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Abstract

We study the problem of allocating indivisible goods among
strategic agents. We focus on settings wherein monetary
transfers are not available and each agent’s private valua-
tion is a submodular function with binary marginals, i.e., the
agents’ valuations are matroid-rank functions. In this setup,
we establish a notable dichotomy between two of the most
well-studied fairness notions in discrete fair division; specifi-
cally, between envy-freeness up to one good (EF1) and max-
imin shares (MMS).
First, we show that a known Pareto-efficient mechanism
is group strategy-proof for finding EF1 allocations, under
matroid-rank valuations. The group strategy-proofness guar-
antee strengthens an existing result that establishes truthful-
ness (individually for each agent) in the same context. Our
result also generalizes prior work from binary additive valua-
tions to the matroid-rank case.
Next, we establish that an analogous positive result cannot be
achieved for MMS, even when considering truthfulness on an
individual level. Specifically, we prove that, for matroid-rank
valuations, there does not exist a truthful mechanism that is
index oblivious, Pareto efficient, and maximin fair.
For establishing our results, we develop a characterization of
truthful mechanisms for matroid-rank functions. This char-
acterization in fact holds for a broader class of valuations
(specifically, holds for binary XOS functions) and might be
of independent interest.

Introduction
The field of discrete fair division studies the allocation
of indivisible goods (i.e., goods that cannot be fraction-
ally divided) among agents with possibly different prefer-
ences. Such allocation problems arise naturally in many real-
world settings, e.g., assignment of flats in public housing
estates (Deng, Sing, and Ren 2013), allocating courses to
students (Budish et al. 2017), or distributing computational
resources. Motivated, in part, by such applications, in recent
years a significant body of work has been directed towards
the development of algorithms that find fair and economi-
cally efficient allocations (Brandt et al. 2016; Endriss 2017).

In the fair division literature, envy-freeness is one of the
most prominent fairness criterion. An allocation is said to be
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envy-free iff every agent values her bundle (allocated goods)
at least as much as the bundle of any other agent. Notably,
when the goods are indivisible, the existence of envy-free
allocations is ruled out, even in rather simple instances; con-
sider a setting with a single indivisible good that is desired
by two agents. In light of such non-existence results, mean-
ingful relaxations of envy-freeness (and other classic fair-
ness criteria) have been the focus of research in discrete fair
division. In the context of indivisible goods, the two most
prominent notions of fairness are envy-freeness up to one
good (EF1) (Lipton et al. 2004; Budish 2011) and maximin
shares (MMS) (Budish 2011).

An allocation is said to be envy-free up to one good (EF1)
iff each agent values her bundle no less than the bundle of
any other agent, subject to the removal of one good from the
other agent’s bundle. For indivisible items, EF1 allocations
are guaranteed to exist under monotone valuations and can
be computed efficiently (Lipton et al. 2004). In fact, under
additive1 valuations, there necessarily exist allocations that
are both EF1 and Pareto efficient (i.e., economically effi-
cient) (Caragiannis et al. 2019; Barman, Krishnamurthy, and
Vaish 2018).

Maximin share is a threshold-based fairness notion. That
is, every agent has a threshold—referred to as her max-
imin share—and an allocation is deemed to be maximin
fair (MMS) iff in the allocation each agent receives a value
at least as much as her maximin share. Conceptually, the
threshold follows from executing a discrete version of the
cut-and-choose protocol: among n participating agents, the
maximin share for an agent i is defined as the maximum
value that i can guarantee for herself by partitioning the set
of (indivisible) goods into n subsets, and then receiving a
minimum valued (according to i’s valuation) one. In con-
trast to envy-freeness up to one good, MMS allocations are
not guaranteed to exist under additive valuations (Kurokawa,
Procaccia, and Wang 2016; Procaccia and Wang 2014). This
fairness notion, however, admits strong approximation guar-
antees for additive valuations and beyond; see (Garg and
Taki 2020; Ghodsi et al. 2018), and references therein.

Equipped with relevant fairness criteria (such as EF1
and MMS), research in discrete fair division has primar-

1An agent’s valuation function v is said to be additive iff
v(S) =

∑
g∈S v({g}) for every subset of goods S.
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ily focussed on existence and computational tractability
of fairness notions, along with their impact on economic
efficiency. Another key desiderata in this context—and
resource-allocations settings, in general—is that of truthful-
ness, i.e., one wants mechanisms wherein the participating
agents cannot gain by misreporting their valuations. How-
ever, in settings wherein monetary transfers are not avail-
able, these three central objectives (of fairness, economic ef-
ficiency, and truthfulness) cannot be achieved together, even
under additive valuations; it is known that, under additive
valuations, the only Pareto-efficient and truthful mechanism
is serial dictatorship (Klaus and Miyagawa 2002), which is
notably unfair.

Motivated by these considerations, an important thread
of work is aimed at identifying expressive valuation classes
that admit truthful and fair mechanisms, without money. Of
note here are valuations with binary marginals, i.e., valua-
tions that change by at most one upon the addition or re-
moval of a good, from any bundle. Such dichotomous pref-
erences have been extensively studied in fair division liter-
ature; see, e.g., (Bogomolnaia and Moulin 2004; Bouveret
and Lemaı̂tre 2016; Kurokawa, Procaccia, and Shah 2015).
Here, two well-studied function classes, in order of contain-
ment, are: binary additive valuations and binary submodu-
lar2 valuations. Binary additive (respectively, submodular)
valuations are additive (submodular) functions with binary
marginals. We note that binary submodular functions char-
acteristically correspond to matroid-rank functions (Schri-
jver 2003) and, hence, constitute a combinatorially expres-
sive function class. Matroid-rank valuations capture prefer-
ences in many resource-allocation domains; see (Benabbou
et al. 2020) for pragmatic examples.

