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Abstract
We study the performance of voting mechanisms from a utili-
tarian standpoint, under the recently introduced framework of
metric-distortion, offering new insights along two main lines.
First, if d represents the doubling dimension of the metric
space, we show that the distortion of STV is O(d log logm),
where m represents the number of candidates. For doubling
metrics this implies an exponential improvement over the
lower bound for general metrics, and as a special case it
effectively answers a question left open by Skowron and
Elkind (AAAI ‘17) regarding the distortion of STV under
low-dimensional Euclidean spaces. More broadly, this con-
stitutes the first nexus between the performance of any voting
rule and the “intrinsic dimensionality” of the underlying met-
ric space. We also establish a nearly-matching lower bound,
refining the construction of Skowron and Elkind. Moreover,
motivated by the efficiency of STV, we investigate whether
natural learning rules can lead to low-distortion outcomes.
Specifically, we introduce simple, deterministic and decen-
tralized exploration/exploitation dynamics, and we show that
they converge to a candidate with O(1) distortion.

1 Introduction
Aggregating the preferences of individual entities into a col-
lective decision lies at the foundations of voting theory, and
has recently found a myriad of applications in areas such as
information retrieval, recommender systems, and machine
learning (Lu and Boutilier 2014). A common hypothesis in
the literature of social choice asserts that agents only pro-
vide an order of preferences over a (finite) set of alterna-
tives, without indicating a precise measure of each prefer-
ence. However, this assertion might seem misaligned with
many classical models in economic theory (von Neumann
and Morgenstern 1944) which espouse a utilitarian frame-
work to represent agents’ preferences. This raises the fol-
lowing concern: What is the loss in utilitarian efficiency of
a mechanism eliciting only ordinal information?

This question was raised by Procaccia and Rosenschein
(2006), introducing the concept of distortion, and has since
led to a substantial body of work. In this paper we focus on
the refined notion of metric distortion (Anshelevich, Bhard-
waj, and Postl 2015), wherein agents and candidates are as-
sociated with points in some metric space, and preferences
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are being determined based on the proximity in the under-
lying metric (see Section 2 for a formal definition). Im-
portantly, this framework offers a quantitative “benchmark”
for comparing different voting rules commonly employed in
practice. Indeed, one of the primary considerations of our
work lies in characterizing the performance of the single
transferable vote1 mechanism (henceforth STV).

STV is a widely-popular iterative voting system em-
ployed in the national elections of several countries, includ-
ing Australia, Ireland, and India, as well as in many other
preference aggregation tasks; e.g., in the Academy Awards.
To be more precise, STV proceeds in an iterative fashion: In
each round, agents vote for their most preferred candidate—
among the active ones, while the candidate who enjoyed the
least amount of support in the current round gets eliminated.
This process is repeated for m − 1 rounds, where m repre-
sents the number of (initial) alternatives, and the last surviv-
ing candidate is declared the winner of STV. As an aside,
notice that this process is generally non-deterministic due to
the need for a tie-breaking mechanism; as in (Skowron and
Elkind 2017), we will work with the parallel universe model
of Conitzer, Rognlie, and Xia (2009), wherein a candidate is
said to be an STV winner if it survives under some sequence
of eliminations.

In this context, Skowron and Elkind (2017) were the first
to analyze the distortion of STV under metric preferences.
Specifically, they showed that the distortion of STV in gen-
eral metric spaces is always O(logm), while they also gave
a nearly-matching lower bound in the form of Ω(

√
logm).

Interestingly, a careful examination of their lower bound re-
veals the existence of a high-dimensional submetric, as de-
picted in Figure 1, and it is a well-known fact in the theory
of metric embeddings that such objects cannot be isomet-
rically embedded into low-dimensional2 Euclidean spaces
(Matoušek 2002). As a result, Skowron and Elkind (2017)
left open the following intriguing question:

Question 1. What is the distortion of STV under low-
dimensional Euclidean spaces?

1For consistency with prior work STV will represent through-
out this paper the single-winner variant of the system, which is
sometimes referred to as instant-runoff voting (IRV).

2We say that a Euclidean space is low-dimensional if its dimen-
sion d is bounded by a “small” universal constant, i.e. d = O(1).
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Figure 1: A high-dimensional metric in the form of a “star”.

Needless to say that the performance of voting rules
in low-dimensional spaces has been a subject of intense
scrutiny in spatial voting theory, under the premise that vot-
ers and candidates are typically embedded in subspaces with
small dimension (Arrow 1990; Enelow and Hinich 1984).
For example, recent experimental work by Elkind et al.
(2017) evaluates several voting rules in a 2-dimensional
Euclidean space, motivated by the fact that preferences
are typically crystallized on the basis of a few crucial di-
mensions; e.g., economic policy and healthcare. Indeed, in
the so-called Nolan Chart—a celebrated political spectrum
diagram—political views are charted along two axes, ex-
panding upon the traditional one-dimensional representa-
tion; to quote from the work of Elkind et al. (2017):

“...the popularity of the Nolan Chart [...] indicates
that two dimensions are often sufficient to provide a
good approximation of voters’ preferences.”

