) max(s) < max(s′);
(ii) max(s)=max(s′) and | argmax(s)|< | argmax(s′)|;

(iii) max(s)=max(s′), | argmax(s)|= | argmax(s′)|, and
(s̄ ▷diff s̄

′ or s̄ = ());

where s̄ (resp. s̄′) is defined as the prefix of s (resp. s′) end-
ing just before the first entry of rank max(s).

The relation ▷diff can now easily be extended to two com-
parable sequences (t, s), (t, s′) having a joint prefix t ∈ S .
That is, (t, s) ▷diff (t, s

′) if and only if s ▷diff s
′.

Theorem 9 (⋆). The relation ▷diff induces Diffusion.

The relation ▷diff reveals the decision criteria of Diffu-
sion: If two sequences s and s′ have a different maximum
rank, Diffusion decides in favor of the sequence with smaller
maximum rank (see (i)). If the two sequences have equal
maximum rank, Diffusion decides in favor of the sequence
for which the maximum rank appears less often (see (ii)).
Thus, Diffusion overcomes BFD’s shortcoming of select-
ing sequences with large edge ranks. For example, from
{(1, 100), (1, 1, 2)}, Diffusion selects (1, 1, 2) while BFD
selects (1, 100). Moreover, in contrast to DFD, Diffusion

7Besides the fact that Colley, Grandi, and Novaro (2020) define
their rule for a different setting, they also treat abstaining voters
differently as abstentions can be delegated (see also Footnote 8).

4887



cannot be tricked into selecting a sequence with large edge
ranks at the end. For example, Diffusion selects (2) from
{(1, 100), (2)}while DFD selects (1, 100). Having said this,
the very last tie-breaking rule (see (iii)) can be argued to be
slightly unnatural as it only compares the parts of s and s′ up
to the first appearance of the maximum rank. For example,
this leads to (1, 5, 4, 4, 4, 4) ▷diff (2, 5).

Inspired by this, we define Leximax, a delegation rule that
shares Diffusion’s desirable properties but avoids its artifi-
cial tie-breaking. We define the function σ, taking as input a
rank sequence and sorting the ranks of the sequence in non-
increasing order. For instance, σ((1, 3, 4, 3)) = (4, 3, 3, 1).
Leximax: The delegation rule induced by the linear order
▷σ over S defined as follows: For sequences s, s′ ∈ S let
s ▷σ s

′ if (i) σ(s) ▷lex σ(s
′), or (ii) σ(s) = σ(s′) and s ▷lex s

′.
In the example in Figure 1, Leximax selects (a, b, c, d, j)

for voter a. With the help of Theorem 6 we can show:

Corollary 10 (⋆). Leximax is confluent.

3.3 Branching Rules
We can also view the output of a confluent delegation rule
as a special directed forest (aka branching) in the reduced
graph Ḡ = (D ∪ C, Ē). More precisely, we call B ⊆ Ē a
C-branching in Ḡ if B is acyclic and |δ+B(v)| = 1 for all
v ∈ D. For any confluent rule f , the set

⋃
v∈D f(v) is a

C-branching in Ḡ and this encodes all selected paths.
Considering this interpretation, it seems natural to de-

fine delegation rules that optimize directly over the set of
C-branchings, as for example selecting one with minimum
sum of ranks. It is important to stress that this approach in-
herently comes with a different perspective on the problem.
Namely, it gives equal importance to each of the edges in-
stead of each of the selected paths. Under the premise that
each voter is equally important, this is compatible with the
assumption that voters care only about the first edge of their
path. Though this is different from the approaches presented
in the previous sections, this can be a valid view as the vot-
ers express their preferences explicitly only over their outgo-
ing edges. Hence, any preferences over paths are “inherited”
from other voters’ preferences. Below we define Borda-
Branching, a natural variant of MinSum. Such a branching
can be found by using a linear program for solving the min-
cost arborescence problem (e.g., Korte and Vygen 2012).
BordaBranching: Selects a C-branching B in Ḡ that mini-
mizes

∑
e∈B r(e).

