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Abstract

Following up on purely theoretical work, we contribute fur-
ther theoretical insights into adapting stable two-sided match-
ings to change. Moreover, we perform extensive empirical
studies hinting at numerous practically useful properties. Our
theoretical extensions include the study of new problems (that
is, incremental variants of ALMOST STABLE MARRIAGE and
HOSPITAL RESIDENTS), focusing on their (parameterized)
computational complexity and the equivalence of various
change types (thus simplifying algorithmic and complexity-
theoretic studies for various natural change scenarios). Our
experimental findings reveal, for instance, that allowing the
new matching to be blocked by a few pairs significantly de-
creases the difference between the old and the new matching.

1 Introduction
In our dynamic world, change is omnipresent in society and
business.1 Typically, there is no permanent stability. We ad-
dress this issue in the context of stable matchings in two-
sided matching markets and their adaptivity to change. Con-
sider as an example the dynamic nature of centrally assign-
ing students to public schools. Here, students are matched
to schools, trying to accommodate the students’ preferences
over the schools as well as possible. However, due to stu-
dents reallocating or deciding to visit a private school, ac-
cording to Feigenbaum et al. (2020), in New York typically
around 10% of the students drop out after a first round of
assignments, triggering some readjustments in the school-
student matchings in a further round.

Matching students to schools can be modeled as an in-
stance of the HOSPITAL RESIDENTS problem, where we
are given a set of residents and hospitals each with prefer-
ences over the agents from the other set. One wants to find a
“stable” assignment of each resident to at most one hospital
such that a given capacity for each hospital is respected. To
model the task of adjusting a matching to change, Bredereck
et al. (2020) introduced the problem, given a stable matching
with respect to some initial preference profile, to find a new
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1Motivated by this, Boehmer and Niedermeier (2021) recently
challenged the computational social choice community to adapt
classical models to also account for dynamic aspects.

matching which is stable with respect to an updated prefer-
ence profile (where some agents performed swaps in their
preferences) and which is as similar as possible to the given
matching. They referred to this as the “incremental” scenario
and studied the computational complexity of this question
for STABLE MARRIAGE and STABLE ROOMMATES (both
being one-to-one matching problems).

In this work, we address multiple so-far unstudied aspects
of our introductory school choice example. First, we theo-
retically and experimentally relate different types of changes
to each other, including swapping two agents in some pref-
erence list (as studied by Bredereck et al. (2020)) and delet-
ing an agent (as in our introductory example). Second, we
initiate the study of the incremental variant of many-to-one
stable matchings (HOSPITAL RESIDENTS). Third, as per-
fect stability might not always be essential, for instance, in
large markets, we introduce the incremental variant of AL-
MOST STABLE MARRIAGE (where the new matching is al-
lowed to be blocked by few agent pairs) and study its com-
putational complexity and practical impact. Fourth, we ex-
perimentally analyze how many adjustments are typically
needed when a certain amount of change occurs; moreover,
we give some recommendations to market makers for adapt-
ing stable matchings to change.

1.1 Related Work
We are closest to the purely theoretical work of Bredereck
et al. (2020), using their formulation of incremental stable
matching problems (we refer to their related work section
for an extensive discussion of related and motivating litera-
ture before 2020). Among others, they proved that INCRE-
MENTAL STABLE MARRIAGE is polynomial-time solvable
but is NP-hard (and W[1]-hard parameterized by the allowed
change between the two matchings) if the preferences may
contain ties. We complement and enhance some of Bred-
ereck et al.’s findings, focusing on two-sided markets and
contributing extensive experiments.

Besides the work of Bredereck et al. (2020), there are
several other works dealing with adapting a (stable) match-
ing to a changing agent set or changing preferences (Bhat-
tacharya et al. 2015; Kanade, Leonardos, and Magniez
2016; Ghosal, Kunysz, and Paluch 2020; Nimbhorkar and
Rameshwar 2019; Feigenbaum et al. 2020; Gajulapalli et al.
2020). Closest to our work, Gajulapalli et al. (2020) de-
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signed polynomial-time algorithms for two variants of an
incremental version of HOSPITAL RESIDENTS where the
given matching is resident-optimal (unlike in our setting)
and in the updated instance either new residents are added
or the quotas of some hospitals are modified.

Sharing a common motivation with our work, there is a
rich body of studies concerning dynamic matching markets
mostly driven by economists (Damiano and Lam 2005; Ak-
barpour, Li, and Gharan 2020; Baccara, Lee, and Yariv 2020;
Liu 2021). In the context of matching under preferences, a
frequently studied exemplary (online) problem is that agents
arrive over time and want to be matched as soon as possible
in an—also in the long run—stable way (reassignments are
not allowed) (Liu 2021; Doval 2021).

