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Abstract

We consider the problem of maximizing the Nash social wel-
fare when allocating a set G of indivisible goods to a setN of
agents. We study instances, in which all agents have 2-value
additive valuations: The value of every agent i ∈ N for every
good j ∈ G is vij ∈ {p, q}, for p, q ∈ N, p ≤ q. In this work,
we design an algorithm to compute an optimal allocation in
polynomial time if p divides q, i.e., when p = 1 and q ∈ N
after appropriate scaling. The problem is NP-hard whenever
p and q are coprime and p ≥ 3.
In terms of approximation, we present positive and negative
results for general p and q. We show that our algorithm ob-
tains an approximation ratio of at most 1.0345. Moreover, we
prove that the problem is APX-hard, with a lower bound of
1.000015 achieved at p/q = 4/5.

Introduction
Fair division is an important area at the intersection of eco-
nomics and computer science. While fair division with di-
visible goods is relatively well-understood in many contexts,
the case of indivisible goods is significantly more challeng-
ing. Recent work in fair division has started to examine ex-
tensions of standard fairness concepts such as envy-freeness
to notions such as EF1 (envy-free up to one good) (Lipton
et al. 2004) or EFX (envy-free up to any good) (Caragiannis
et al. 2016), most prominently in the case of non-negative,
additive valuations of the agents. In this additive domain,
notions of envy-freeness are closely related to the Nash so-
cial welfare (NSW), which is defined by the geometric mean
of the valuations. An allocation maximizing the Nash social
welfare is Pareto-optimal, satisfies EF1 (Caragiannis et al.
2016) and in some cases even EFX (Amanatidis et al. 2020).
An important question is, thus, if we can efficiently compute
or approximate an allocation that maximizes NSW. This is
the question we study in this paper.

More formally, we consider an allocation problem with a
set N of n agents and a set G of m indivisible goods. Each
agent i ∈ N has a valuation function vi : 2G → Q≥0. We
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assume all functions to be non-negative, monotone, and nor-
malized to vi(∅) = 0. For convenience, we assume every vi
maps into the rational numbers. The goal is to find an alloca-
tion of the goods A = (A1, . . . , An) to maximize the Nash
social welfare, i.e., the geometric mean of the valuations

NSW(A) =

(
n∏
i=1

vi(Ai)

)1/n

.

Of particular interest are the instances admitting strictly pos-
itive NSW; clearly, in this case, an allocation that maxi-
mizes the NSW is Pareto-optimal. By maximizing the NSW,
we strike a balance between maximizing the utilitarian so-
cial welfare

∑
i vi(Ai) and the egalitarian social welfare

mini vi(Ai). Notably, optimality and approximation ratio
for NSW are invariant to scaling each valuation vi(Ai) by an
agent-specific parameter ci > 0. This is yet another property
that makes NSW an attractive objective function for alloca-
tion problems. It allows a further normalization – we can
assume every vi : 2G → N0 maps into the natural numbers.

Finding desirable approximation algorithms for maxi-
mizing the NSW has become an active field of research
only recently. For instances with additive valuations, where
vi(A) =

∑
j∈A vij for every i ∈ N , in a series of pa-

pers (Cole et al. 2017; Cole and Gkatzelis 2018; Anari
et al. 2017; Barman, Krishnamurthy, and Vaish 2018a) sev-
eral algorithms with constant approximation factors were
obtained. The currently best factor is e1/e ≈ 1.445 (Bar-
man, Krishnamurthy, and Vaish 2018a). The algorithm uses
prices and techniques inspired by competitive equilibria,
along with suitable rounding of valuations to guarantee poly-
nomial running time.

Even for identical additive valuations, (i.e., vij = vj for
all i ∈ N , j ∈ G,) the problem is NP-hard, and a greedy al-
gorithm with factor of 1.061 (Barman, Krishnamurthy, and
Vaish 2018b) as well as a PTAS (Nguyen and Rothe 2014)
were obtained. In terms of inapproximability, the best known
lower bound for additive valuations is

√
8/7 ≈ 1.069 (Garg,

Hoefer, and Mehlhorn 2018). Notably, this lower bound ap-
plies even in the case when the additive valuation is com-
posed of only three values with one of them being 0 (i.e.,
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vij ∈ {0, p, q} for all i ∈ N , j ∈ G, where p, q ∈ N). For
the case of two values with one 0 (i.e., vij ∈ {0, q} for all
i ∈ N , j ∈ G), an allocation maximizing the NSW can be
computed in polynomial time (Barman, Krishnamurthy, and
Vaish 2018b).