In order for BordaBranching to be resolute, we need to
define a tie-breaking rule. We later use a priority order tie-
breaking (formalized in the proof of Proposition 14). An ex-
ample shows that BordaBranching is not a sequence rule:
Voters v1 and v2 have each other as their first choice and
casting voters w1, w2 as their second choice, respectively.
Then, Sv1

= Sv2
= {(1, 2), (2)} and BordaBranching as-

signs sequence (1, 2) to one voter and (2) to the other.
The above approach is reminiscent of the Borda rule in

classical social choice theory, as for every branching the
method sums up the position of the branching’s edges in the
corresponding voters’ rankings and compares these scores.

Interestingly, one can also apply an approach in the spirit
of Condorcet and consider pairwise majority comparisons
between branchings (Kavitha et al. 2021). Lifting the dele-
gation preferences of a voter v ∈ D to preference relation
≻v over C-branchings in a straightforward way (by compar-
ing the ranks of v’s outgoing edges in the branchings), define
the majority margin between two C-branchings B and B′ as

∆(B,B′) = |{v ∈ D | B ≻v B′}|−|{v ∈ D | B′ ≻v B}|.
A C-branching B is called popular if ∆(B,B′) ≥ 0 for
all B′. It follows from Kavitha et al. (2021) that a popu-
lar branching in our setting need not exist. They also define
the unpopularity margin of B as µ(B) = maxB′ ∆(B′, B).
Note that µ(B) ≥ 0 for all B and µ(B) = 0 iff B is popular.

In our experiments, we evaluate branchings returned by
confluent delegation rules by computing their unpopularity
margin via a linear program (Kavitha et al. 2021). Surpris-
ingly, we find that BordaBranching returns a popular branch-
ing in most instances.

4 Axiomatic Analysis
In this section, we revisit an axiom that was studied in the lit-
erature (guru-participation) and we formalize a desideratum
whose importance was emphasized by practitioners (copy-
robustness). We also provide axiomatic characterizations of
the sequence rules DFD and BFD.

We define the relative voting weight ωf (G, r, c) of a cast-
ing voter c ∈ C that results from applying a delegation rule
f to an instance (G, r) as

ωf (G, r, c) =
|{d ∈ D | f(G, r, d) ends in c}|+ 1

|C|+ |D|
.

We use the relative voting weight in order to cope with mul-
tiple elections with distinct numbers of non-isolated voters.

4.1 Guru-Participation
Guru-participation was introduced by Kotsialou and Riley
(2020), and a similar axiom has been suggested by Behrens
and Swierczek (2015). The axiom demands that a casting
voter should not be penalised for being the representative
(also called guru) of a delegating voter. More precisely, Kot-
sialou and Riley (2020) consider a model that also com-
prises voting on a binary issue, which is decided by majority
rule. They say that a casting voter c is “penalised” for being
the representative of a delegating voter v, if c would prefer
the outcome of the election in which, all other things be-
ing equal, v abstains. As our model captures the delegation
phase only, we need to adapt the axiom to our setting. In the
full version of this paper (Brill et al. 2021) we show that our
version implies theirs, and, under a very mild assumption on
the delegation rule, the two axioms are equivalent.
Definition 11. A delegation rule f satisfies guru-participa-
tion if the following holds for every instance (G, r): If v ∈ D
and f(G, r, v) ends in c, then

ωf (G, r, u) ≤ ωf (G
′, r, u) for all u ∈ C \ {c},

where G′ = (C ′ ∪ D′ ∪ I ′, E′) is the graph derived from
G = (C∪D∪I, E) by setting E′ = E\δ+G(v) and C ′ = C.
In particular, this implies that ωf (G, r, c) ≥ ωf (G

′, r, c).
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Kotsialou and Riley (2020) showed that DFD violates
guru-participation while BFD satisfies it. We generalize the
latter statement to all confluent sequence rules.
Proposition 12 (⋆). Every confluent sequence rule satisfies
guru-participation.