Halpern et al. (2020) provide a group strategy-proof
mechanism for binary additive valuations. Their mechanism
is based on maximizing the Nash social welfare (i.e., the ge-
ometric mean of the agents’ valuations) with a lexicographic
tie-breaking rule. Nash optimal allocations are Pareto effi-
cient. Also, under binary additive valuations, such alloca-
tions are known to be MMS as well as EF1. Hence, for bi-
nary additive valuations, the work of Halpern et al. (2020)
achieves all the three desired properties; their mechanism in
fact can be executed in polynomial time.

For the broader class of binary submodular valuations,
Babaioff et al. (2021) obtain a truthful, Pareto efficient, and
fair mechanism. This work considers Lorenz domination as
a fairness criterion and, hence as implications, obtains EF1
and 1/2-MMS guarantees.

Contributing to this thread of work, the current paper stud-
ies mechanism design, without money, for fairly allocating
indivisible goods. We focus on settings wherein the agents’
valuations are matroid-rank functions (i.e., are binary sub-
modular functions) and establish a notable dichotomy be-
tween EF1 and MMS.
Our Results. First, we show that the Pareto-efficient mech-
anism of Babaioff et al. (2021) is group strategy-proof

2Recall that a set function v : 2[m] 7→ Z+ is said to be submod-
ular iff v(S ∪ {g})− v(S) ≥ v(T ∪ {g})− v(T ), for all subsets
S ⊆ T ⊆ [m] and g /∈ T

for finding EF1 allocations, under matroid-rank valua-
tions (Theorem 3). The group strategy-proofness guarantee
strengthens the result of Babaioff et al. (2021), that estab-
lishes truthfulness (individually for each agent). Our result
also generalizes the work of Halpern et al. (2020), from bi-
nary additive valuations to the matroid-rank case.

Next, we establish that an analogous positive result can-
not be achieved for MMS, even when considering truth-
fulness for individual agents. Specifically, we prove that,
for matroid-rank valuations, there does not exist a truth-
ful mechanism that is index oblivious, Pareto efficient, and
maximin fair (Theorem 2). For establishing our results, we
develop a characterization of truthful mechanisms under
matroid-rank functions (Theorem 1). This characterization
in fact holds for a broader class of valuations (specifically,
holds for binary XOS functions) and might be of indepen-
dent interest.
Additional Related Work. Barman and Verma (2021a)
have shown that, under matroid-rank valuations, allocations
that are MMS and Pareto efficient always exist. Hence, con-
sidering the existence of truthful mechanisms in this con-
text is a well-posed question. Recall that in contrast to the
matroid-rank case, under additive valuations, (exact) MMS
allocations are not guaranteed to exist (Kurokawa, Procac-
cia, and Wang 2016; Procaccia and Wang 2014). Both posi-
tive and negative mechanism-design results have been ob-
tained for various fairness notions under additive valua-
tions; see (Amanatidis et al. 2017; Amanatidis, Birmpas, and
Markakis 2016; Markakis and Psomas 2011), and references
therein. These results are incomparable with the ones ob-
tained in the current work, since they address additive valu-
ations and, by contrast, we focus on matroid-rank functions.

Notation and Preliminaries
We study mechanisms, without money, for partitioning
[m] = {1, 2, . . . ,m} indivisible goods among [n] =
{1, 2, . . . , n} agents in a fair and economically efficient
manner. The cardinal preferences of the agents i ∈ [n],
over subsets of goods, are specified via valuation functions
vi : 2[m] 7→ R+; here, vi(S) ∈ R+ denotes the value
that agent i ∈ [n] has for a subset of goods S ⊆ [m].
The valuation functions of all agents are collectively rep-
resented by a valuation profile v = (v1, v2, . . . , vn). In this
setup, an instance of the fair division problem corresponds
to a tuple 〈[m], [n],v〉. Our goal is to obtain fair and eco-
nomically efficient allocations. Specifically, an allocation
A = (A1, A2, . . . , An) is an n-partition of all the goods
(i.e., ∪ni=1Ai = [m] and Ai ∩Aj = ∅ for all i 6= j) wherein
subset Ai is assigned to agent i ∈ [n]. The assigned subsets
will be referred to as bundles.

We will use the term partial allocation to refer to
a collection of pairwise-disjoint subsets of goods P =
(P1, P2, . . . , Pn), in which subset Pi is assigned to agent
i. In contrast to an allocation, for a partial allocation P =
(P1, . . . , Pn) we may have ∪ni=1Pi ( [m], i.e., it is not
necessary that all the goods are assigned among the agents.
Note that, for a partial allocation P = (P1, . . . , Pn), the set
of goods [m] \

(⋃
i∈[n] Pi

)
remain unallocated, and P is a
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complete allocation iff [m] \
(⋃

i∈[n] Pi

)
= ∅.

We now define the notions of fairness and economic effi-
ciency considered in this work.
Nash social welfare and Pareto optimality. The Nash so-
cial welfare NSW(·) of an (partial) allocation A = (A1,
. . . , An) is the geometric mean of the agents’ values in A,
i.e., NSW(A) := (Πn

i=1vi(Ai))
1/n.