Thus, it is natural to ask whether we can refine the analy-
sis of STV under low-dimensional spaces. In fact, as part of
a broader agenda analogous questions can be raised for other
mechanisms as well. However, it is interesting to point out
that for many voting rules analyzed within the framework of
distortion there exist low-dimensional lower bounds; some
notable examples are given in Table 1. In contrast, our work
will separate STV from the mechanisms in Table 1, effec-
tively addressing Question 1. Importantly, we shall provide
a characterization well-beyond Euclidean spaces, to metrics
with “intrinsically” low dimension.

The next consideration of our work is directly motivated
by the efficiency of STV compared to the plurality rule, and
in particular the strategic implications of this discrepancy. A
good starting point for this discussion stems from the fact
that in many fundamental preference aggregation settings
alternatives are chosen by inefficient mechanisms, and in
many cases any reform faces insurmountable impediments.
For example, in political elections the voting mechanism is
typically dictated by electoral laws, or even the constitution
(Lijphart 1992). As a result, understanding the behavior of
strategic agents when faced with inefficient mechanisms is
of paramount importance (Brill and Conitzer 2015; Zucker-
man et al. 2011). A rather orthogonal way of viewing this
is whether autonomous agents can converge to admissible
social choices through natural learning rules; this begs the

Mechanism Lower Bound Dimension

Plurality 2m− 1 1
Borda 2m− 1 1

Copeland 5 2
Veto 2n− 1 1

Approval 2n− 1 1

Table 1: The Euclidean dimension required to construct a
(tight) lower bound for several common voting rules; these
results appear in (Anshelevich, Bhardwaj, and Postl 2015).
We should note that for Copeland the metric constructed in
(Anshelevich, Bhardwaj, and Postl 2015) is not Euclidean,
but can be easily modified to be one.

question:

Question 2. To what extent can strategic behavior improve
efficiency in voting?

We stress that although in the absence of any information
it might be unclear how agents can engage in strategic be-
havior, in most applications of interest agents have plenty of
prior information before they cast their votes, e.g. through
polls, surveys, forecasts, prior elections, or even early vot-
ing. Indeed, there is a prolific line of work which studies
population dynamics for agents that cast their votes in re-
sponse to the information they possess (Restrepo, Rael, and
Hyman 2009), as well as the role of information in shaping
public policy (Larcinese 2003).

To address such considerations we propose a natural
model wherein agents act iteratively based on some partial
feedback on the other voters’ preferences. We explain how
STV can be very naturally cast in this framework, while we
establish the existence of simple and decentralized coordi-
nation dynamics converging to a near-optimal alternative.

Overview of Results
Our first contribution is to relate the distortion of STV to the
dimensionality of the underlying metric space. Specifically,
our first insight is to employ the following fundamental con-
cept from metric geometry:

Definition 1.1 (Doubling Dimension). The doubling con-
stant of a metric space (M, dist) is the least integer λ ≥ 1
such that for all x ∈M and for all r > 0, every ballB(x, 2r)
can be covered by the union of at most λ balls of the form
B(s, r), where s ∈ M; that is, there exists a subset S ⊆ M
with |S| ≤ λ such that

B(x, 2r) ⊆
⋃
s∈S
B(s, r). (1)

The doubling dimension is defined as dim(M) := log2 λ.

This concept generalizes the standard notion of dimen-
sion since dim(Rd) = Θ(d) when Rd is endowed with the
`p norm. Moreover, it is clear that for a finite metric space
(M, dist), dim(M) ≤ log2 |M|; for example, this is es-
sentially tight for the high-dimensional metric of Figure 1.
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The concept of doubling dimension was introduced by Lar-
man (1967) and Assouad (1983), and was first used in algo-
rithm design by Clarkson (1997) in the context of the nearest
neighbors problem. Nevertheless, we are not aware of any
prior characterization that leverages the doubling dimension
in the realm of voting theory. In the sequel, it will be as-
sumed that (M, dist(·, ·)) stands for the metric space in-
duced by the set of candidates and voters. In this context,
our first main contribution is the following theorem:
Theorem 1.2. If d is the doubling dimension ofM, then the
distortion of STV is O(d log logm).

For doubling metrics3 this theorem already implies an ex-
ponential improvement in the distortion over the Ω(

√
logm)

lower bound for general metrics. Moreover, it addresses as a
special case Question 1:
Corollary 1.3. The distortion of STV under low-
dimensional Euclidean spaces is O(log logm).

To the best of our knowledge, this is the first result that
relates the performance of any voting rule to the “intrinsic
dimensionality” of the underlying metric space. It also cor-
roborates the experimental findings of Elkind et al. (2017)
regarding the superiority of STV on the 2-dimensional Eu-
clidean plane. More broadly, we suspect that our character-
ization applies for a wide range of iterative voting rules, to
which STV serves as a canonical example. We should note
that the O(log logm) factor appears to be an artifact of our
analysis. Indeed, we put forward the following conjecture:
Conjecture 1.4. If d is the doubling dimension ofM, then
the distortion of STV is O(d).