As a consequence, three more rules satisfy the axiom.8

Corollary 13. MinSum, Diffusion, and Leximax satisfy
guru-participation.

We show that the same holds for BordaBranching.
Proposition 14 (⋆). There exists a tie-breaking rule for
which BordaBranching satisfies guru-participation.

4.2 Copy-Robustness
The issue motivating the next axiom was brought up by
Behrens and Swierczek (2015), who are part of the de-
veloping team behind LiquidFeedback. Consider a delegat-
ing voter v who is assigned a path of length one, i.e., this
voter has a direct connection to its representative, which we
call c. Behrens and Swierczek (2015) argue that there is the
threat of a copy-manipulation: Using communication chan-
nels outside the liquid democracy system, these two voters
can arrange that voter v acts as a casting voter by copying
c’s vote. If this manipulation leads to a different joint voting
weight of v and c, then the underlying delegation rule is not
copy-robust.9 We formalize this property below.
Definition 15. A delegation rule f is copy-robust if the fol-
lowing holds for every instance (G, r): If v ∈ D such that
f(G, r, v) is of length one and ends in c ∈ C, then

ωf (G, r, c) = ωf (G
′, r, c) + ωf (G

′, r, v),

where G′ = (C ′ ∪ D′ ∪ I ′, E′) is derived from G = (C ∪
D ∪ I, E) by setting E′ = E \ δ+G(v) and C ′ = C ∪ {v}.

We give a consequence of copy-robustness that illustrates
how limiting this property is for sequence rules.
Proposition 16 (⋆). If the sequence rule induced by ▷ is
copy-robust, then, for all x ∈ N and for any comparable
sequences s and s′, it holds that (s, x) ▷ s′ ⇔ s ▷ s′.

The restrictive nature of copy-robustness becomes even
more apparent in the following impossibility result.
Proposition 17 (⋆). No sequence rule is both confluent and
copy-robust.

Hence, none of BFD, MinSum, Diffusion, and Leximax
is copy-robust. On the other hand, Behrens and Swierczek
(2015) have implicitly shown that the non-confluent se-
quence rule DFD satisfies the axiom (we give a proof in
Theorem 20). Our next result shows that the incompatibility

8Colley, Grandi, and Novaro (2020) show that their unravelling
procedures (two of which reduce to Diffusion up to the fact that ab-
stentions can be delegated) do not satisfy guru-participation. This
is an artifact of their treatment of abstaining voters.

9Behrens and Swierczek (2015) consider an even stronger re-
quirement, according to which the final vote count of a binary elec-
tion needs to remain equal (just as Kotsialou and Riley, 2020, they
capture the voting phase in their model). We remark that our posi-
tive result also holds for this stronger version of the axiom.

between confluence and copy-robustness is indeed restricted
to sequences rules: We prove that BordaBranching is copy-
robust. We use the same tie-breaking as in Proposition 14.
Proposition 18 (⋆). There exists a tie-breaking rule for
which BordaBranching satisfies copy-robustness.

4.3 Characterizations
Finally, we give axiomatic characterizations of DFD and
BFD. To this end, we define two additional properties.
Definition 19. A sequence rule f is weakly lexicographic if
for two comparable sequences s and s′ with |s| = |s′| that
only differ in their last rank value, it holds that s ▷ s′ ⇔
s ▷lex s′. The rule f is strongly lexicographic if the same
holds for any two comparable sequences of equal length.

Every reasonable sequence rule should be weakly lexico-
graphic, as this can also be seen as avoiding the selection of
“Pareto dominated” sequences. The stronger version, how-
ever, is technical in nature and has no normative appeal.
Theorem 20 (⋆). DFD is the only sequence rule that is
weakly lexicographic and copy-robust.