Contribution and Results. In this paper, we consider
computing allocations with (near-)optimal NSW when ev-
ery agent has a 2-value valuation. In such an instance, vij ∈
{p, q} for every i ∈ N and j ∈ G, where p, q ∈ N0.
Notably, in 2-value instances any optimal allocation satis-
fies EFX, which is not true when agents have 3 or more
values (Amanatidis et al. 2020). The case p = q is triv-
ial. An optimal allocation can be computed in polynomial
time when p = 0 < q (Barman, Krishnamurthy, and Vaish
2018b). Hence, we concentrate on the case 1 ≤ p < q. We
design a polynomial-time algorithm to find an optimal allo-
cation when p divides q, i.e., after appropriate scaling, when
p = 1 and q ∈ N. Even if p does not divide q, the algorithm
still guarantees an approximation factor of at most 1.0345.
This is significantly lower than the constant factors obtained
for general additive valuations (Cole et al. 2017; Cole and
Gkatzelis 2018; Barman, Krishnamurthy, and Vaish 2018a).
An approximation algorithm for 2-value instances with ap-
proximation factor 1.061 has been obtained in (Garg and
Murhekar 2021). The algorithm is based on ideas from com-
petitive equilibria. Our algorithm is a greedy procedure and
improves this guarantee.

Complementing these positive results, we also prove new
hardness results for 2-value instances. Maximizing the NSW
is NP-hard whenever p and q are coprime and p ≥ 3. Since
for p = 1 we have a polynomial-time algorithm, p = 2 re-
mains as an interesting open problem. Maximizing the NSW
in 2-value instances is APX-hard. Our reduction from Gap-
4D-Matching avoids the use of utilities vij = 0, which
poses a substantial technical challenge over the more di-
rect reduction for 3-value instances in (Garg, Hoefer, and
Mehlhorn 2018). Our lower bound on the approximation
factor is 1.000015 for p/q = 4/5. This answers an open
problem from (Amanatidis et al. 2020).

Due to space constraints, all the missing proof can be
found in the full version of the paper.

Related Work
Other than additive valuations, the design of approxima-
tion algorithms for maximizing NSW with submodular val-
uations has been subject to significant progress very re-
cently. While small constant approximation factors have
been obtained for special cases (Garg, Hoefer, and Mehlhorn
2018; Anari et al. 2018) (such as a factor e1/e for capped
additive-separable concave (Chaudhury et al. 2018) valua-
tions), (rather high) constants for the approximation of NSW
with Rado valuations (Garg, Husic, and Végh 2021) and also
general non-negative, monotone submodular valuations (Li
and Vondrák 2021) have been obtained.

Interestingly, for dichotomous submodular valuations
where the marginal valuation of every agent for every good j
has only one possible non-negative value (i.e., vi(S∪{j})−
v(S) ∈ {0, p} for p ∈ N), an allocation maximizing the

NSW can be computed in polynomial time (Babaioff, Ezra,
and Feige 2021). In particular, in this case one can find in
polynomial time an allocation that is Lorenz dominating,
and simultaneously minimizes the lexicographic vector of
valuations, and maximizes both utilitarian and Nash social
welfare. Moreover, this allocation also has favorable incen-
tive properties in terms of misreporting of agents.

More generally, approximation algorithms for maxi-
mizing NSW with subadditive valuations (Barman et al.
2020; Chaudhury, Garg, and Mehta 2021) and asymmetric
agents (Garg, Kulkarni, and Kulkarni 2020) have been ob-
tained, albeit so far not with constant approximation ratios.

Preliminaries
An instance I is given by the triple (N ,G, {vi}i∈N ) where
N is a set of n agents and G is a set of m indivisible goods.
Every agent i ∈ N has an additive valuation function with
vi(A) =

∑
j∈A vij for every A ⊆ G. Here vij represents

the value i assigns to the good j ∈ G. We assume that all
vij ≥ 0. In this paper, we study 2-value additive valuations,
in which vij ∈ {p, q} for p, q ∈ N0. To avoid trivialities,
we assume 0 < p < q. Note that for p = 0 we recover
the dichotomous case studied in (Barman, Krishnamurthy,
and Vaish 2018b; Babaioff, Ezra, and Feige 2021). We scale
down the valuation of every agent by q such that vij ∈ {v, 1}
where 0 < v = p/q < 1. Moreover, throughout the paper
we assume p and q are coprime.