Given two (partial) allocations A = (A1, A2, . . . An) and
A′ = (A′1, A

′
2, . . . A

′
n), we say that A Pareto dominates A′

iff for every agent i ∈ [n], we have vi(Ai) ≥ vi(A
′
i) and

this inequality is strict for at least one agent. An allocation is
referred to as Pareto optimal (or PO) iff there is no other al-
location that Pareto-dominates it. Throughout, we will con-
sider Pareto optimality across all allocations. In particular,
under the valuations considered in the current work, there
could exist partial allocations that are Pareto optimal among
all (complete) allocations.
Fairness notions. This paper studies two prominent fairness
criteria: envy-freeness up to one good (EF1) and maximin
fairness (MMS). An (partial) allocation P = (P1, . . . , Pn)
is said to be EF1 iff for every pair of agents i, j ∈ [n], with
Pj 6= ∅, there exists g ∈ Pj such that vi(Pi) ≥ vi(Pj \{g}).

In a fair division instance 〈[m], [n],v〉, the maximin share
of agent i ∈ [n] is defined as

µi := max
(X1,...,Xn)

min
j∈[n]

vi(Xj).

Here, the maximization is considered over all possible al-
locations. With these agent-specific thresholds in hand, we
say that an (partial) allocationP = (P1, . . . , Pn) is maximin
fair (MMS) iff vi(Pi) ≥ µi for all agents i ∈ [n].
Truthful Mechanisms. In the current context, a mecha-
nism, f(·), is a mapping from (reported) valuation pro-
files v = (v1, v2, . . . , vn) to (partial) allocations A. That
is, the mechanism asks each agent i to report a valuation
function vi and assigns the bundles from the (partial) al-
location (A1, . . . , An) = f(v1, . . . , vn). We will solely
address deterministic mechanisms. A key desiderata is to
identify mechanisms f wherein it is in the best interest of
each agent to report her true valuation to f , i.e., no agent
can gain by misreporting her valuation. This requirement is
formally realized through truthfulness (also referred to as
strategy-proofness), and its stronger variant, group strategy-
proofness.

A mechanism f is said to be truthful iff for each
agent i ∈ [n], any valuation profile (v1, v2, . . . , vn),
and any function v′i we have vi(Ai) ≥ vi(A

′
i); where

(A1, . . . , An) = f(v1, v2, . . . , vn) and (A′1, . . . , A
′
n) =

f(v1, . . . , vi−1, v
′
i, vi+1, . . . , vn). Indeed, truthfulness en-

sures that that agent i does not receive a higher-valued (un-
der her true valuation) bundle by misreporting her valuation
to be v′i. The notion can be strengthened by considering sub-
sets of misreporting agents, instead of a single agent.
Definition 1 (Group Strategy-Proofness). A mechanism f is
said to be group strategy-proof iff for each subset of agents
C ⊆ [n] and any pair of valuation profiles (v1, v2, . . . , vn)
and (v′1, v

′
2, . . . , v

′
n), with the property that vj = v′j for all

j /∈ C, we necessarily have vi(Ai) ≥ vi(A′i) for some agent
i ∈ C.

This definition equivalently asserts that for a group
strategy-proof mechanism f there does not exist a sub-
set of colluding agents C such that all of them gain (i.e.,
vi(A

′
i) > vi(Ai) for all i ∈ C) by misreporting together.

An even more demanding notion is that of strong group
strategy-proofness that requires the nonexistence of any col-
luding subset of agents C wherein vi(A′i) ≥ vi(Ai) for all
i ∈ C, and the inequality has to be strict for at least one
agent in C. Notably, with this stringent notion, one cannot
achieve Pareto efficiency (let alone fairness) for the valu-
ations considered in this work (Babaioff, Ezra, and Feige
2021; Bogomolnaia and Moulin 2004).

We will throughout say that a mechanism f is Pareto ef-
ficient iff, for any given valuation profile v, the mechanism
outputs an (partial) allocation that is Pareto optimal (with
respect to v). Similarly, a mechanism is said to be EF1 (re-
spectively MMS) iff, for any given valuation profile, it out-
puts an (partial) allocation that is EF1 (respectively MMS).

The current work addresses fair division instances in
which, for each agent i ∈ [n], the valuation function vi is
the rank function of a matroid Mi = ([m], Ii). Below we
define rank functions and other relevant notions from ma-
troid theory.

For subsets X ⊆ [m] and goods g ∈ [m], we will use the
following shorthands: X+g := X ∪{g}, X−g := X \{g}
and, X := [m] \ X . Also, for notational convenience, we
will write g to denote the subset [m] \ {g}.

Matroid Preliminaries
A pair ([m], I) is said to be a matroid iff I is a nonempty
collection of subsets of [m] (i.e., I ⊆ 2[m]) that satisfies (a)
Hereditary property: if X ∈ I and Y ⊆ X , then Y ∈ I,
and (b) Augmentation property: ifX,Y ∈ I and |Y | < |X|,
then there exists g ∈ X \ Y such that Y + g ∈ I . Given
a matroid M = ([m], I), a subset I ⊆ [m] is said to be
independent iff I ∈ I.

For a matroid M = ([m], I), the rank function r :
2[m] 7→ Z+ captures, for each subset X ⊆ [m], the car-
dinality of the largest independent subset contained in X ,
i.e., r(X) := max{|I| : I ∈ I and I ⊆ X}.

Rank functions bear binary marginals: r(X ∪ {g}) −
r(X) ∈ {0, 1}, for all subsets X ⊆ [m] and g ∈ [m]. Also,
by definition, rank functions are nonnegative (r(X) ≥ 0
for all X ⊆ [m]) and monotone (r(Y ) ≤ r(X) for all
Y ⊆ X). Furthermore, the following characterization is well
known (Schrijver 2003): any submodular function r with bi-
nary marginals is in fact a matroid-rank function.