Theorem 21 (⋆). BFD is the only sequence rule that is
confluent and strongly lexicographic.

The full version (Brill et al. 2021) contains a characteriza-
tion of Diffusion and an overview of our axiomatic results.

5 Experimental Evaluation
To complement our axiomatic results, we conducted an ex-
tensive experimental study in order to compare delegation
rules with respect to quantitative criteria. To the best of
our knowledge, there are no real-world data sets on liquid
democracy with ranked delegations, nor do there exist es-
tablished data generation methods for this setting. Thus, we
developed three distinct methods for generating instances of
our setting. In all cases, we transform a (directed or undi-
rected) base graph H = (VH , EH) to an instance (G, r) of
our setting, with G = (C ∪ D ∪ I, E). While it is always
the case that VH = C ∪ D ∪ I , the set of casting voters
C ⊆ VH , the edges of the graph E ⊆ EH , and the rank
function r are selected in a random process specified by the
generation method. Hence, one base graph H paired with
one of the three methods leads to a wide range of instances.
For each method, we use multiple base graphs coming from
synthetic and real-world networks (such as partial networks
of Facebook and Twitter). We let n (respectively, m) denote
the number of nodes (respectively, edges) of the graph G.

Our experimental setup is described in detail in (Brill et al.
2021), where we also present the results for different gener-
ation methods, datasets, and parameters. Our code can be
found at https://github.com/TheoDlmz/rankeddelegation.

Data Generation Our three generation methods apply
to different types of base graphs: unweighted undirected
networks, unweighted directed networks, and weighted di-
rected networks. We describe the first method below, and
describe the other methods in the full version.10

10In our method for unweighted directed networks, which is in-
spired by Gölz et al. (2018), voters are more likely to delegate to
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MaxLen AvgLen MaxWeight MaxSum MaxRank AvgRank Unpop

BFD

MinSum

Leximax

Diffusion

BordaBr.

DFD

3.41 1.39 0.02 12.13 10.0 2.22 0.42

5.5 1.92 0.02 6.78 4.75 1.46 0.23

12.92 2.99 0.05 13.94 2.27 1.21 0.1

13.58 3.17 0.05 15.06 2.27 1.28 0.16

19.33 4.52 0.08 22.58 2.66 1.08 0.001

22.9 5.01 0.07 28.41 3.04

(a) Synthetic data, averaged over 1000 instances (n = 1000, ∆ = 4,
pc = 0.2, α = 2)

MaxLen AvgLen MaxWeight MaxSum MaxRank AvgRank Unpop

BFD

MinSum

Leximax

Diffusion

BordaBr.

DFD

5.62 1.27 0.0 42.62 42.0 3.29 0.45

8.23 2.04 0.0 11.54 7.0 1.35 0.2

29.69 3.97 0.01 30.08 5.69 1.08 0.04

29.77 4.17 0.01 30.46 5.69 1.13 0.08

33.15 4.79 0.01 34.92 5.69 1.03 0.0

35.31 5.0 0.01 39.92 7.62

(b) Real-world data using Facebook network (n = 63, 731 and m =
817, 035), averaged over 10 instances (pc = 0.2, α = 1)

Figure 2: Evaluation of delegation rules with respect to several quantities for real and synthetic unweighted undirected networks.

When the base graph H = (VH , EH) is undirected
and unweighted, we assume edges to represent “friendship”
links between the nodes. We quantify the “strength” of a
friendship between two adjacent nodes v and w by the num-
ber of common friends, i.e., λ(v, w) = |δH(v) ∩ δH(w)|,
where δH(·) is the set of neighbors of a node in H . We first
choose C ⊆ VH by selecting each voter independently with
probability pc ∈ [0, 1]. Then, for every v ∈ V \C, we insert
edges in δH(v) one by one as out-going edges for v in G
where the probability of selecting the edge {v, w} ∈ EH is
proportional to (1+λ(v, w))α, and α > 0 is a constant. The
ranking r among edges is defined by the order of selection.