An allocation A = (A1, . . . , An) is a partition of G
among the agents, where Ai ∩ Aj = ∅, for each i 6= j, and⋃
i∈N Ai = G. We evaluate an allocation using the Nash

social welfare NSW(A) =
(∏

i∈N vi(Ai)
) 1

n .
Notice that there might exist allocations with NSW = 0,

however, not all such allocations have to be considered
equal. In particular, among these allocations, the ones max-
imizing the number of agents with non-empty bundles are
more preferable. Hence, for same number agents with non-
empty bundles, the higher is NSW restricted on these agents
the better is the allocation. In this scenario, to do not over-
load our notation, while comparing two allocations with 0
NSW, we say one has better NSW than the other if satis-
fies the aforementioned conditions. Further, when m < n, it
is always possible to compute an optimal allocation in this
sense; hence, in the rest of this paper, we assume m ≥ n.

We represent every valuation by distinguishing between
big and small goods for agents. We use sets Bi = {j | vij =
1} and Si = G \Bi to denote the subsets of goods that agent
i considers as big and small, respectively. If not differently
specified, whenever we say agent i has a small (resp. big)
good it means that it is a small (resp. big) for i. Globally, we
useB =

⋃
iBi and S =

⋂
i Si = G\B for the sets of goods

that are big for at least one agent or small for all agents,
respectively. As such, an instance I with 2-value additive
valuations can be fully described by (N ,G, (Bi)i∈N , v).

Of particular interest will be non-wasteful allocations
(c.f. (Babaioff, Ezra, and Feige 2021)), in which we only
assign the goods from B and give them to agents that value
them as big goods. Formally, a non-wasteful allocationAb =
(Ab1, . . . , A

b
n) has Abi ⊆ Bi and

⋃
Abi = B.
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Comparing Optimal Allocations. In our analysis, we of-
ten compare optimal allocations for 2-value valuations to
optimal allocations for the same 2-value valuations with v
replaced by 0. Given a fair allocation instance I, we denote
by O∗ an optimal allocation and NSW(O∗) the NSW of an
optimal allocation. Similarly, for any I we consider a corre-
sponding dichotomous instance I(d) = (N , B, {v(d)i }i∈N )
obtained by setting v(d)ij = 0 for all i ∈ N , j ∈ Si. We useO
to denote an optimal allocation in the dichotomous instance
I(d). In particular, if we cannot assign a big good to every
agent in I(d), we assume O assigns a big good to as many
agents as possible, and it maximizes the NSW among this
set of agents. Note that we assume the goods in S that are
small for all agents are never assigned in O, and as such we
exclude them from consideration in I(d). Clearly, O will be
a non-wasteful allocation. In O∗, by Pareto-optimality, each
good must be assigned to an agent. However, for any agent
i, the set of big goods in Oi might not be a superset of the
set of big goods in O∗i .

We denote by bi = |Bi ∩ Oi| and by b∗i = |Bi ∩ O∗i |
the number of big goods agent i is receiving in O and O∗,
respectively. Also, b and b∗ are used to represent the vectors
of bi and b∗i , respectively.

Example 1. Let I be a fair allocation instance with n = 2
agents,m = 5 goods, and v = 2/3. All agents have identical
valuations. There are two big goods and three small goods.
Then only two optimal allocations exist (with NSW = 2) ob-
tained by assigning all big goods to one agent and all small
goods to the other. However, for v = 0, every optimal allo-
cation assigns each agent one big good.

In general, there is no simple direct connection between
O and O∗, not even between vectors b and b∗. Nonetheless,
it is possible to choose O∗ in such a way it is, to some
extent, the “closest” to a given O. Hence, in order to sim-
plify our proofs, we will assume thatN is numbered in non-
increasing order of bi’s and subject to that in non-increasing
order of b∗i ’s, i.e., for i, j ∈ N , if bi < bj , or bi = bj and
b∗i < b∗j , then j < i. There can be many optimal solutions
O∗. For a rigorous reasoning we pick O∗ based on a hierar-
chy of three criteria based on a fixed O: (1) O∗ maximizes
the NSW (i.e., it is optimal); among all these solutions it (2)
maximizes the overlap in big goods

∑
i∈N |Oi ∩O∗i | (i.e., it

is sum-closest to O); among all these solutions it (3) maxi-
mizes lexicographically (|Oi ∩ O∗i |)i∈N (i.e., it is sum-lex-
closest to O). Condition (3) is tied to the ordering of the
agents, for which the tie-breaking in turn depends on O∗.
Tie-breaking and lexicographic maximization allow a con-
sistent choice ofO∗, since both aim to maximize the number
of big goods in O∗ for agents with small index.