Note that, if agent i’s valuation vi is the rank function of
matroidMi = ([m], Ii), then, for any subset S ⊆ [m], we
have vi(S) ≤ |S|; here, equality holds iff S is an indepen-
dent set inMi, i.e., S ∈ Ii. With this observation, we next
define non-wasteful allocations and mechanisms.
Non-Wasteful Mechanism. Under valuations v1, . . . , vn,
an (partial) allocation A = (A1, . . . , An) is said to be
non-wasteful iff, for each agent i ∈ [n], the assigned bun-
dle’s value vi(Ai) = |Ai|. Hence, for matroid-rank val-
uations, this defining condition corresponds to Ai ∈ Ii,
for each i ∈ [n]. Furthermore, a mechanism f is called
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non-wasteful if it yields non-wasteful allocations for all in-
put valuation profiles. Note that any truthful mechanism f
can be converted into one that is both truthful and non-
wasteful: for every profile v and (A1, . . . , An) = f(v),
the corresponding mechanism returns a largest-cardinality
independent subset A′i ⊆ Ai, for each i ∈ [n]. Indeed,
(A′1, . . . , A

′
n) ∈ I1 × . . . × In is a non-wasteful alloca-

tion and vi(A′i) = vi(Ai) for all agents i. We will estab-
lish a stronger result (Proposition ??) showing that non-
wastefulness can be achieved with additional properties and,
hence, in relevant contexts it can be assumed without loss of
generality.
Exchange Graph and Path Augmentation. We will use
certain well-known constructs from matroid theory. In par-
ticular, exchange graphs and the related path augmentation
operation will be utilized while establishing the results in
Section 5.

Consider a setting wherein, for each agent i ∈ [n], the
valuation vi is the rank function of matroidMi = ([m], Ii).
Here, given a non-wasteful (partial) allocation A = (A1,
. . . , An) ∈ I1 × . . . × In, we define the exchange graph,
G(A), to be a directed graph where the set of vertices is [m]
(i.e., each vertex corresponds to a good) and there is a di-
rected edge (g, g′) in the graph iff for some i ∈ [n], the good
g ∈ Ai, g′ /∈ Ai, and Ai − g + g′ ∈ Ii; hence, exchang-
ing good g with g′ in the bundle Ai maintains independence
(with respect to Ii).

Now we define the path augmentation operation. If P =
(g1, g2, . . . , gk) is a directed path in the exchange graph
G(A), then we define bundle3 Ai∆P := Ai ∆ {gj , gj+1 :
gj ∈ Ai} for all i ∈ [n] 4. Hence, Ai∆P is obtained by ex-
changing goods along every edge of P that goes out of the
set Ai.

Given an agent i ∈ [n] and an independent set X ∈ Ii,
we define Fi(X) to be the set of goods that can be added to
X , while still maintaining its independence, i.e., Fi(X) :=
{g ∈ [m] \X : X + g ∈ Ii}.

In Section 5, we will use the following well-known result
(stated in our notation) about the augmentation operation to
prove the group strategy-proofness result. This lemma en-
sures that if the augmentation is performed along a shortest
path5 in the exchange graph, then independence of all bun-
dles is maintained.
Lemma 1 ((Schrijver 2003)). Let X ′ = (X ′1, . . . , X

′
n) be

any non-wasteful (partial) allocation. Additionally, for a
pair of agents i, j ∈ [n], let Q = (g1, g2, . . . , gt) be a short-
est path in the exchange graph G(X ′) between the vertex sets
Fi(X

′
i) and X ′j (in particular, g1 ∈ Fi(X ′i) and gt ∈ X ′j).

Then, for all k ∈ [n] \ {i, j}, we have X ′k∆Q ∈ Ik, along
with (X ′i∆Q) + g1 ∈ Ii and X ′j − gt ∈ Ij .

As per the above lemma, if we perform augmentation
along a shortest path between Fi(X ′i) and X ′j , we get a new

3Recall that the symmetric difference of any two subsets A and
B is defined as A∆B := (A \B) ∪ (B \A).

4If path P is just a single vertex, then define Ai∆P := Ai
5Following standard terminology, a shortest path between two

vertex sets is a path with the fewest number of edges among all
paths that connect the two vertex sets.

non-wasteful (partial) allocation in which the valuation of
agent i increases by one and that of j decreases by one; the
valuations of all other agents remain unchanged.

Characterizing Truthfulness
This section develops a characterization (under matroid-
rank valuations) of mechanisms that are truthful and non-
wasteful. Recall that in the case of matroid-rank valuations,
by definition, non-wasteful mechanisms—for all input val-
uation profiles—output allocations (A1, . . . , An) comprised
of independent bundles, Ai ∈ Ii, for all i ∈ [n].

As mentioned previously, from any truthful mechanism
f , one can obtain a value-equivalent mechanism f ′ that is
both truthful and non-wasteful. That is, given truthfulness,
one can assume non-wastefulness without loss of generality.
We will establish a stronger result (Proposition ??) showing
that non-wastefulness can in fact be achieved with additional
properties and, hence, in relevant contexts it can be assumed
without loss of generality.

We will use the following notation. Let v : 2[m] 7→ R+ be
a valuation function and X ⊆ [m] a subset of goods. Then,
write vX(·) to denote the function obtained by restricting v
to the subsetX , i.e., vX(S) := v(S∩X), for each S ⊆ [m].
One can verify that if v is a matroid-rank function, then so
is vX , for any subset X .