Verifying this conjecture in light of our result might be of
small practical importance, but nonetheless we believe that
it can be established by extending our techniques. In fact,
for one-dimensional spaces we actually confirm this conjec-
ture, proving that the distortion of STV on the line is O(1)
in Theorem 3.1. It should be noted, however, that the un-
derlying phenomenon is inherently different once we turn
our attention to higher-dimensional spaces. In addition, to
complement our positive results we refine the lower bound
of Skowron and Elkind (2017), showing an Ω(

√
d) lower

bound, where d represents the doubling dimension of the
submetric induced by the set of candidates MC . Thus, it
should be noted that there are still small gaps left to be
bridged in future research.

Other Notions of Dimension. An important advantage of
the doubling dimension is that it subsumes other commonly-
used notions of dimension. Most notably, Karger and Ruhl
(2002) have introduced a concept of dimension based on the
growth rate of a (finite) metric space, and it is known (Gupta,
Krauthgamer, and Lee 2003, Proposition 1.2) that the dou-
bling dimension can only be a factor of 4 larger than the
growth rate of Karger and Ruhl. Moreover, a similar state-
ment applies for the local density of an unweighted graph,
another natural notion of volume that has been employed in
the analysis of a graph’s bandwidth (Feige 2000).

3A doubling metric refers to a metric space with doubling di-
mension upper-bounded by some universal constant.

High-Level Intuition. In this paragraph we briefly at-
tempt to explain why the distortion of STV depends on the
“covering dimension” of the underlying metric space. First,
we have to describe the technique developed by Skowron
and Elkind (2017). Specifically, their method for deriving
an upper bound for the distortion of an iterative voting
rule consists of letting a substantial fraction of agents re-
side within close proximity to the optimal candidate, and
then analyze how the support of these agents propagates
throughout the evolution of the iterative process. More pre-
cisely, the overall distance covered immediately implies an
upper bound on the distortion (see Lemma 2.2). The im-
portant observation is that the underlying dimension dras-
tically affects this phenomenon. In particular, when a large
fraction of agents lies in a low-dimensional ball supporting
many different candidates, we can infer that their (currently)
second most-preferred alternatives ought to be “close”—for
most of the agents—by a covering argument (and the tri-
angle inequality). This directly circumscribes the propaga-
tion of the support, as hinted in Figure 2b, juxtaposed to
the phenomenon in high dimensions in Figure 2a. We stress
that we shall make use of this basic skeleton developed by
Skowron and Elkind (2017). We also remark that we recover
their O(logm) bound under general metrics through a sim-
pler analysis, which incidentally reveals a very clean recur-
sive structure; this argument will be directly invoked for the
proof of our main theorem.

The next theme of our work is motivated by the perfor-
mance of STV, and in particular offers a preliminary an-
swer to Question 2. Specifically, to formally address such
questions we first propose a natural iterative model: In each
day every agent has to select a single candidate, and at the
end of the round agents are informed about the (plurality)
scores of all the candidates (cf., see (Borodin et al. 2019)).
This process is repeated for sufficiently many days, and it is
assumed that the candidate who enjoyed the largest amount
of support in the ultimate day will eventually prevail. Ob-
serve that in this scenario truthful engagement appears to be
very unrealistic since agents would endeavor to adapt their
support based on the popularity of each candidate; for ex-
ample, it would make little sense to squander one’s vote
(at least towards the last stages) to an unpopular candidate.
More broadly, there is an interesting nexus between distor-
tion and stability, as we elaborate in Section 4, emphasizing
on a connection with the notion of core in cooperative game
theory (Proposition 4.2).

In this context, STV already suggests a particularly nat-
ural strategic engagement, improving exponentially over
the outcome of the truthful dynamics. Yet, it yields super-
constant distortion due to the greedy aspect of the induced
dynamics. We address this issue by designing a simple and
decentralized exploration/exploitation scheme:

Theorem 1.5. There exist simple, deterministic and dis-
tributed dynamics that converge to a candidate with O(1)
distortion.

We elaborate on the proposed dynamics, as well as on all
the aforementioned issues in Section 4.
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(a) The propagation of the support in
high dimensions.

(b) The propagation of the support in
low dimensions.

Figure 2: The impact of the underlying dimension on STV.