Given this choice of O∗, we capture the relation to O in a
structured way using the notion of a transformation graph.

Let A and A′ be two possible allocations. We denote
by GA→A′ the transformation graph from allocation A to
allocation A′. More formally, GA→A′ = (N , EA→A′) is
a directed multigraph, where N is the set of the vertices.
Each edge e = (i, j) ∈ EA→A′ corresponds to some good
k ∈ Ai ∩ A′j and vice versa. Observe that a transforma-

tion graph is well defined when the allocations A and A′

are partial allocations, i.e., not all the goods have been allo-
cated. We use the notation g(e) = k. Observe that GA′→A
can be obtained by simply reversing all the directed edges
in GA→A′ . A path in GA→A′ can be seen as a sequence of
goods (g(e1), g(e2), . . . , g(ek−1)) such that ej = (ij , ij+1)
and g(ej) ∈ Aij ∩ A′ij+1

for all j = 1, . . . , k − 1. We
say we trade (goods along) a path if we remove g(ej) from
Aij and add it in Aij+1

, for each j = 1, . . . , k − 1. More-
over, we say that a path is a balancing path if after trade
the utilities of the interior agents remain unchanged, i.e.,
vij (g(ej)) = vij (g(ej−1)), for each j = 2, . . . , k − 1. Ob-
serve that every edge in the transformation graph is a bal-
ancing path; moreover, every path contained in a balancing
path is a balancing path as well. In general, there exist four
types of balancing paths. A small-to-big or SB-balancing
path is a balancing path (g(e1), g(e2), . . . , g(ek−1)), where
g(e1) ∈ Si1 and g(ek−1) ∈ Bik . BS/SS/BB-balancing
paths are defined accordingly. Finally, we will briefly pay
attention to BB-balancing paths starting and ending at the
same agent – we term them balancing cycles (and omit the
prefix BB, since clear from context).

Preliminaries on O, O∗, and GO∗→O. Given the pair of
allocations O and O∗ with vectors b and b∗ for the num-
bers of big goods, the next lemmas reveal some interesting
structure of GO∗→O. Notice that by the properties of O and
O∗ described above, the graph GO∗→O neither has SS- nor
BS-balancing paths. Moreover, it has no balancing cycles,
since O∗ is optimal and sum-closest to O. We are particu-
larly interested in all agents, for which the number of big
goods assigned in O and O∗ differ. These agents are inher-
ently connected to each other in the transformation graph.
Lemma 1. For every agent i with b∗i > bi there is an agent
j with b∗j < bj such that in GO∗→O there is a BB-balancing
path from i to j.
Lemma 2. For every agent j with b∗j < bj there is an agent i

1. such that in GO∗→O there is an SB-balancing path from
i to j, or

2. with b∗i > bi such that in GO∗→O there is a BB-
balancing path from i to j.

An Optimal Algorithm when p Divides q
Consider algorithm TWOVALUEAPPROX. In phase 1, it
computes O, an optimal allocation in the corresponding di-
chotomous instance I(d). This can be done in polynomial
time (Barman, Krishnamurthy, and Vaish 2018b). Note that
after phase 1, there can be agents with empty bundles. Then
we assume O maximizes the number of agents receiving
at least one good. Moreover, restricting attention to the set
of agents with nonempty bundles, O maximizes the NSW
among them. It is easy to see that an allocation O with this
property is computed both by the algorithm for dichotomous
additive instances in (Barman, Krishnamurthy, and Vaish
2018b) and its generalization to dichotomous submodular
ones in (Babaioff, Ezra, and Feige 2021).

For phases 2 and 3, the algorithm calls procedure BAL-
ANCE. In phase 2, if there exist unassigned goods (i.e., goods

4762



Algorithm 1: Algorithm TWOVALUEAPPROX

Input: A fair allocation instance
I = (N ,G, (Bi)i∈N , v)

Output: An allocation A = (A1, . . . , An)
/* Phase 1: Find optimal allocation

for dichotomous instance */
1 Compute an optimal allocation O = (O1, . . . , On)

for I(d) for goods in B
/* Phases 2 and 3 */

2 A← BALANCE(I, O)
3 return A

Algorithm 2: Algorithm BALANCE

Input: A fair allocation instance
I = (N ,G, (Bi)i∈N , v) and a non-wasteful
allocation Ab = (Ab1, . . . , A

b
n) (i.e. with

Abi ⊆ Bi and
⋃
Abi = B)