1.2 Our Contributions
On the theoretical side, while Bredereck et al. (2020) fo-
cused on swapping adjacent agents in preference lists, we
consider three further natural types of changes: the deletion
and addition of agents and the complete replacement of an
agent’s preference list. These different change types model
different kinds of real-world scenarios; however, as one of
our main theoretical results, we prove in Section 3 that all
four change types are equivalent, thus allowing us to transfer
both algorithmic and computational hardness results from
one type to another.

Motivated by the polynomial-time algorithm of Bredereck
et al. (2020) for INCREMENTAL STABLE MARRIAGE, in
Section 4 we study the related problem INCREMENTAL AL-
MOST STABLE MARRIAGE (where the new matching may
admit few blocking pairs). We show that INCREMENTAL
ALMOST STABLE MARRIAGE is NP-hard and establish pa-
rameterized tractability and intractability results. Moreover,
motivated by the observation that, in practice, also many-
to-one matching markets may change, we consider INCRE-
MENTAL HOSPITAL RESIDENTS in Section 5. We show that
the problem is polynomial-time solvable. However, if prefer-
ences may contain ties, then it becomes NP-hard and W[1]-
hard when parameterized by the number of hospitals; still,
we can identify several (fixed-parameter) tractable cases.

On the experimental side (Section 6), we perform an ex-
tensive study, among others taking into account the four dif-
ferent change types discussed above. For instance, we inves-
tigate the relation between the number of changes and the
symmetric difference between the old and new stable match-
ing. We observe that often already very few random changes
require a major restructuring of the matching. One way to
circumvent this problem is to allow that the new matching
might be blocked by a few agent pairs. Moreover, reflect-
ing its popularity, we compute the input matching using the
Gale-Shapley algorithm (Gale and Shapley 1962) and ob-
serve that, in this case, computing the output matching also
with the Gale-Shapley algorithm produces a close to optimal
solution.

The proofs (or their completions) for results marked
by (F) and major parts of our experimental study can be
found in a full version of our work (Boehmer, Heeger, and
Niedermeier 2021).

2 Preliminaries
An instance of the STABLE MARRIAGE WITH TIES (SM-T)
problem consists of two sets U and W of agents and a pref-
erence profile P containing a preference relation for each
agent. Following conventions, we refer to the agents from U
as men and to the agents from W as women. We denote the
set of all agents byA := U∪W . Each manm ∈ U accepts a
subset Ac(m) ⊆ W of women, and each woman w accepts
a subset Ac(w) ⊆ U of men. The preference relation %a of
agent a ∈ A is a weak order of the agents Ac(a) that agent a
accepts. For two agents a′, a′′ ∈ Ac(a), agent a weakly
prefers a′ to a′′ if a′ %a a′′. If a both weakly prefers a′
to a′′ and a′′ to a′, then a is is indifferent between a′ and a′′
and we write a′ ∼a a′′. If a weakly prefers a′ to a′′ but
does not weakly prefer a′′ to a′, then a strictly prefers
a′ to a′′ and we write a′ �a a′′. If the preference rela-
tion of an agent a is a strict order, that is, there are no
two agents such that a is indifferent between the two, then
we say that a has strict preferences and denote a’s prefer-
ence relation as �a. In this case, we use the terms “strictly
prefer” and “prefer” interchangeably. STABLE MARRIAGE
(SM) is the special case of SM-T where all agents have
strict preferences. For two preference relations % and %′,
the swap distance between % and %′ is the number of agent
pairs that are ordered differently by the two relations, i.e.,
|{{a, b} : a � b ∧ b %′ a}| + |{{a, b} : a ∼ b ∧ ¬a ∼′ b}|;
if both relations are defined on different sets, then we define
the swap distance to be infinity. For two strict preference
relations � and �′, the swap distance yields the minimum
number of swaps of adjacent agents needed to transform �
into �′. For two preference profiles P1 and P2 on the same
set of agents, |P1 ⊕ P2| denotes the summed swap distance
between the two preference relations of each agent.

A matching M is a set of pairs {m,w} with m ∈ Ac(w)
and w ∈ Ac(m) where each agent appears in at most one
pair. For two matchingsM andM ′, the symmetric difference
is M4M ′ = (M \M ′) ∪ (M ′ \M). In a matching M , an
agent a is matched if a appears in one pair, i.e., {a, a′} ∈M
for some a′ ∈ A\{a}; otherwise, a is unmatched. A match-
ing is perfect if each agent is matched. For a matching M
and a matched agent a ∈ A, we denote by M(a) the partner
of a in M , i.e., M(a) = a′ if {a, a′} ∈ M . For an un-
matched agent a ∈ A, we set M(a) := ∅. All agents a ∈ A
strictly prefer any agent from Ac(a) to being unmatched
(thus, we have a′ �a ∅ for a′ ∈ Ac(a)).

A pair {u,w} with u ∈ U and w ∈ W blocks a match-
ing M if m and w accept each other and strictly prefer each
other to their partners in M , i.e., m ∈ Ac(w), w ∈ Ac(m),
m �w M(w), and w �m M(m). A matching M is stable
if it is not blocked by any pair. SM and SM-T ask whether
there exists a stable matching of the agents A with respect
to preference profile P .