The real-world network we used for this method is a sub-
graph of the Facebook network (Viswanath et al. 2009). For
synthetic networks, the input network H is generated by the
standard Erdős–Rényi model G(n, p), where we chose the
edge probability p ∈ [0, 1] such that the average number of
edges per voter is equal to ∆.

Evaluation Metrics We implemented all considered dele-
gation rules and evaluated the output of the delegation rules
on various metrics: The maximum rank found on any dele-
gation path (MaxRank), the maximum and average length of
delegations paths (MaxLen and AvgLen), and the maximum
sum of ranks of a delegation path (MaxSum). We also com-
puted MaxWeight, the maximum value of the relative vot-
ing weight ωf (G, r, c) of a casting voter c, as a measure of
the balancedness of the distribution of voting weight. (This
value plays a crucial role in the analysis of Gölz et al. 2018.)
Finally, for confluent rules, we computed the average rank
of outgoing edges (AvgRank) and the unpopularity margin
of the selected branchings, divided by the number of non-
isolated voters (Unpop). For all of these metrics, small val-
ues are desirable and correspond to light colors in our tables.

Experimental Results Figure 2 presents the results for
unweighted undirected base networks. These results are rep-
resentative also for other generation methods and data sets.

The results indicate that the rules can be roughly aligned
along a spectrum: On the one extreme, BFD leads to a good
weight distribution (i.e., low average values of MaxWeight),

nodes with a high indegree. This is reminiscent of the preferen-
tial attachment model (Barabási and Albert 1999). For weighted
directed networks, we interpret weights as “trust” and rank-order
potential delegation edges by decreasing weight.

but high (maximum and average) ranks. On the other ex-
treme, DFD and BordaBranching perform better on the rank
metrics but often lead to unbalanced weight distributions
and long delegation paths. Other sequence rules fall between
these extremes, with MinSum closer to BFD, and Leximax
and Diffusion closer to DFD and BordaBranching. MinSum
in particular seems to strike an attractive balance among
most of the considered evaluation criteria.

Other noteworthy observations include that Leximax out-
performs Diffusion on every metric (recall that we intro-
duced the former as a simplification of the latter) and
that BordaBranching very often produces popular branch-
ings (for example, this is the case in 93% of instances for
the synthetic data set in Figure 2(a)). On average, Borda-
Branching mostly outperforms DFD, and it also has the ad-
vantage of being a confluent rule that moreover satisfies
guru-participation and copy-robustness.

6 Discussion
Building upon a graph-theoretic model, we explored the rich
space of delegation rules and introduced novel rules that ax-
iomatically and empirically outperform existing ones.

Our experiments revealed a gap between rules such as
BFD and MinSum on the one side, and rules such as Lexi-
max on the other. This gap can be filled by defining weighted
sequence rules: For an increasing function w : N≥1 → R+,
such a rule orders sequences by

∑
i w(si). Our axiomatic

results for MinSum can be generalized to this class.
In future work, it might be desirable to take preferences

over delegation paths (rather than only edges) into account.
These could then be lifted to preferences over branchings,
and approaches like those described in Section 3.3 could still
be used to define confluent delegation rules.

While some branching rules are inherently non-neutral,
randomized delegation rules have the potential to avoid this
issue by selecting probability distributions over outgoing
edges (Brill 2018). Going beyond deterministic delegations
would also raise the necessity for new axioms.

Our experiments indicate a trade-off between minimiz-
ing the quantities unpopularity and average rank on the
one hand, and maximum length and maximum weight on the
other hand. It would be interesting to formalize this trade-off
by finding worst-case bounds and guarantees.

We also suggest a comparison between outcomes of liquid
democracy with and without ranked delegations.
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