Also, for notional convenience we will write v−g for
v[m]\{g}, i.e., v−g is the valuation obtained by removing
good g from consideration. Furthermore, for a valuation pro-
file v = (v1, v2, . . . , vn) along with agent i ∈ [n] and func-
tion v′i, we write (v′i, v−i) to denote the profile wherein the
valuation of agent i is v′i and the valuations of all the other
agents remain unchanged.

Our characterization asserts that any non-wasteful mech-
anism f is truthful iff it is gradual (see Definition 2 below).
Intuitively, this notion captures the idea that the output of
the mechanism changes “gradually” under specific misre-
ports: if an agent i misreports by excluding one good from
her valuation (i.e., reports v−gi instead of vi), then the num-
ber of goods assigned to her change by at most one. Also,
if bundle Ai is assigned to an agent i, then (mis)reporting a
valuation that is restricted to a superset X ⊇ Ai does not
change the number of goods assigned to i.

Definition 2 (Gradual Mechanism). A non-wasteful mech-
anism f is said to be gradual iff for any agent i ∈ [n],
any valuation profile v = (v1, . . . , vn), and allocation
(A1, . . . , An) = f(v) we have
(C1): 0 ≤ |Ai| − |Bi| ≤ 1, for any good g ∈ [m] and cor-
responding allocation (B1, . . . , Bn) = f

(
v−gi , v−i

)
, and

(C2): |Ai| = |Bi|, for any superset X ⊇ Ai and corre-
sponding allocation (B1, . . . , Bn) = f

(
vXi , v−i

)
.

Note that this definition imposes conditions only on the
sizes of bundles allocated by the mechanism and not on the
valuations per se. Also, a repeated application of condition
C1 gives us
(C∗1 ): 0 ≤ |Ai| − |Bi| ≤ |Y |, for any set Y ⊆ [m] and
corresponding allocation (B1, . . . , Bn) = f(v

[m]\Y
i , v−i).
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The following theorem is the main result of this section;
see the full-version of this paper for the proof (Barman and
Verma 2021b).
Theorem 1. Under matroid-rank valuations, a non-wasteful
mechanism f is truthful iff it is gradual.
Remark: The above-mentioned characterization in fact holds
for binary XOS valuations, a class of functions which en-
capsulates matroid-rank functions. We defer details of this
observation to the full-version of this paper.

Impossibility Result
This section establishes a notable separation between EF1
and MMS in the current mechanism-design context. We
show that, under matroid-rank valuations, truthful mecha-
nisms (satisfying some additional, desirable properties) do
not exist for maximin fairness. By contrast, EF1 admits such
truthful mechanisms; in fact, for EF1 we have a stronger
positive result guaranteeing group strategy-proofness.

We begin by defining the key concepts for our impossibil-
ity result. Let v = (v1, v2, . . . , vn) be any valuation profile
and π : [m] 7→ [m] be a permutation of the set of goods.
Note that, since π is a bijection, for each good g, the inverse
(pre-image) π−1(g) is unique. For each agent i ∈ [n], we
define the function

vπi (S) := vi

({
π−1(g)

}
g∈S

)
for all subsets S ⊆ [m].

That is, after reindexing the goods via π, one would obtain
the value—with respect to the initial valuation vi—of any
subset of goods by applying vπi ; see, Figure 1 for an illustra-
tion.

Intuitively, the valuation profile vπ := (vπ1 , . . . , v
π
n) rep-

resents the same set of preferences as in profile v, the only
difference is that the goods have been reindexed. The follow-
ing definition aims to capture the idea that indexing of goods
should not influence the values that the agents’ receive. We
will use π(S) to denote the set {π(g) : g ∈ S} and π−1(S)
for
{
π−1(g) : g ∈ S

}
.

Definition 3 (Index-Oblivious Mechanism). A mechanism f
is said to be index-oblivious iff, given any valuation profile
v = (v1, . . . , vn) and any permutation π : [m] 7→ [m],
for the (partial) allocations (A1, . . . , An) = f(v) and
(A′1, . . . , A

′
n) = f(vπ), we have vi(Ai) = vπi (A′i) for all

agents i ∈ [n].
Note that if a mechanism is not index-oblivious, then cer-

tain ways of indexing the goods could be advantageous for
some agents and disadvantageous for others. However, in-
dexing of goods should ideally be irrelevant. This observa-
tion supports index-obliviousness as a reasonable robustness
criterion for mechanisms.

Theorem ?? (proved in the full-version (Barman and
Verma 2021b)) shows that for EF1 there exists an index-
oblivious mechanism; in particular, we show that the Prior-
itized Egalitarian (PE) mechanism of Babaioff et al. (2021)
is index-oblivious. It is known that, under matroid-rank val-
uations, PE outputs EF1 allocations and it is truthful as well
as Pareto efficient (Babaioff, Ezra, and Feige 2021). The fol-
lowing theorem proves that an analogous result is not possi-
ble for MMS.

Figure 1: In this example permutation π reindexes the
goods. Then, the value vπi ({1, 2}) = vi(π

−1({1, 2})) =
vi({1, 3}), which is equal to the value of car and diamond.

Theorem 2. Under matroid-rank valuations, there does not
exist a mechanism that is truthful, index-oblivious, Pareto
efficient, and maximin fair.