We also consider a generalization of SM called AL-
MOST STABLE MARRIAGE (ASM), where as an additional
part of the input we are given an integer b and the ques-
tion is whether there is a matching admitting at most b
blocking pairs. Furthermore, we study the HOSPITAL RES-
IDENTS (HR) problem, a generalization of SM where we
are given a set R of residents and a set H of hospitals and
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agents from both sets have preferences over a set of accept-
able agents from the other set and each hospital h ∈ H has
an upper quota u(h). In a matching, each resident can ap-
pear in at most one pair, while each hospital h can appear
in at most u(h) pairs. In this context, we slightly adapt the
definition of a blocking pair and say that a resident-hospital
pair {r, h} blocks a matching M if both r and h accept
each other, r prefers h to M(r), and h is matched to less
than u(h) residents in M or prefers r to one of the residents
matched to it.

Our work focuses on “incrementalized versions” of
the discussed two-sided stable matching problems. For
SM/(SM-T), this reads as follows:

INCREMENTAL STABLE MARRIAGE [WITH TIES]
(ISM/[ISM-T])
Input: A set A = U ∪· W of agents, two preference
profiles P1 and P2 containing the strict [weak] prefer-
ences of all agents, a stable matching M1 in P1, and
an integer k.
Question: Is there a matching M2 that is stable in P2

such that at most k edges appear in only one of M1

and M2, i.e., |M14M2| ≤ k?
IHR and IHR-T are defined analogously. IASM [IASM-T]
is defined as ISM [ISM-T] with the difference that we are
given an additional integer b as part of the input and the ques-
tion is whether there is a matching M2 that admits at most b
blocking pairs in P2 such that |M14M2| ≤ k.

3 Equivalence of Different Types of Changes
Bredereck et al. (2020) focused on the case where the pref-
erence profile P2 arises from P1 by performing some swaps
in the preferences of some agents (we refer to this as Swap).
However, there are many more types of changes: Allowing
for more radical changes, denoted by Replace, we count
the number of agents whose preferences changed (here in
contrast to Swap, we also allow that the set of accept-
able partners may change). Next, recall that in our introduc-
tory example from school choice children leave the match-
ing market, which corresponds to agents getting deleted.
We denote this type of change by Delete—formally, we
model the deletion of an agent by setting its set of ac-
ceptable partners in P2 to ∅. Moreover, children leaving
one market might enter a new one, which corresponds to
agents getting added (Add). Formally, we model the ad-
dition of an agent a by already including it in P1, but
with Ac(a) = ∅ in P1. The goal of this section is to show
that these four natural possibilities of how P2 may arise
from P1 actually result in equivalent computational prob-
lems. More formally, we say that a type of change X ∈
{Delete,Add,Swap,Replace} linearly reduces to a type
of change Y ∈ {Delete,Add,Swap,Replace} if any
instance I = (A,P1,P2,M1, k) of ISM(-T) where P1

and P2 differ by x changes of type X can be trans-
formed in linear time to an equivalent instance I ′ =
(A′,P ′1,P ′2,M ′1, k′) of ISM(-T) with P ′1 and P ′2 differing
by O(x) changes of type Y . We call two change types X
and Y linearly equivalent if both X linearly reduces to Y
and Y linearly reduces to X .

Theorem 1 (F). Swap, Replace, Delete, and Add are
linearly equivalent for ISM and ISM-T.

We only exemplarily show here how Replace can be lin-
early reduced to Add:
Lemma 1 (F). Replace can be linearly reduced to Add.

Proof. Let I = (A = U ∪· W,P1,P2,M1, k) be an instance
of ISM(-T) for Replace. From this, we construct an in-
stance I ′ = (A′ = U ′∪·W ′,P ′1,P ′2,M ′1, k′) of ISM(-T) for
Add as follows. Let Arepl be the set of agents with different
preferences in P1 and P2, and let A∗repl := Arepl ∪ {M1(a) :

a ∈ Arepl ∧ M1(a) 6= ∅} be the set of these agents and
their partners in M1. To construct I ′, we start by adding all
agents from A to A′ and set the preferences of all agents in
P ′1 and P ′2 to be their preferences in P1 (the preferences of
some of these agents will be modified slightly in the follow-
ing). Moreover, for each a ∈ A∗repl, we add to A′ a “binding”
agent ba and a “clone” ca. Agent ca has empty preferences
in P ′1 and has a’s preferences from P2 in P ′2. We modify the
preferences of all so far added agents such that ca appears
directly before a (or is tied with a if we have an instance
with ties). Agent ba has empty preferences in P ′1, only finds
a acceptable in P ′2, and we modify the preferences of a in
both P ′1 and P ′2 such that a prefers ba to all other agents.