Related Work
The framework of distortion under metric preferences was
introduced by Anshelevich, Bhardwaj, and Postl (2015) (see
also (Anshelevich et al. 2018)). Specifically, they observed
a lower bound of 3 for any deterministic mechanism, while
they also showed—among others—that Copeland’s method,
a very popular voting system, always incurs distortion at
most 5, with the bound being tight for certain instances.
This threshold was subsequently improved by Munagala and
Wang (2019), introducing a novel (deterministic) mecha-
nism with distortion 2 +

√
5, while the same bound was in-

dependently obtained by Kempe (2020) through an approach
based on LP duality. The lower bound of 3 was only recently
matched by PLURALITYMATCHING, a mechanism intro-
duced by Gkatzelis, Halpern, and Shah (2020). All of the
aforementioned results apply under arbitrary metric spaces.
Several special cases have also attracted attention in the
literature. For one-dimensional spaces, Feldman, Fiat, and
Golomb (2016) establish several improved bounds, while a
comprehensive characterization in a distributed setting was
recently given by Filos-Ratsikas and Voudouris (2021). The
interested reader is referred to the concise survey of An-
shelevich et al. (2021) for detailed accounts on the rapidly
growing literature on the subject. Moreover, for related re-
search beyond the framework of distortion we refer to (Ger-
shkov, Moldovanu, and Shi 2019), and references therein.

Our considerations in Section 4 are related to the seminal
work of Brânzei et al. (2013) (see also the extensive follow-
up work, such as (Obraztsova et al. 2015)), viewing voting
from the standpoint of price of anarchy (PoA). In particu-
lar, the authors study the discrepancy between the plurality
scores under truthfulness, and under worst-case limit points
of best-response dynamics. Instead, we argue that the utili-
tarian performance of a voting rule—in terms of distortion—
offers a very compelling alternative to study this discrep-
ancy, similarly to the original formulation of PoA in the
context of routing games (Koutsoupias and Papadimitriou
1999), while going beyond best-response dynamics is very
much in line with the modern approach in the context of

learning in games (Cesa-Bianchi and Lugosi 2006). Finally,
we stress that Question 2 has already received extensive at-
tention in the literature (cf., see (Brill and Conitzer 2015;
Zuckerman et al. 2011) and references therein), but it was
not addressed within the framework of (metric) distortion.

2 Preliminaries
A metric space is a pair (M, dist(·, ·)), where dist : M×
M 7→ R is a metric onM, i.e., (i) ∀x, y ∈M, dist(x, y) =
0 ⇐⇒ x = y (identity of indiscernibles), (ii) ∀x, y ∈
M, dist(x, y) = dist(y, x) (symmetry), and (iii) ∀x, y, z ∈
M, dist(x, y) ≤ dist(x, z) + dist(z, y) (triangle inequal-
ity). Now consider a set of n voters V = {1, 2, . . . , n}, and
a set of m candidates C; we will reference candidates with
lowercase letters such as a, b, w, x. Voters and candidates
are associated with points in a finite metric space (M, dist),
while it is assumed thatM is the (finite) set induced by the
set of voters and candidates. The goal is to select a candidate
x who minimizes the social cost: SC(x) =

∑n
i=1 dist(i, x).

This task would be trivial if we had access to the agents’ dis-
tances from all the candidates. However, in the metric distor-
tion framework every agent i provides only a ranking (a total
order) σi over the points in C according to the order of i’s
distances from the candidates, with ties broken arbitrarily.
We also define σ := (σ1, . . . , σn), while we will sometimes
use top(i) to represent i’s most preferred candidate.

A deterministic social choice rule is a function that maps
an election in the form of a 3-tuple E = (V,C, σ) to a single
candidate a ∈ C. We will measure the performance of f
for a given input of preferences σ in terms of its distortion;
namely, the worst-case approximation ratio it provides with
respect to the social cost:

distortion(f ;σ) = sup
SC(f(σ))

mina∈C SC(a)
, (2)

where the supremum is taken over all metrics consistent with
the voting profile. The distortion of a social choice rule f
is the maximum of distortion(f ;σ) over all possible input
preferences σ.
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We define the open ball on the metric space (M, dist)
with center x ∈ M and radius r > 0 as B(x, r) := {z ∈
M : dist(z, x) < r}. The following covering lemma will be
useful for the analysis of STV in doubling metrics.

Lemma 2.1. Consider a metric space (M, dist) with dou-
bling constant λ ≥ 1. Then, for any x ∈ M and r > 0, the
ball B(x, r) can be covered by at most λdlog(r/ε)e balls of
radius at most ε.

When unspecified, the log(·) will always be implied to
the base 2. We conclude this section with a useful lemma
observed by Skowron and Elkind (2017):

Lemma 2.2 ((Skowron and Elkind 2017)). Consider two
distinct candidates a, b ∈ C. If r := dist(a, b)/h for some
parameter h > 0, and at most γn agents reside in B(a, r)
for some γ ∈ [0, 1), then

SC(b)

SC(a)
≤ 1 +

h

1− γ
. (3)

3 STV in Doubling Metrics
In this section we refine the analysis of STV based on the
intrinsic dimensionality of the underlying metric space; our
main result is Theorem 3.2.

STV on the Line
As a warm-up, we analyze the performance of STV on the
line. In particular, we establish the following result:

Theorem 3.1. The distortion of STV on the line is at most
15.