Proof. We assume, towards a contradiction, that there ex-
ists a mechanism f that is truthful, index-oblivious, and it
outputs Pareto efficient and MMS allocations. We also as-
sume that f is non-wasteful, this assumption can be made
without loss of generality; see the full-version (Barman and
Verma 2021b). To derive the desired contradiction, we will
construct an instance wherein an agent can always benefit by
misreporting her valuation. In particular, consider a setting
with n = 2 agents and m = 6 goods, say {g1, g2, . . . , g6}.
Fix subset G := {g1, g2} and consider the following valu-
ations for the two agents, respectively: v1(S) := |S ∩ G|
and v2(S) := min{1, |S ∩ G|} + min{2, |S ∩ ([m] \ G)|},
for all subsets S ⊆ [m]. These valuations are rank functions
of (partition) matroids. Note that under valuations v1 and
v2, the maximin shares of the two agents are µ1 = 1 and
µ2 = 3, respectively.

Furthermore, write allocation (A1, A2) = f(v1, v2).
Given the (assumed) properties of f , the (partial) allocation
(A1, A2) is MMS. Hence, v1(A1) ≥ µ1 = 1 and v2(A2) ≥
µ2 = 3. By definition, the valuation v2 is at most 3, and
to achieve the above-mentioned MMS bound agent 2 must
receive at least one good from G = {g1, g2}. The MMS
guarantee for agent 1 implies that she also receives at least
one good from G. These observations, along with the fact
that (A1, A2) is a non-wasteful allocation (|A1| = v1(A1)
and |A2| = v2(A2)), ensures that agents 1 and 2 receive a
bundle of size 1 and 3, respectively.

Write a ∈ G = {g1, g2} to denote the good assigned
to agent 1, and b ∈ G be the other good in G allocated to
agent 2, i.e., A1 = {a} and A2 = {b, c, d}, for two goods
c, d ∈ [m] \ G. Based on the three goods assigned to agent
2, we will define three valuations profiles wb, wc, wd, and
show that agent 1 would benefit by misreporting from one
at least of them. This will contradict the assumption that
f is truthful and, hence, establish the theorem. In all the
these three profiles, we set the second agent’s valuation as
w2(S) := |S ∩ {b, c, d}|, for all subsets S ⊆ [m]. For each
x ∈ {b, c, d}, let function wx1 (S) := |S ∩ {a, x}| (for all
subsets S) and write profile wx = (wx1 , w2).
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A key technical step in the proof is to show that under
all the three profiles wx the two agents continue to receive
the same bundles A1 and A2, respectively, i.e., for each x ∈
{b, c, d} we have (A1, A2) = f(wx); these three equalities
are proved in the full version (Barman and Verma 2021b).

We now complete the proof by showing that agent 1
would benefit by misreporting in at least one of these
three profiles. In particular, define the valuation (misreport)
w∗1(S) := |S ∩ {a, b, c, d}|, for all subsets S ⊆ [m]. Under
the valuation w∗1 , the maximin share of agent 1 is equal to
two. Hence, given valuation profile (w∗1 , w2), mechanism f
(to maintain maximin fairness) must assign agent 1 a bundle
of value 2. That is, for allocation (A∗1, A

∗
2) = f(w∗1 , w2),

we have w∗1(A∗1) ≥ 2. Furthermore, since the returned (par-
tial) allocation must be Pareto optimal and good a is only
desired by agent 1, good a must be allocated to the first
agent, a ∈ A∗1. These observation imply that A∗1 addition-
ally contains at least one good from the set {b, c, d}; write
y ∈ A∗1 ∩ {b, c, d} to denote that good. Now, consider the
case wherein agent 1’s true valuation is wy1 (and that of
agent 2 is w2). Since y ∈ {b, c, d}, the above-mentioned
claims imply that (A1, A2) = f(wy1 , w2), i.e., reporting
wy1 truthfully agent 1 receives a bundle of size |A1| = 1.
However, misreporting her valuation to be w∗1 , agent 1 re-
ceives both the goods a and y (since a, y ∈ A∗1). Therefore,
wy1(A∗1) > wy1(A1), and this contradicts the truthfulness of
f . The theorem stands proved.

Group Strategy-Proofness for EF1
This section establishes group strategy-proofness for a
mechanism of Babaioff et al. (2021), called the prior-
itized egalitarian (PE) mechanism. This mechanism re-
lies on finding Lorenz dominating allocations; we define
this notion next. For any allocation A and valuation pro-
file v = (v1, . . . , vn), write sA = (s1, s2, . . . , sn)
to denote the vector wherein all the components of
(v1(A1), v2(A2) . . . , vn(An)) appear in non-decreasing or-
der, i.e., s1 denotes the lowest valuation across the agents,
s2 is the second lowest, and so on. We say that allocation A
Lorenz dominates another allocation A′ iff, for every index
j ∈ [n], the sum of the first j components of sA is at least
as large as the sum of the first j components of sA′ , i.e., iff
sA majorizes sA′ (see Marshall et al. (1994) for a detailed
treatment of majorization). An (partial) allocation A is said
to be Lorenz dominating iff A Lorenz dominates all other
allocations. Notably, under matroid-rank valuations, Lorenz
dominating allocations always exist (Babioff et al. 2021).

The PE mechanism is detailed below.6 Our proof for
the group strategy-proofness of this mechanism relies on
the following technical lemma (see the full-version (Bar-
man and Verma 2021b) for its proof). Here, we use the
notation mentioned earlier; in particular, for any agent i
and independent set Ai ∈ Ii, we write Fi(Ai) := {g ∈
[m] \ Ai : Ai + g ∈ Ii}. Also, given any two allocations
A = (A1, . . . , An) and X = (X1, . . . , Xn), define the sub-

6Babaioff et al. (2021) show that PE can be executed in poly-
nomial time, in particular when the matroid-rank functions admit a
succinct representation.