The idea behind the construction is as follows. We add ba
in P ′2 which forces M ′2 to contain {a, ba} and further add
agent ca, who “replaces” a in P ′2 and has a’s changed
preferences. However, this construction does not directly
work: Let m ∈ A∗repl ∩ U and w = M1(m). Unfor-
tunately, adding the edge {m,w} to M2 corresponds to
adding the edge {cm, cw} to M ′2, which leads to an increase
of |M ′14M ′2| but not of |M14M2|. In order to cope with
this, we replace the edge {cm, cw} by an edge gadget con-
sisting of multiple agents: For each man m ∈ A∗repl ∩ U
matched by M1 to a woman w, we introduce agents as de-
picted in Figure 1 and modify the preferences of cm and cw
by replacing w and m by alm

m and arm
w , respectively.2 The

newly introduced agents from this gadget have empty pref-
erences in P ′1 and preferences as depicted in Figure 1 in P ′2
except for agents arm

m and alm
w who have their depicted pref-

erences in bothP ′1 andP ′2. We setM ′1 :=M1∪{{arm
m , a

lm
w } :

{m,w} ∈M1 ∧m ∈ A∗repl ∩U} and k′ := k+ |A∗repl|+7k∗

with k∗ := |{{m,w} ∈M1 : m,w ∈ A∗repl}|.
Next, we show the correctness of the forward di-

rection of our reduction. Given a stable matching M2

in P2, we construct a stable matching M ′2 in P ′2 with
|M ′14M ′2| = |M14M2|+ |A∗repl|+7k∗ as follows. We start
with M ′2 :=M ′1. We first implement the adjustments corre-
sponding to edges from M14M2: Let {m,w} ∈ M2 \M1.
We delete the edges containing m and w from M ′2 (if there
are any). Moreover, if m,w /∈ A∗repl, then we add {m,w}
to M ′2. If m ∈ A∗repl and w /∈ A∗repl, then we add {cm, w}.
If w ∈ A∗repl and m /∈ A∗repl, then we add {m, cw}.
If m,w ∈ A∗repl, then we add {cm, cw}. After these adjust-
ments, it holds that |M ′24M ′1| = |M24M1|.

2We remark that this gadget is a concatenation of two parallel-
edges gadgets used by Cechlárová and Fleiner (2005).
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Figure 1: The edge gadget for edge e = {cm, cw}, where
m ∈ U , w ∈ W , and m ranks w at the i-th rank, and w
ranks m at the j-th rank. Squared agents have empty pref-
erences in P ′1. The edge contained in M ′1 is bold. The num-
bers on the edges indicate the preferences of the agents: The
number x closer to an agent a means that a ranks the other
endpoint a′ of the edge at rank x, i.e., there are x− 1 agents
which a prefers to a′.

We now turn to the matching in the edge gadgets. For
every edge {m,w} ∈ M1 ∩ M2 with m,w ∈ A∗repl,
we delete {m,w} from M ′2 and add edges {cm, alm

m},
{alt

m, a
rt
m}, {alb

m, a
rb
m}, {alt

w, a
rt
w}, {alb

w, a
rb
w}, and {arm

w , cw}.
This contributes seven edges to M ′14M ′2. For every
edge {m,w} ∈ M1 \ M2 with m,w ∈ A∗repl, we first
delete edge {arm

m , a
lm
w } from M ′2. Subsequently, we make

a case distinction based on whether m strictly prefers w
to M2(m). If yes, then the stability of M2 implies that
w does not strictly prefer m to M2(w). Thus, we can
add the edges {alb

m, a
rb
m}, {arm

m , a
rt
m}, {alt

m, a
lm
m}, {alb

w, a
rb
w},

{arm
w , a

rt
w}, and {alt

w, a
lm
w }, and the resulting matching is not

blocked by {cm, alm
m}. Otherwise, m does not strictly pre-

fer w to M2(w). Thus, we can add the edges {alb
m, a

lm
m},

{arm
m , a

rb
m}, {alt

m, a
rt
m}, {alb

w, a
lm
w }, {arm

w , a
rb
w}, and {alt

w, a
rt
w},

and the resulting matching is not blocked by {arm
w , cw}.

This contributes seven edges to M ′14M ′2. Thus, as we have
k∗ edge gadgets each contributing seven edges, we have
|M ′14M ′2| = |M14M2|+ 7k∗.

Lastly, for every a ∈ A∗repl, we add the edge {a, ba} toM ′2,
which contributes |A∗repl| edges to |M ′14M ′2| leading to an
overall symmetric difference of |M ′14M ′2| = |M14M2| +
|A∗repl|+ 7k∗. It is easy to verify that M ′2 is stable in P ′2.

The reverse direction can be found in the full version.