The proof is deferred to the full version of our paper. Be-
fore we proceed to our main result, a few remarks are in
order. First of all, we did not pursue optimizing the con-
stant in the theorem, although this might be an interesting
avenue for future research. It should also be noted that The-
orem 3.1 already implies a stark separation between STV
and PLURALITY, as the latter is known to admit a one-
dimensional Ω(m) lower bound (recall Table 1).

Main Result
Moving on to the main result of this section, we will prove
the following theorem:

Theorem 3.2. If d is the doubling dimension ofM, then the
distortion of STV is O(d log logm).

The first ingredient of the proof is a recursive pattern re-
garding the propagation of the support during STV, inciden-
tally leading to a much simpler analysis in general metrics.
In this context, the main technical challenge under doubling
metrics lies in maintaining the appropriate invariance. We
address this by essentially identifying a subset of the do-
main with a sufficient degree of regularity. We should also
note that the second part of the proof makes use of the tech-
nique devised by Skowron and Elkind (2017).

Proof of Theorem 3.2. Let w ∈ C be the winner of STV
under some sequence of eliminations, and x ∈ C be the
candidate who minimizes the social cost. Moreover, let

r := dist(x,w)/(4h + 7), where h is defined as h :=
1 + dlog2(6λlogHm+1)e = Θ(d log logm). If γ represents
the fraction of the voters in B(x, r), we will establish that
γ ≤ 2/3.

For the sake of contradiction, let us assume that γ > 2/3.
Our argument will characterize the propagation of the sup-
port of the voters in B(x, r). In particular, we proceed in the
following two phases:

Phase I. Our high-level strategy is to essentially employ
our argument for general metrics, but not for the entire set
of voters in B(x, r). Instead, we will establish the existence
of a set with a helpful invariance, which still contains most
of the voters. More precisely, we first consider a covering
{B(zj , rj)}µj=1 of the ball B(x, r), where the radius of every
ball is at most ε × r for some parameter ε ∈ (0, 1). The
balls that do not contain any voter may be discarded for the
following argument. We let S(0) be the union of these balls.
We know from Lemma 2.1 that µ = µ(ε;λ) ≤ λlog(1/ε)+1.
For Phase I we assume that more than M candidates remain
active in STV, where M := 6µ, while ε := 1/Hm (Hm
denotes the m-th harmonic number).

Let us consider a round t = 1, . . . ,m−M of STV. In par-
ticular, let a ∈ C be the candidate who is eliminated at round
t. Observe that if a is not supported by any voter residing in
B(x, r), the support of these agents remains invariant under
round t. Thus, let us focus on the contrary case. Specifically,
if there exists a ball in the covering which contains exclu-
sively supporters of candidate a, we shall remove every such
ball from the current covering, updating analogously the set
S(t). Given that we are at round t, we can infer that the num-
ber of such supporters is at most n/(m − t + 1) < n/M .
Thus, since we can only remove µ balls from the initial cov-
ering, it follows that the set S := S(t) with t = m − M
contains strictly more than 2n/3− nµ/M = n/2 voters.

Next, we will argue about the propagation of the support
for the voters in S during the firstm−M rounds of STV. By
construction of the set S , we have guaranteed the following
invariance: Whenever a candidate a supported by voters in
S gets eliminated, every supporter of a from S lies within a
ball of radius at most ε with agents championing a different
candidate. Now, let us define D

(t)
as follows:

D
(t)

:=
1

γ′n

∑
i∈S

dist(i, top(i; t)), (4)

where γ′ represents the fraction of the voters in S and
top(i; t) is i’s top active candidate at round t. Consider two
voters i, j supporting two candidates a, b respectively. We
will show that dist(i, b) ≤ dist(i, a)+2 dist(i, j), and simi-
larly, dist(j, a) ≤ dist(j, b)+2 dist(i, j). Indeed, successive
applications of the triangle inequality imply that

dist(i, b) ≤ dist(i, j) + dist(j, b)

≤ dist(i, j) + dist(j, a)

≤ dist(i, j) + dist(j, i) + dist(i, a)

= dist(i, a) + 2 dist(i, j).
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Thus, if the voters i and j happen to reside within a ball of
radius at most ε, we can infer that dist(i, b) ≤ dist(i, a)+4ε.
As a result, we can inductively conclude that

D
(t) ≤ D(t−1)

+
1

γ′
4εr

m− t+ 1
≤ D(t−1)

+
8εr

m− t+ 1
,

in turn implying that

D
(m−M) ≤ 8(εr)Hm. (5)

In particular, for ε = 1/Hm this implies that during the first
phase the agents in S support candidates within O(1) × r
distance from x.

Phase II. At the beginning of the second phase there
are M remaining candidates. Let us denote with Bj :=
B(x, (2j − 1) × r). In this phase we will argue about the
entire set of voters in B(x, r). Let m1 ≤ M be the num-
ber of candidates supported by voters in B(x, r) at the start
of the second phase. Our previous argument for Phase I im-
plies that every such candidate will reside in B7; this follows
directly by applying the triangle inequality. Let us denote
with mj the number of candidates residing outside B4+2j

for j ≥ 2 at the round the last candidate from B3+2j gets
eliminated.