Output: An allocation A = (A1, . . . , An) of all
goods in G

/* Phase 2: Adding only-small
valued goods */

1 Let Ai = Abi for all i ∈ N ;
2 while there exists g ∈ S do
3 i = argminj vj(Aj)
4 Ai ← Ai ∪ {g} and S ← S \ {g}
/* Phase 3: Local search */

5 i1 = argmaxj vj(Aj) and i2 = argminj vj(Aj)
6 while moving a good g ∈ Ai1 to Ai2 strictly

increases NSW(A) do
7 Ai1 ← Ai1 \ {g} and Ai2 ← Ai2 ∪ {g}
8 i1 = argmaxj vj(Aj) and i2 = argminj vj(Aj)

9 return A

that are small for all agents), they get assigned sequentially
to an agent with the currently smallest valuation.

Finally, in phase 3, big goods received by the agents may
be reallocated and turned into small ones. In particular, we
greedily move a big good from the agent with the highest
valuation to an agent with the smallest valuation if and only
if this move increases the NSW. Observe that if the current
allocation has NSW = 0, moving one good to an empty
bundle is considered profitable for the NSW as long as the
number of agents with non-empty bundle increases.

Running Time. To bound the running time, we start by
proving a lemma about properties of phases 2 and 3 of the
algorithm. We denote by it1 and it2 the agents i1 and i2 in
round t of phase 3.

Lemma 3. The following properties hold during the execu-
tion of BALANCE(I, O):

• Every agent i with small goods has a valuation of at most
vi(Ai) ≤ minj∈N vj(Aj) + v.
• If a move in round t of phase 3 strictly increases the NSW,

then (1) it1 only has big goods, (2) we never moved a good

away from agent it2 during earlier rounds 1, . . . , t− 1 of
phase 3, and (3) none of the goods g ∈ Ait1 is big for it2.

Algorithm TWOVALUEAPPROX runs in polynomial time:
Phase 1 runs in polynomial time (Barman, Krishna-
murthy, and Vaish 2018b), and Lemma 3 shows that BAL-
ANCE(I, O) (re-)allocates each good at most once.

Optimality. Let us now focus on the Nash social welfare
of the final allocation. We show that the algorithm computes
an optimal allocation when p divides q, i.e., when p = 1
and q ∈ N (after scaling valuations). In this case, an integer
number of small goods are exactly as valuable as a big one.
This fact will be key to show the main result in this section.
Theorem 1. If p = 1 and q ∈ N, then TWOVALUEAPPROX
computes an optimal allocation in polynomial time.

Proposition 1 is the first step toward proving the theo-
rem. It implies that BALANCE(I, O) maintains an optimal
assignment for a fixed number of big goods assigned to
each of the agents. Towards this end, consider a partial big-
allocation AP such that APi ⊆ Bi for all i ∈ N , i.e., in AP

all agents only receive big goods. Since AP is partial, there
might be unassigned goods GU = G \

⋃
iA

P
i . Now consider

a small-extension A of AP obtained by assigning each good
g ∈ GU to some agent i with g ∈ Si. Note that if a good
g ∈ GU is big for all agents, then AP does not have any
small-extension. We use the notation si = |Ai ∩ Si|.
Proposition 1. If for all pairs i, j that satisfy vi(Ai) + v <
vj(Aj) we have sj = 0, then A is a small-extension of AP
with maximum NSW.

Proof. Assume by contradiction thatA is not the best small-
extension of AP . Let A∗ be a small-extension of AP with
largest NSW that is sum-lex-closest to A (i.e., maximizes∑
i∈N |Ai ∩ A∗i |). We define s∗i = |A∗i ∩ Si|. If A is not

optimal, then there exists i ∈ N such that si < s∗i . Thus,
there must be an SS-balancing path in GA∗→A from i to j
with s∗j < sj . Observe that sj > 0. Hence, there exists a way
to trade along the path without changing the valuation of
interior agents. Since A∗ is an optimal small-extension that
is sum-lex-closest to A, this must be strictly profitable, so
vi(A

∗
i )·vj(A∗j ) > (vi(A

∗
i )− v)·

(
vj(A

∗
j ) + v

)
. Then, since

v > 0, this is equivalent to vj(A∗j )+v > vi(A
∗
i ). SinceAi∩

Bi = A∗i ∩Bi = APi andAj∩Bj = A∗j ∩Bj = APj , we see
that vj(A∗j ) ≤ vj(Aj)−v and vi(A∗i ) ≥ vi(Ai)+v. Putting
it all together we get vj(Aj) ≥ v∗j (A

∗
j ) + v > vi(A

∗
i ) ≥

vi(Ai)+ v. However, we have sj > 0, a contradiction to the
assumption of A in the lemma.