Theorem 1 allows us to transfer algorithmic and hardness
results for one type of change to another type. For example,
the polynomial-time algorithm of Bredereck et al. (2020) for
ISM for Swap implies that ISM can also be solved in poly-
nomial time for Add, Delete, and Replace. Using similar
constructions, it is also possible to prove that the different
types of changes are equivalent for IHR (although, here,
to model x changes of type X more than O(x) changes of
type Y may be needed; e.g., in the above reduction from
Replace to Add, modeling the replacement of a hospital h
would need u(h) binding residents bh) and STABLE ROOM-
MATES (which is a generalization of SM where agents are
not partitioned into men and women). However, Theorem 1

does not directly transfer to IASM; for instance, in the re-
duction from Lemma 1, M ′2 might “ignore” the added edge
gadgets by allowing few of the edges to block M ′2.

4 Almost Stable Marriage
Sometimes, it may be acceptable that “few” agent pairs
block an implemented matching (for instance, in very large
markets where agents might not even be aware that they are
part of a blocking pair). In Section 6, we experimentally
show that allowing that M2 may be blocked by few agent
pairs significantly decreases the number of necessary adjust-
ments. We now show that, in contrast to ISM (Bredereck
et al. 2020), IASM is computationally intractable:
Theorem 2 (F). IASM is NP-hard and W[1]-hard when
parameterized by k + b+ |P1 ⊕ P2|.

To show Theorem 2, we devise a polynomial-time many-
one reduction from LOCAL SEARCH ASM. In LOCAL
SEARCH ASM, we are given an SM instance (U,W,P),
a stable matching N in P , and integers q, t, and z, and
the question is whether there is a matching N∗ of size at
least |N | + t admitting at most z blocking pairs such that
|N4N∗| ≤ q. Gupta et al. (2020, Theorem 3) proved that
LOCAL SEARCH ASM is NP-hard and W[1]-hard with re-
spect to the combined parameter q+ t+ z, even if N∗ needs
to be a perfect matching. The general idea of the reduc-
tion behind Theorem 2 is to construct P1 from a LOCAL
SEARCH ASM instance by adding a penalizing component
and a set of catch men, and definingM1 to be a stable match-
ing containing N where each woman who is unmatched
in N is matched to a catch man. Then, P2 differs from P1 in
the preferences of all women unmatched inN who now pre-
fer agents from the penalizing component to the catch men.
After this change, these women need to be matched by M2

(otherwise there will be too many blocking pairs with agents
from the penalizing component) to agents from U ∪W (oth-
erwise the symmetric difference will exceed the budget).
The details of the construction require some care, as allow-
ing for some blocking pairs makes it more challenging to
enforce how certain agents are matched in M2.

On the positive side, we provide XP-algorithms for all
three single parameters:
Proposition 1 (F). IASM is in XP when parameterized by
any of k or b or |P1 ⊕ P2|.

Proof sketch. For parameter k, we guess the edges con-
tained in M14M2. For parameter b, we guess which agents
form blocking pairs in M2 and delete the mutual acceptabil-
ity of these pairs in P2. As the matching M2 needs to be
stable in this modified P2, one can reduce finding the rest of
the matching to the polynomial-time solvable WEIGHTED
STABLE MARRIAGE problem (Feder 1992), which asks for
a stable matching that maximizes some given edge weights.
For parameter |P1 ⊕ P2|, note that each swap can only cre-
ate a single blocking pair for M1. Thus, if |P1 ⊕ P2| ≤ b,
then we can simply set M2 to M1. Otherwise, we use the
XP-algorithm for the number b of blocking pairs.

We finally remark that while the XP-algorithm for the pa-
rameter k also works for IASM-T, IASM-T is NP-hard
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even for b = 0 and |P1 ⊕ P2| = 1 (as Bredereck et al.
(2020) proved that ISM-T is NP-hard for |P1 ⊕ P2| = 1).

5 Incremental Hospital Residents
We start our study of the incremental variant of HOSPITAL
RESIDENTS by observing that one can reduce IHR to the
polynomial-time solvable WEIGHTED STABLE MARRIAGE
problem (Feder 1992); this yields:
Proposition 2 (F). IHR is solvable in O(n2.5 ·m1.5) time,
where n is the number of residents and m is the number of
hospitals.

In the rest of this section, we focus on IHR-T. As IHR-T
generalizes ISM-T, the results of Bredereck et al. (2020)
imply that IHR-T is NP-hard and W[1]-hard parameterized
by k even for |P1 ⊕ P2| = 1. Thus, we focus on the param-
eters number n of residents and number m of hospitals.

For the number n of residents, we can bound the number
of “relevant” hospitals byO(n2). Subsequently guessing for
each resident the hospital it is matched to yields:
Proposition 3 (F). IHR-T is solvable inO(n2n ·nm) time.

Proposition 3 means fixed-parameter tractabilty with re-
spect to n. In contrast to this, the number of hospitals is (pre-
sumably) not sufficient to gain fixed-parameter tractability,
even if the two preference profiles differ only in one swap:
Theorem 3 (F). Parameterized by the number m of hospi-
tals, IHR-T is W[1]-hard even if |P1 ⊕ P2| = 1.