By the pigeonhole principle, we can infer that there exists
a candidate a inB7 who enjoys the support of at least γn/m1

voters. Moreover, observe that the triangle inequality im-
plies that no voter will support a candidate outside B8 as
long as candidate a remains active. Thus, at the round a gets
eliminated we can deduce that (1−γ)n/m2 ≥ γn/m1 ⇐⇒
m2 ≤ m1 × (1 − γ)/γ, where we used that the number of
candidates in every subset can only decrease during STV.
Inductively, we can infer that

mh ≤
(

1− γ
γ

)h−1
m1 <

(
1

2

)h−1
M ≤ 1, (6)

for h = dlog2Me + 1, where we used that γ > 2/3. This
implies that the winner of STV should lie within B4+2h,
i.e. dist(x,w)/r < 4h + 7, which is a contradiction since
dist(x,w) = (4h+7)×r. Thus, the theorem follows directly
from Lemma 2.2.

The Lower Bound
We also refine the Ω(

√
logm) lower bound (Skowron and

Elkind 2017, Theorem 4) based on the doubling dimension
of the submetric induced by the set of candidates MC . In
particular, we establish the following theorem:

Theorem 3.3 (Lower Bound for STV). For any λ ≥ 2
there exists a metric space induced by the set of candidates
(MC , dist), with d = Θ(log λ) being the doubling dimen-
sion ofMC , and a voting profile such that the distortion of
STV is Ω(

√
d).

The construction follows similarly to that of Skowron and
Elkind (2017), and it is included in the full version.

4 Coordination Dynamics
In this section we explore whether natural and distributed
learning dynamics can converge to social choices with near-
optimal distortion. We should point out that there is a con-
crete connection between such considerations and the results
of the previous section, as it will be revealed in detail shortly.
First, let us commence with the following observation:

Observation 4.1. Consider a voting instance under a metric
space so that some candidate a ∈ C has distortion at least
D.4 Then, there exists a candidate x 6= a and subsetW ⊆ V
such that

1. Every agent in W strictly prefers x to a;
2. |W |/n ≥ 1− 2/(D + 1).

This statement essentially tells us that candidates with
large distortion are inherently unstable, in the sense that
there will exist a large “coalition” of voters that strictly pre-
fer a different outcome. Interestingly, this observation im-
plies a connection between (metric) distortion and the notion
of core in cooperative game theory. To be more precise, we
will say that a set of coalitionsW is α-large, with α ∈ [0, 1],
if it contains every coalition W ⊆ V such that |W |/n ≥ α;
a candidate a is said to be in the core if there does not exist
a coalition W ∈ W such that every agent in W (strictly)
prefers a different alternative.5 In this context, the following
proposition follows directly from Observation 4.1:

Proposition 4.2. Consider a voting instance under a metric
space so that some candidate a ∈ C has distortion at least
D. Then, candidate a cannot be in the core with respect to
an α-large set of coalitions, as long as α ≤ 1− 2/(D + 1).

As a result, it is interesting to study the strategic behavior
and the potential coordination dynamics that may arise in
the face of an inefficient voting system.

The Model
We consider the following abstract model: For some given
voting system, agents are called upon to cast their votes for
a series of T days or rounds, where T is sufficiently large.
After the end of each day, voters are informed about the re-
sults of the round, and the winner is determined based on the
results of the ultimate day. This is essentially an iterative im-
plementation of a given voting rule, in place of the one-shot
execution typically considered, and it is introduced to take
into account external information typically accumulated be-
fore the actual voting (e.g. through polls). For concreteness,
we will assume that the voting rule employed in each day
is simply the PLURALITY mechanism, not least due to its
popularity both in theory and in practice.

Before we describe and analyze natural dynamics in this
model, let us first note that if all the voters engage truthfully
throughout this game, the victor will coincide with the plu-
rality winner, and as we know there are instances for which
this candidate may have Ω(m) distortion. As a result, Ob-
servation 4.1 implies that there will be a large coalition with

4That is, SC(a)/minx∈C SC(x) ≥ D.
5Considering only “large” coalitions is standard in the litera-

ture; cf., (Brandt et al. 2016).
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a 1−Θ(1/m) fraction of the voters that strictly prefer a dif-
ferent outcome. Indeed, the lower bound of PLURALITY is
built upon m− 1 clusters of voters formed arbitrarily close,
while a different extreme party with roughly the same plu-
rality score could eventually prevail. However, the access to
additional information renders this scenario rather unrealis-
tic given that we expect some type of adaptation or coordi-
nation mechanism from the agents.