We observed in Lemma 3 that throughout BAL-
ANCE(I, O), all agents receiving small goods differ in val-
uation by at most v. This implies that when vi(Ai) + v <
vj(Aj) at any point during the algorithm, then sj = 0, i.e.,
j has no small goods.

For the next proposition, we assume BALANCE(I, ·) is
applied to a particular form of non-wasteful allocation,
which will eventually result in an optimal allocation. Recall
that numbers bi and b∗i refer to the number of big goods that
agent i receives in allocations O and O∗, respectively, and
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that agents are numbered in non-increasing order of their
valuation in O and then in O∗, i.e., if i ≤ j, then (bi > bj)
or (bi = bj and b∗i ≥ b∗j ).

Definition 1. An allocation Õ is said to be well-structured
if it is non-wasteful and there is some value 0 ≤ K ≤ n s.t.

• b̃ = (b1, . . . , bK , b
∗
K+1, . . . , b

∗
n),

• for each i ≤ K either bi > b∗i , or bi = b∗i and there is
j ≤ K with bj > b∗j and b∗j < b∗i ,
• for each i ≤ K and j > K, b∗i ≥ b∗j .

Proposition 2. Let Õ be any well-structured allocation.
Then BALANCE(I, Õ) computes an optimal allocation.

Proof. We denote by m′ =
∑K
i=1 bi −

∑K
i=1 b

∗
i the number

of goods from B assigned as small in O∗.
We start with some structural observations. Suppose we

remove an arbitrary set G of m′ goods from
⋃
i≤K Õi in

such a way that the numbers of the remaining big goods for
agents i ≤ K are a permutation of (b∗1, . . . , b

∗
K). We then

assign the goods in S ∪ G sequentially to an agent with the
currently lowest valuation. Moreover, let us pretend for the
moment that the goods in S ∪G are small for all the agents,
that means, we increase the valuation of the agents receiv-
ing them by v. By Proposition 1, this will lead to an optimal
small-extension and, since we start from a partial allocation
inducing a permutation of (b∗1, . . . , b

∗
K), this must be an allo-

cation with maximum NSW. This has several implications:

1. The goods in this process are indeed small for any agent
receiving it. Otherwise, the allocation could be Pareto-
improved, contradicting the optimality of O∗.

2. All small goods in O∗ are allocated to agents i with
i > K. For contradiction, suppose agent i ≤ K receives
a small good. As the small goods were allocated in turn
to an agent with minimum valuation, we can assume that
i has mink≤K b

∗
k big goods. Thus imust have given some

big good away. Then exchanging this good with the small
one Pareto-improves the allocation, contradicting the op-
timality of the allocation.

We now show that BALANCE indeed removes a set G of
m′ goods as described above.

If m′ = 0, the statement is trivial and the proposition fol-
lows. We denote by Õt the allocation after the t-th round in
BALANCE (counting both phases 2 and 3) and b̃t the vec-
tor of big goods. We will show inductively that (1) in ev-
ery round the number of big goods remain “above” O∗, i.e.,
there is a permutation σ of {1, . . . ,K} such that b∗σ(i) ≤ b̃ti
for all i ≤ K; and (2) in phase 3 the agent with highest val-
uation is an i ≤ K. As the base case, consider t = 0 before
the start of phase 2. Clearly, (1) and (2) hold by assumption.

Suppose both properties hold until the end of some round
t < m′ + |S|−1. Consider round t+ 1. By hypothesis there
is a permutation σ such that b∗σ(i) ≤ b̃ti for all i ≤ K and∑
i∈N b̃

t
i >

∑
i∈N b

∗
i . This implies that Õt is sum-closer

to O than O∗, hence cannot be optimal. Moreover, there is
i < K such that b̃ti > b∗σ(i). If for all j ≤ K we remove

b̃tj − b∗σ(j) goods and assign them iteratively to the least-
valuation agents k > K, the NSW becomes optimal and
thus strictly improves. This implies that after round t there is
a move improving the NSW, so BALANCE will not terminate
since it would execute another round of phase 3.

Now consider i as the highest-valuation agent at the end
of round t. By (2) this is an agent i ≤ K.