Proof (Construction). We reduce from the COM HR-T
problem: Given an instance of HR-T, decide whether there
is a stable matching which matches all residents. Boehmer
and Heeger (2021, Proposition 8) showed that COM HR-T
is W[1]-hard when parameterized by the number m of hos-
pitals. Given an instance I = (R = {r1, . . . , rn} ∪ H =
{h1, . . . , hm},P) of COM HR-T, let N be an arbitrary sta-
ble matching in I (we assume that N does not match all
residents, as we otherwise know that I is a YES-instance).

To construct an instance of IHR-T, we first add R ∪ H
to the set of agents. Subsequently, we add a penalizing com-
ponent consisting of two hospitals h?1 and h?2, both with up-
per quota one, and two hospitals h̃1 and h̃2 both with upper
quota n+ 1. We additionally add a resident r? and two sets
of n+ 1 residents r̃1, . . . , r̃n+1 and r̃′1, . . . , r̃

′
n+1.

Turning to the agents’ preferences in P1, all agents from
R ∪H have their preferences from P , except that, for each
resident, h? is added at the end of her preferences. The pref-
erences of the agents from the penalizing component are:

h?1 : r1 � · · · � rn � r?; r? : h?1 � h?2 � h̃1; h?2 : r?;

h̃1 : r? � r̃′1 � · · · � r̃′n+1 � r̃1 � · · · � r̃n+1;

h̃2 : r̃1 � · · · � r̃n+1 � r̃′1 � · · · � r̃′n+1;

r̃i : h̃1 � h̃2; r̃′i : h̃2 � h̃1, i ∈ [n+ 1].

Profile P2 equals P1 except that we swap h?2 and h̃1 in the
preferences of r?. Let i? be the smallest index of a resident
unmatched in N . We set k := 2(n+ 1) and

M1 := N ∪ {{ri? , h?1}, {r?, h?2}}

∪ {{r̃i, h̃1}, {r̃′i, h̃2} | i ∈ [n+ 1]}.

The correctness of the reduction crucially relies on the ob-
servation that M2 needs to contain the edge {r?, h?1}: Oth-
erwise r? is to be matched to h̃1, implying that all resi-
dents from the penalizing component need to be matched
differently in M2 than in M1, yielding |M14M2| > k.
From {r?, h?1} ∈ M2 it follows that all residents r1, . . . , rn
are matched to hospitals from H in M2. Thus, M2 induces a
matching for the COM HR-T instance I which matches all
residents.

We leave open whether the (above shown) W[1]-hardness
of IHR-T upholds for the parameter m+ k + |P1 ⊕ P2|.

On the positive side, devising an Integer Linear Program
whose number of variables is upper-bounded in a function
ofm and some guessing as preprocessing, IHR-T admits an
XP-algorithm for the number m of hospitals:
Proposition 4 (F). IHR-T is in XP when parameterized by
the number m of hospitals.

In an SM-T instance, we say that two agents are of the
same agent type if they have the same preference relation
and all other agents are indifferent between them. One can
interpret a hospital in an instance of HR-T as u(h) agents
of the same type and thus an HR-T instance as an instance
of SM-T where agents from one side are of only m differ-
ent agent types. This interpretation raises the question what
happens when we parameterize ISM-T by the total number
of agent types on both sides (and not only by the number
of agent types on one of the sides as done in Theorem 3
and Proposition 4). We show that, in fact, this is enough to
establish fixed-parameter tractability:
Proposition 5 (F). ISM-T is solvable in
O(2(tU+1)·(tW +1) · n2.5) time, where tU respectively tW is
the number of agent types of men respectively women in P2.

Proof sketch. Let TU resp. TW be the sets of agent types
of men resp. women in P2. We modify the instance by
adding a new dummy men (women) type consisting of n
men (women) who are indifferent among all women (men)
and are ranked last by all women (men). We then iterate over
all bipartite graphsG on TU∪· TW . We say that a matchingM
is compatible with G if M matches agents of type α ∈ TU
to agents of type β ∈ TW only if {α, β} ∈ E(G). We re-
ject G if a matching M compatible with G can be unstable.
To be precise, we reject G if there are two types α ∈ TU
and β ∈ TW such that there is an edge between α and
some β′ ∈ TW and an edge between β and some α′ ∈ TU
such that agents of type α prefer agents of type β to agents
of type β′ and agents of type β prefer agents of type α to
agents of type α′. If G is not rejected, then we construct a
graph G∗ on A from it by connecting agents of type α ∈ TU
and type β ∈ TW if and only if {α, β} ∈ E(G). More-
over, we assign all edges in G∗ that apear in M1 weight 1,
and all other edges weight 0 if they contain a dummy agent
and weight −1 otherwise. We compute a maximum weight
matching M in G∗ inO(n2.5) time (Duan and Su 2012) and
return YES ifM has weight at least |M1|−k, and otherwise
continue with the next graph G.
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Notably, the above algorithm with minor modifications
also works for the incremental variant of STABLE ROOM-
MATES WITH TIES.