A Greedy Approach

Let us denote with n(t)a the plurality score of candidate a at
round t ∈ [T ]. A particularly natural approach for an agent
to engage in this scenario consists of maintaining a time-
varying parameter θ(t), which will essentially serve as the
“temperature”. Then, at some round t > 1 agent i will sup-
port the candidate b for which b �i a for all a, b ∈ C(t),
where C(t) := {a ∈ C : n

(t−1)
a ≥ θ(t)}.6 That is, agents

only consider candidates who exceeded some level of sup-
port during the previous day. Then, the temperature parame-
ter is updated accordingly, for example with some small con-
stant increment θ(t+1) := θ(t) + ε, for some ε > 0. In this
context, observe that for a sufficiently small ε these dynam-
ics will converge to an STV winner (based on the parallel
universe model). This implies that the greedy tactics already
offer an exponential improvement—in terms of the utilitar-
ian efficiency—compared to the truthful dynamics. Never-
theless, the lower bound for STV (Theorem 3.3) suggests
that we have to design a more careful adaptive rule in order
to attain O(1) distortion.

Exploration/Exploitation
The inefficiency of the previous approach—and subse-
quently of STV—stems from the greedy nature of the itera-
tive process: Agents may choose to dismiss candidates pre-
maturely. For example, this becomes apparent by inspecting
the elimination pattern in the lower bound of Theorem 3.3.
In light of this, the remedy we propose—and what arguably
occurs in many practical scenarios—is an exploration phase.
In particular, voters initially do not possess any information
about the preferences of the rest of the population. Thus,
they may attempt to explore several alternatives in order
to evaluate the viability of each candidate; while doing so,
agents will endeavor to somehow indicate or favor their own
preferences. After the exploration phase, agents will lever-
age the information they have learnt to adapt their support.
More concretely, we consider the following dynamics:

1. Exploration phase: In each round t ∈ [m] every agent i
maintains a list L(t)

i , initialized as L(1)
i := ∅. If C(t)

i :=

C \ L(t)
i , then at round t agent i shall vote for the can-

didate a ∈ C(t)
i such that a �i b for all b ∈ C(t)

i . Next,
agent i updates her list accordingly:L(t+1)

i := L(t)
i ∪{a};

6The definition of the set C(t) for t > 1 is subject to |C(t)| ≥
|C(t−1)| − 1, i.e. agents never disregard more than 1 candidate in
the course of a single round; otherwise, the guarantee we state for
the dynamics does not hold due to some pathological instances.

2. Exploitation phase: Every agent supports the first candi-
date7 within her list that managed to accumulate—over
all prior rounds—at least n/2 votes.

So, the winner is determined in the first round t for which
there is some candidate lying in the top t positions of at least
half of the voters’ rankings. We shall refer to this iterative
process as COORDINATION dynamics.

Theorem 4.3. COORDINATION dynamics lead to a candi-
date with distortion at most 11.

Proof. Let w be the winner under COORDINATION, and x
be the candidate who minimizes the social cost. For r :=
dist(x,w)/5, we consider the sequence of balls {Bi}3i=1
such that Bi := B(x, (2i − 1)r) for i = 1, 2, 3. If γ is the
fraction of the voters in B1, we will argue that γ ≤ 1/2.

For the sake of contradiction, let us assume that γ > 1/2.
Let t be the first round for which a voter inB1 supports a can-
didate outside B3. Then, it follows by the triangle inequality
that the list of this voter just after round t − 1 included all
the candidates in B2. This in turn implies that by round t−1
every agent in B1 had already voted for all candidates in B1.
Given that γ > 1/2, we can conclude that no agent from B1
voted for w during the exploitation phase.

Now let us consider the first round for which some candi-
date a ∈ C accumulated at least n/2 votes, which clearly
happens during the exploration phase. Then, at the exact
same round at least n/2 agents have a in their list; this fol-
lows since agents vote for different candidates during the
exploration phase, and a candidate is always included in the
list once voted for. As a result, our tie-breaking assumption
implies that there will be a candidate with the support of at
least n/2 agents during the exploitation phase. But our pre-
vious argument shows that this candidate cannot bew, which
is an obvious contradiction. As a result, we have shown that
γ ≤ 1/2, and the theorem follows by Lemma 2.2.

Future Directions. In conclusion, let us briefly mention
some intriguing open problems related to the results of this
section. We have attempted to argue that candidates with
small distortion may arise through natural learning rules.
This was motivated in part by Observation 4.1, which im-
plies the instability of outcomes with large distortion. How-
ever, the converse of this statement is not quite true: Al-
though there is always a candidate with distortion at most 3
(Gkatzelis, Halpern, and Shah 2020), there might be a subset
with at least half of the voters that strictly prefer a different
outcome (a.k.a. Condorcet’s paradox). Still, there might be
an appropriate notion of stability which ensures that near-
optimal candidates are in some sense stable. In spirit, this is
very much pertinent to the main result of Gkatzelis, Halpern,
and Shah (2020) concerning the existence of an undomi-
nated candidate, leading to the following question:

Question 3. Are there deterministic and distributed learn-
ing rules which converge to a candidate with distortion 3?