Suppose round t + 1 is in phase 2. Then σ still fits, and
(1) holds after round t + 1. Suppose (2) does not hold, i.e.,
after round t+1 an agent j > K has highest valuation. This
agent must have received the small good in round t+1, so the
valuations of all agents differ by at most v. Hence, phase 3
would not start if phase 2 ended after round t+ 1. However,
since there is at least one agent k ≤ K with b∗σ(k) < b̃tk,
we proved above phase 3 would start after round t + 1, a
contradiction.

Now suppose round t+1 is in phase 3. If b∗σ(i) < b̃ti, then

σ still fits, so let us assume that b∗σ(i) = b̃ti. If there is j ≤ K
such that b̃tj = b̃ti and b∗σ(j) < b̃tj , then (i, j) ◦ σ works.

Let us assume that all agents with maximum valuation in Õt

have as many goods as in O∗. We have b̃t+1
i < b∗σ(i) and∑

j≤K b
∗
j ≤

∑
j≤K b̃

t+1
j (because t + 1 ≤ m′), so there is

j ≤ K such that b∗σ(j) < b̃t+1
j . Since j cannot have maxi-

mum valuation in Õt, so b̃t+1
j ≤ b̃t+1

i . Consider the alloca-
tion where every k ≤ K gives away max(0, b̃t+1

k − b∗σ(k))
goods, except j that gives b̃t+1

j − b∗σ(j) − 1 goods. This al-
location differs in valuation profile from O∗ only by agents
i and j (up to a permutation) and we have b∗σ(j) < b̃t+1

j ≤
b̃t+1
i ≤ b∗σ(i), so this new allocation has higher NSW than
O∗, a contradiction to the optimality of O∗. This proves that
(1) holds after round t+ 1.

Suppose (2) does not hold, i.e., there is an agent j > K
with highest valuation. This agent must have a small good,
since b∗i ≥ b∗j for all i ≤ K, j > K. Hence, at the end of
round t + 1, the valuations of all agents differ by at most
v, and there is no improving move left for round t + 2. If
t + 1 < m′ + |S| we have an agent k ≤ K with b∗σ(k) <

b̃tk, and BALANCE will execute another round in phase 3, a
contradiction.

Note that the good moved in round t+1 must be given to
an agent j > K – even if we expanded the set of goods
removed from agents 1, . . . ,K from the ones in rounds
1, . . . , t+ 1 to a set G of goods considered above, all goods
would be given only to agents j > K.

Finally, we consider the case t = m′ + |S|−1. Then af-
ter round t + 1, we obtain a permutation σ of {1, . . . ,K}
such that b∗σ(i) ≤ b̃m

′

i for all i ≤ K. We also have∑
i≤K b̃

m′+|S|
i =

∑
i≤K bi − m′ =

∑
i≤K b

∗
i . Hence,

b̃
m′+|S|
i = b∗i for all i ≤ K. Thus, the set of removed goods

is a setG considered above, and as such the resulting alloca-
tion Õm

′−|S| is optimal. As a consequence, BALANCE stops
after this iteration and returns an optimal allocation.
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The proposition shows that if the allocation computed in
phase 1 has suitable properties, then the allocation computed
by BALANCE is an optimal one. We now further compare O
and O∗ to better understand why the hypothesis of Proposi-
tion 2 is not always satisfied by O and which conditions on
v = p/q are sufficient for it.

In O the big goods are as evenly balanced as possible.
When v 6= 0, an optimal allocation O∗ might require to
make the big goods more unbalanced. In the next propo-
sition, we examine the details of this observation. In case
1
v ∈ N, we observe that Proposition 2 holds, and thus Al-
gorithm 1 computes an optimal allocation. Recall that we
assume agents to be numbered in non-increasing order of bi.
The following proposition holds even when O∗ is optimal
and sum-closest to O (but not necessarily sum-lex-closest).

Proposition 3. SupposeO∗ is optimal and sum-closest toO
and there is an agent i such that bi < b∗i . Consider an agent
j such that b∗j < bj and there is a BB-balancing path in
GO∗→O from i to j. Then vi(O∗i )− 1+ v · b 1v c < vj(O

∗
j ) <

vi(O
∗
i )− 1 + v · d 1v e, bj ≤ bi + 1, and bj ≤ b∗i .

Proof. For k ∈ N , we denote by s∗k = |O∗k∩Sk| the number
of goods of k that are small to k.