6 Experiments
In this section, we consider different practical aspects.3 To
keep the setup of our experiments simple, we focus on ISM,
our most basic model. In Section 6.1, we analyze the rela-
tionship between the difference between P1 and P2 and the
size |M14M2| of the symmetric difference betweenM1 and
M2. In Section 6.2, we study the trade-off between allowing
M2 to be blocked by some pairs and |M14M2|. Lastly, in
Section 6.3 we summarize further findings.

After having analyzed the theoretical relationship be-
tween different types of changes in Section 3, in this section,
we compare the impact of the following three different types
of changes (we always assume that all agents have complete
and strict preferences):
Reorder A Reorder operation consists of permuting the

preference list of an agent uniformly at random.
Delete A Delete operation consists of deleting an agent

from the instance.
Swap A swap consists of swapping two adjacent agents

in the preference relation of an agent. As sampling pref-
erence profiles that are at a certain swap distance from
a given one is practically infeasible with more than
30 agents (Boehmer et al. 2021), we always perform the
same number of swaps in the preferences of each agent:
If we are to perform i Swap operations, then for each
agent separately we replace its preferences by uniformly
at random sampled preferences that are at swap distance i
from its original preferences (using the procedure de-
scribed by Boehmer et al. (2021)).

6.1 Stable Marriage
In this section, we analyze the relationship between the num-
ber of changes that are applied to P1 to obtain P2 and the
size of the symmetric difference between the given match-
ing M1 that is stable in P1 and a stable matching M2 in P2.

Experimental Setup. For each of the three considered
types of changes, for r ∈ {0, 0.01, 0.02, · · · , 0.3} we sam-
pled 200 STABLE MARRIAGE instances with 50 men and
50 women with random preferences (collected in the pref-
erence profile P1). For each of these instances, we set M1

to be the men-optimal matching.4 Afterwards, we applied
a uniformly at random sampled r-fraction of all possible
changes of the considered type to profile P1 to obtain pro-
file P2. Subsequently, we computed a stable matching M2

in P2 with minimum/maximum normalized symmetric dif-
ference |M1∆M2|

|M1|+|M2| toM1.5 We denote the solution with min-
imum symmetric difference as “Best” and the solution with

3For a detailed discussion of all mentioned experiments, please
see the full version (Boehmer, Heeger, and Niedermeier 2021).

4We used the implementation of the Gale-Shapley algorithm of
Wilde, Knight, and Gillard (2020).

5To compute this, we solved an (Integer) Linear Program-
ming formulation of this problem as described in the full version
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Figure 2: For different types of changes and ways to com-
pute M2, average normalized symmetric difference be-
tween M1 and M2 for a varying fraction of change be-
tween P1 and P2.

maximum symmetric difference as “Worst”. Moreover, we
computed the men-optimal matching in P2 using the Gale-
Shapley algorithm and denote this as “Gale-Shapley”. The
results of this experiment are depicted in Figure 2a.

Evaluation. We start by focusing on the optimal solution
(“Best”; solid line in Figure 2a). What stands out from Fig-
ure 2a is that already very few or even one change in P1

requires a fundamental restructuring of the given match-
ing M1. To be precise, for Reorder, one reordering (which
corresponds to a 0.01 fraction of changes) results in an aver-
age normalized symmetric difference between M1 and M2

of 0.1. For Swap, a 0.01-fraction of all swaps, which corre-
sponds to making twelve random swaps per preference order
(the total number of swaps is n·(n−1)

2 ), results in an average
normalized symmetric difference of 0.28, whereas a single
swap per preference order already results in an average nor-
malized symmetric difference of 0.05. For Delete, the effect
was strongest, as deleting a single agent leads to an average
normalized symmetric difference of 0.38. For Delete, Ash-
lagi, Kanoria, and Leshno (2017), Cai and Thomas (2021),
Knuth, Motwani, and Pittel (1990) and Pittel (1989) offer
some theoretical intuition of this phenomenon: Assuming
that agents have random preferences (as in our experiments),
with high probability in a men-optimal matching the average
rank that a man has for the woman matched to him is log(n)
(Knuth, Motwani, and Pittel 1990; Pittel 1989), whereas in
an instance with n men and n− 1 women the average rank a
man has for the woman matched to him is n

3 log(n) (Ashlagi,
Kanoria, and Leshno 2017; Cai and Thomas 2021). Thus,
if we delete a single woman from the instance (which hap-
pens with 50% probability when we delete a single agent),
then already only to realize these average ranks, the given
matching needs to be fundamentally restructured. Notably,
if we delete two agents from the instance, which results
only with a 25% probability in a higher number of men than
women, then the minimum normalized symmetric difference
between M1 and M2 is only 0.28.

(Boehmer, Heeger, and Niedermeier 2021) using Gurobi Optimiza-
tion, LLC (2021).