Mechanism 1: Prioritized Egalitarian (PE) (Babaioff, Ezra,
and Feige 2021)
Input: Valuation profile (v1, v2, . . . , vn) consisting of the
reported (matroid-rank) valuations of all the agents.
Output: A non-wasteful Lorenz dominating allocationA =
(A1, A2, . . . , An).

1: For the given profile (v1, v2, . . . , vn), compute a
non-wasteful Lorenz dominating allocation A =
(A1, A2, . . . , An), breaking ties in favor of agents
with lower indices. Equivalently, among all (non-
wasteful) Lorenz dominating allocations, select one,
(A1, A2, . . . , An), that lexicographically maximizes the
vector (v1(A1), v2(A2), . . . , vn(An)) (i.e., the Lorenz
dominating allocation maximizes v1(A1), and then sub-
ject to that it maximizes v2(A2), and so on).

2: return A = (A1, A2, . . . , An)

sets of agents L(X ,A) := {i ∈ [n] : |Xi| < |Ai|} and
H(X ,A) := {i ∈ [n] : |Xi| > |Ai|}.
Lemma 2. Let X = (X1, . . . , Xn) be a non-wasteful allo-
cation and A = (A1, . . . , An) be a Pareto-efficient non-
wasteful allocation such that there exists an agent h ∈
H(X ,A). Then, there exists a simple directed path P =
(gk, gk−1, . . . , g2, g1) in the exchange graph G(X ) that sat-
isfies the following two properties

1. For the path P , the source vertex gk ∈ A` ∩ F`(X`), for
some agent ` ∈ L(X ,A) and its sink vertex, g1 ∈ Xh

(with h ∈ H(X ,A)).
2. For each agent i ∈ [n] \ {h}, the subsets A′i :=
Ai∆{gj+1, gj : gj ∈ Ai} ∈ Ii and A′h :=
Ah∆{gj+1, gj : gj ∈ Ah}+ g1 ∈ Ih.7

Before presenting the main result of this section (Theorem
3), we will state another lemma which follows from prior
work.
Lemma 3. Under matroid-rank valuations, a non-wasteful
(partial) allocation A = (A1, . . . , An) maximizes Nash so-
cial welfare iff A is Lorenz dominating.

Theorem 3. The PE mechanism is group strategy-proof.

Proof. Assume, towards a contradiction, that the mecha-
nism PE is not group strategy-proof. Specifically, let v =
(v1, v2, . . . , vn) be a valuation profile wherein a subset of
agents C ⊆ [n] can benefit by misreporting to profile
v′ = (v′1, v

′
2, . . . , v

′
n); here v′j = vj for all agents j /∈ C.

Also, write allocations A = (A1, A2, . . . , An) = PE(v)
and X = (X1, X2, . . . , Xn) = PE(v′). Since all the mis-
reporting agents i ∈ C gain by misreporting, we have
vi(Xi) > vi(Ai), for each i ∈ C.

Let X ′ = (X ′1, X
′
2, . . . , X

′
n) be the non-wasteful (partial)

allocation within X : for each agent i ∈ [n], select bundle
X ′i := arg maxS⊆Xi

{|S| : S ∈ Ii} and note that vi(Xi) =
vi(X

′
i) = |X ′i|. Also, write B ⊆ C to denote the subset

7In contrast to the augmentation ∆ considered in Lemma 1,
here we swap along edges that end in Ai-s. Also, note the indexing
of vertices along path P .
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of misreporting agents that receive the smallest-size bundle,
B := arg mini∈C |Xi|. Considering agents in B, we write h
to denote the one with the smallest index, i.e., agent h has the
lowest value for |Xh| among all agents i ∈ C, and subject
to that, she has the smallest index.

The remainder of the proof will be from the perspective
of the valuation profile v, unless stated otherwise. Note that,
the allocationX ′ is non-wasteful and allocationA is a Pareto
efficient, since it is Lorenz dominating. Furthermore, for
agent h ∈ C, we have |X ′h| = vh(Xh) > vh(Ah) = |Ah|;
equivalently h ∈ H(X ′,A). Hence, Lemma 2 ensures the
existence of a path P = (gk, . . . , g1) in G(X ′) that satisfies
conditions 1 and 2 mentioned in the lemma statement. From
condition 1, we know that path P starts at F`(X ′`) (for some
agent ` ∈ L(X ′,A)) and ends at X ′h.

For establishing the theorem, i.e., to arrive at a contradic-
tion, we will prove two properties, P1 and P2, that directly
contradict each other:

Property P1 :

{
|Ah| < |A`| − 1, if h > `

|Ah| ≤ |A`| − 1, otherwise, if h < `.