7For simplicity, it is assumed that in case multiple such agents
exist we posit some arbitrary but common among all agents tie-
breaking mechanism.
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letin de la Société Mathématique de France, 111: 429–448.
Borodin, A.; Lev, O.; Shah, N.; and Strangway, T. 2019.
Primarily about Primaries. In The Thirty-Third AAAI Con-
ference on Artificial Intelligence, AAAI 2019, 1804–1811.
AAAI Press.
Brandt, F.; Conitzer, V.; Endriss, U.; Lang, J.; and Procaccia,
A. D. 2016. Handbook of Computational Social Choice.
USA: Cambridge University Press, 1st edition.
Brânzei, S.; Caragiannis, I.; Morgenstern, J.; and Procaccia,
A. D. 2013. How Bad Is Selfish Voting? In desJardins, M.;
and Littman, M. L., eds., Proceedings of the Twenty-Seventh
AAAI Conference on Artificial Intelligence. AAAI Press.
Brill, M.; and Conitzer, V. 2015. Strategic Voting and Strate-
gic Candidacy. In Bonet, B.; and Koenig, S., eds., Proceed-
ings of the Twenty-Ninth AAAI Conference on Artificial In-
telligence, 819–826. AAAI Press.
Cesa-Bianchi, N.; and Lugosi, G. 2006. Prediction, learn-
ing, and games. Cambridge University Press.
Clarkson, K. L. 1997. Nearest Neighbor Queries in Metric
Spaces. In Leighton, F. T.; and Shor, P. W., eds., Proceedings
of the Twenty-Ninth Annual ACM Symposium on the Theory
of Computing, 1997, 609–617. ACM.
Conitzer, V.; Rognlie, M.; and Xia, L. 2009. Preference
Functions That Score Rankings and Maximum Likelihood
Estimation. In Proceedings of the 21st International Jont
Conference on Artifical Intelligence, IJCAI’09, 109–115.
Morgan Kaufmann Publishers Inc.
Elkind, E.; Faliszewski, P.; Laslier, J.; Skowron, P.; Slinko,
A.; and Talmon, N. 2017. What Do Multiwinner Voting
Rules Do? An Experiment Over the Two-Dimensional Eu-
clidean Domain. In Singh, S. P.; and Markovitch, S., eds.,
Proceedings of the Thirty-First AAAI Conference on Artifi-
cial Intelligence, February 4-9, 2017, 494–501. AAAI Press.
Enelow, J. M.; and Hinich, M. J. 1984. The Spatial Theory
of Voting. Cambridge Books. Cambridge University Press.
Feige, U. 2000. Approximating the Bandwidth via Volume
Respecting Embeddings. Journal of Computer and System
Sciences, 60(3): 510–539.

Feldman, M.; Fiat, A.; and Golomb, I. 2016. On Voting
and Facility Location. In Conitzer, V.; Bergemann, D.; and
Chen, Y., eds., Proceedings of the 2016 ACM Conference on
Economics and Computation, EC ’16, 269–286. ACM.
Filos-Ratsikas, A.; and Voudouris, A. A. 2021. Approxi-
mate Mechanism Design for Distributed Facility Location.
In Algorithmic Game Theory - 14th International Sympo-
sium, SAGT 2021, volume 12885 of Lecture Notes in Com-
puter Science, 49–63. Springer.
Gershkov, A.; Moldovanu, B.; and Shi, X. 2019. Voting on
multiple issues: What to put on the ballot? Theoretical Eco-
nomics, 14(2): 555–596.
Gkatzelis, V.; Halpern, D.; and Shah, N. 2020. Resolving
the Optimal Metric Distortion Conjecture. In 61st IEEE
Annual Symposium on Foundations of Computer Science,
FOCS 2020, 1427–1438. IEEE.
Gupta, A.; Krauthgamer, R.; and Lee, J. R. 2003. Bounded
Geometries, Fractals, and Low-Distortion Embeddings. In
44th Symposium on Foundations of Computer Science
(FOCS 2003), 11-14 October 2003, 534–543. IEEE Com-
puter Society.
Karger, D. R.; and Ruhl, M. 2002. Finding nearest neighbors
in growth-restricted metrics. In Reif, J. H., ed., Proceedings
on 34th Annual ACM Symposium on Theory of Computing,
May 19-21, 2002, 741–750. ACM.
Kempe, D. 2020. An Analysis Framework for Metric Vot-
ing based on LP Duality. In The Thirty-Fourth AAAI Con-
ference on Artificial Intelligence, AAAI 2020, 2079–2086.
AAAI Press.
Koutsoupias, E.; and Papadimitriou, C. H. 1999. Worst-case
Equilibria. In Meinel, C.; and Tison, S., eds., STACS 99, 16th
Annual Symposium on Theoretical Aspects of Computer Sci-
ence, volume 1563 of Lecture Notes in Computer Science,
404–413. Springer.
Larcinese, V. 2003. The Instrumental Voter Goes to the
News-Agent: Demand for Information, Election Closeness,
and the Media. UFAE and IAE Working Papers 579.03, Uni-
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