4856



While ISM is solvable in polynomial time, in a match-
ing market in practice, decision makers might simply re-
run the initially employed matching algorithm (the popu-
lar Gale-Shapely algorithm in our case) to compute the new
matchingM2. In Figure 2a, in the dotted line, we indicate the
normalized symmetric difference between M1, which is the
men-optimal matching inP1, and the men-optimal matching
in P2. Overall, for all three types of changes and indepen-
dent of the applied fraction of changes, the normalized sym-
metric difference between the two men-optimal matchings is
close to the minimum achievable normalized symmetric dif-
ference, being on average always only at most 0.05 higher
(i.e., 5 edges larger) than for the optimal solution.

Since the Gale-Shapley solution has such a good qual-
ity, one might conjecture that all stable matchings in P2

are roughly similarly different from M1. To check this hy-
pothesis, in Figure 2a, in the dashed line, we display the
average normalized symmetric difference of M1 and the
stable matching in P2 that is furthest away from M1. For
Delete, the above hypothesis actually gets confirmed: after
few changes, the worst, the men-optimal, and the best stable
matching inP2 have a similar distance toM1, indicating that
after randomly deleting some agents it does not really mat-
ter which stable matching in P2 is chosen.6 In contrast to
this, for the other two types of changes, there is a significant
difference between the best and worst solution.

To check whether the above observations also hold if we
modify the setup of our experiment, we reran it, but now in-
stead of having random preferences in P1, for each of the
two sides all agents have the same preferences in P1. Fig-
ure 2b displays the results. Comparing Figure 2a and Fig-
ure 2b, there are two major differences. First, for identical
preferences few changes have an even stronger effect than
for random preferences. Second, for identical preferences
in P1, all stable matchings in P2 have nearly the same dis-
tance to M1.

Moreover, using Mallows model (Mallows 1957), we also
conducted an analysis of cases in between the two consid-
ered extremes (random and identical preferences), i.e., if the
preferences of agents have some structure. For Swap and
Reorder, the more unstructured agent’s preferences are, the
smaller is the minimum normalized symmetric difference
between M1 and a stable matching in P2. In contrast to this,
for Delete, this quantity first decreases and then increases
again when making preferences more and more random. We
also repeated the experiment from this section for different
numbers of agents without any major changes in the results.

6.2 Almost Stable Marriage
As featured in Section 4, we now analyze the trade-off be-
tween the number of pairs that are allowed to block M2 and
the minimum symmetric difference between M1 and M2.

Experimental Setup. For our three different types of
changes, for r ∈ {0, 0.01, 0.02, · · · , 0.3}, and for β ∈

6On a theoretical level, a possible explanation for this is a result
of Ashlagi, Kanoria, and Leshno (2017), who proved that in SM
instances with an unequal number of men and women and random
preferences, stable matchings are “essentially unique”.
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Figure 3: Average normalized symmetric difference be-
tween M1 and a matching M2 in P2 with at most a given
number of blocking pairs for a varying fraction of change
between P1 and P2.

{0, 0.005, 0.05}, we prepared 200 instances (U∪·W,P1,P2)
as in Section 6.1, where P1 and P2 differ in an r-fraction of
all possible changes. Then, we computed the minimum sym-
metric difference between M1 and a matching M2 in P2 for
which at most a β-fraction of all 50 · 50 man-woman pairs is
blocking. Figure 3 shows the results of this experiment.7

Evaluation. We observe that independent of the type and
fraction of change, allowing for few blocking pairs for M2

enables a significantly larger overlap of M2 with M1. That
is, allowing for a 0.005 fraction of pairs to be blocking
decreases the average normalized symmetric difference by
around 0.2. We also examined the effect of doubling the
fraction of blocking pairs and allowing for a 0.01 fraction,
which gives an additional decrease by 0.1. If we allow for
a 0.05 fraction of pairs to be blocking, then, for Swap and
Reorder, until a 0.2 fraction of changes, M2 can be chosen
to be almost identical to M1.

6.3 Further Experiments

We also experimentally explored further aspects of ISM
which we briefly summarize here. First, in addition to the
three presented types of changes, we considered Reorder
(inverse) where we reverse the preference list of one agent,
and Add where we add an agent to the instance. While
Reorder (inverse) behaves similarly to Replace yet typi-
cally requiring few more adjustments, Add produces results
quite similar to Delete. Second, we counted blocking pairs
for M1 in P2 and observed that their number is highly cor-
related to the value of an optimal solution, implying that the
number of blocking pairs might be used to predict the num-
ber of necessary adjustments.

7The y-axis here is labeled differently than before: We divide
|M14M2| by the size of a stable matching in P1 plus the size of a
stable matching in P2. As all stable matchings have the same size,
this is the same as |M1∆M2|

|M1|+|M2|
if M2 is a stable matching; however,

different almost stable matchings may have different sizes.
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