Property P2 :

{
|Ah| ≥ |A`| − 1, if h > `

|Ah| > |A`| − 1, otherwise, if h < `

We will derive P1 by using condition 1 (from Lemma 2) sat-
isfied by path P and Lemma 1. Property P2 will be obtained
by the fact that P satisfies condition 2 in Lemma 2. Hence,
we complete the proof by establishing P1 and P2 next.
Property P1: Recall that path P starts at F`(X ′`), for some
agent ` ∈ L(X ′,A) and ends at X ′h with h ∈ H(X ′,A).
Since all the agents in C gain (by misreporting), C ⊆
H(X ′,A). Therefore, the fact that ` ∈ L(X ′,A) gives us
` /∈ C. Now, write Q to denote a shortest path from F`(X

′
`)

to ∪i∈CX ′i; the existence of P guarantees that such a path
exists. Further, assume that Q ends at X ′b for some b ∈ C.
From the definition of agent h, we have8

|Xh| ≤ |Xb| if h ≤ b and |Xh| < |Xb| if h > b (1)

Furthermore, using the facts that |X ′h| ≥ |Ah| + 1 (since
h ∈ H(X ′,A)) and |Xh| ≥ |X ′h| (since X ′h ⊆ Xh), equa-
tion (1) reduces to

|Ah|+ 1 ≤ |Xb| if h ≤ b & |Ah|+ 2 ≤ |Xb| if h > b (2)

Note that the path Q in G(X ′) is such that only its sink
vertex lies in ∪k∈CX ′k; all the other vertices inQ are present
in bundles X ′j with j /∈ C. For all agents j /∈ C, the val-
uation functions v′j and vj are the same. Hence, the (non-
wasteful) bundlesX ′j andXj are equal as well, for all j /∈ C.
These observations imply that the path Q also lies in the ex-
change graph G(X ), where the graph is constructed with re-
spect to matroids corresponding to the profile v′. Therefore,
allocation X = PE(v′) can be augmented with path Q in
G(X ), which starts at F`(X`) and ends at Xb (Lemma 1).

Indeed, performing path augmentation on X , via Q, will
increase |X`| by one, decrease |Xb| by one, and the bundle
sizes (and values) of other agents will remain unchanged.

8In fact, |Xh| ≤ |Xb| irrespective of the agents’ indices.

Also, since allocation X is optimal with respect to PE’s se-
lection criteria (and considering profile v′), the distinct allo-
cation obtained by path augmentation must be sub-optimal
(again, with respect to PE’s criteria). The Lorenz domina-
tion of X (equivalently its Nash optimality) ensures that
|Xb| ≤ |X`|+1; otherwise the resultant allocation will have
higher Nash social welfare (under v′). In fact, if b > `, then
we must have |Xb| ≤ |X`|. Otherwise (i.e., in case b > ` and
|Xb| = |X`|+1) , the resultant allocation will have the same
Nash social welfare as X (i.e., the resultant allocation will
also be Lorenz dominating) and would get preferred (over
X ) under the lexicographic tie-breaking of PE. Therefore,
|Xb| ≤ |X`| if b > `, and |Xb| − 1 ≤ |X`| if b < ` (3)

Using the bounds |X ′`| ≤ |A`| − 1 (since ` ∈ L(X ′,A)) and
|X`| = |X ′`| (recall that ` /∈ C and, hence, v` = v′`) along
with equation (3), we obtain
|Xb| ≤ |A`| − 1 if b > `, and |Xb| ≤ |A`| if b < ` (4)

Towards establishing property P1, we combine equations
(2) and (4) by considering the following four cases

Case I. h ≤ b and b > `: |Ah|+ 1 ≤ |Xb| ≤ |A`| − 1

Case II. h > b and b < `: |Ah|+ 2 ≤ |Xb| ≤ |A`|
Case III. h > b and b > `: |Ah|+ 2 ≤ |Xb| ≤ |A`| − 1

Case IV. h ≤ b and b < `: |Ah|+ 1 ≤ |Xb| ≤ |A`|
Finally, we simplify the four cases above to obtain P1. Note
that h > ` is possible only in Cases I, II, or III, and in all
these cases we have |Ah|+ 2 ≤ |A`| or equivalently |Ah| <
|A`| − 1. Similarly, h < ` can happen only in Cases I, II,
or IV and there we have |Ah| + 1 ≤ |A`|, which is same as
|Ah| ≤ |A`| − 1. Therefore, we obtain property P1:
|Ah| < |A`| − 1 if h > ` & |Ah| ≤ |A`| − 1 if h < ` (5)

Property P2: Here, we will use the fact that condition 2
in Lemma 2 is satisfied by the path P = (gk, . . . , g1). The
condition implies that the bundles Âh := Ah∆{gj+1, gj :

gj ∈ Ah} + g1 ∈ Ih and Â` := A`∆{gj+1, gj : gj ∈
A`}−gk ∈ I` along with Âi := Ai∆{gj+1, gj : gj ∈ Ai} ∈
Ii for each i /∈ {h, `}. Hence, the pairwise-disjoint bun-
dles Â1, Â2, . . . , Ân form a non-wasteful allocation Â =

(Â1, Â2, . . . , Ân) (with respect to profile v).
Recall that A = PE(v), and we have |Âh| = |Ah| + 1

along with |Â`| = |A`| − 1; the bundle sizes of all the other
agents remain unchanged. Furthermore, in contrast toA, the
distinct allocation Âmust be sub-optimal under the selection
criteria of PE (applied to valuation profile v). Therefore,
|A`| ≤ |Ah| + 1; otherwise Â will have higher Nash social
welfare (under v) than A, contradicting the optimality of A
(see Lemma 3). In fact, if h < `, then we must have |A`| <
|Ah|+1. Otherwise (i.e., in case h < ` and |A`| = |Ah|+1),
the allocation Â will have the same Nash social welfare as
A (i.e., Â will also be Lorenz dominating) and would get
preferred (over A) under the lexicographic tie-breaking of
PE. These observations lead to property P2:
|Ah| ≥ |A`| − 1 if h > ` & |Ah| > |A`| − 1 if h < ` (6)

This completes the proof, since properties P1 and P2 di-
rectly contradict each other.
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