As O∗ is optimal, trading along a BB-balancing path in
GO∗→O from i to j cannot increase the NSW, i.e. vi(O∗i ) ·
vj(O

∗
j ) ≥ (vi(O

∗
i )−1) ·(vj(O∗j )+1) and, hence, vi(O∗i ) ≤

vj(O
∗
j ) + 1, leading to the optimality condition b∗i + vs∗i ≤

b∗j + vs∗j + 1. Besides, if j has a good that is big to i, then
either there is a balancing cycle, which contradicts the fact
that O∗ is closest to O, or the good is small for j and trading
along the cycle gives a new allocation that Pareto-dominates
O∗. So none of the goods of j is considered big by i.

We first show that bj ≤ bi + 1. Suppose for contradiction
that this is not the case. Then by reversing the path between
i and j and trading goods, we see that O is not optimal in
the dichotomous instance.

Next we show b∗i − b∗j ≥ 2 and bj ≤ b∗i . If bj ≤ bi, then
b∗j < bj ≤ bi < b∗i and since these numbers are integers we
obtain b∗i − b∗j ≥ 2, as well as bj ≤ b∗i . Thus, we are left
with the case bj = bi+1. We have b∗j ≤ bi and bj ≤ b∗i , and
thus the following inequalities: b∗j ≤ bi = bj − 1 ≤ b∗i − 1.
If one of the inequalities is strict, then we obtain b∗j ≤ b∗i −2
and bj ≤ b∗i . Otherwise, b∗j = bi and bj = b∗i . Then the
optimality condition gives s∗i ≤ s∗j . Now we trade along the
path. Thereby we assign a big good to j. In exchange, agent
i receives s∗j − s∗i many small goods from j’s bundle. This
exchanges vi(O∗i ) and vj(O∗j ), and thus does not impact the
NSW. This contradicts the fact that O∗ is closest to O.

Having shown that b∗i−b∗j ≥ 2, we see with the optimality
condition that s∗j − s∗i ≥ 1

v . We prove by contradiction that
the relation between vj(O∗j ) and vi(O∗i ) holds.

Assume vj(O∗j ) ≤ vi(O∗i )− 1 + vb 1v c. Then
vi(O

∗
i )·vj(O∗j ) ≤ (vi(O

∗
i )−1+vb 1v c)(vj(O

∗
j )+1−vb 1v c),

which means that trading along the path from i to j and
transferring b 1v c small goods from O∗j to Oi does not de-
crease the NSW of the allocation. This is impossible because
O∗ was taken as close to O as possible.

Now, if vj(O∗j ) ≥ vi(O∗i )− 1 + v · d 1v e, then
vi(O

∗
i ) ·vj(O∗j ) ≤ (vi(O

∗
i )−1+vd 1v e)(vj(O

∗
j )+1−vd 1v e)

and same reasoning applies by using d 1v e small goods.

We can now prove Theorem 1.

Proof of Theorem 1. We show that BALANCE(I, O) is an
optimal allocation. To this aim we show that O satisfies the
assumptions of Proposition 2.

We first observe that if 1
v ∈ N, then there exists no agent

i such that bi < b∗i . Otherwise, by Lemma 1 and Proposi-
tion 3, vi(O∗i )−1+v ·b 1v c < vj(O

∗
j ) < vi(O

∗
i )−1+v ·d 1v e

for some j. Since, 1
v ∈ N, we have b 1v c = d

1
v e =

1
v implying

vi(O
∗
i ) < vj(O

∗
j ) + 1 − v · b 1v c < vi(O

∗
i ) which is impos-

sible. Thus, for each i ∈ N , bi ≥ b∗i . Moreover, the entries
of b are sorted in non-increasing order. By selecting K as
the maximum index i ∈ {0, . . . , n} for which bi > b∗i , we
see that O is well-structured. Therefore, by Proposition 2,
BALANCE(I, O) returns an optimal allocation.

Approximation
In this section we study the case 1

v 6∈ N and prove a small
approximation ratio for our algorithm. The idea is to com-
pare the behavior of BALANCE(I, O) to BALANCE(I, Õ)

for a suitably chosen allocation Õ such that the final alloca-
tion of the latter procedure is optimal. In the following, we
discuss a high-level description of the arguments.

We transform O∗ into an allocation Õ by moving each
good fromB that is assigned as small inO∗ to the agent that
owns it in O and removing all goods of S from the agents’
bundles. The obtained allocation Õ has the corresponding
vector of big goods b̃ such that for each i ∈ N either b̃i =
bi or b̃i = b∗i . In particular, the vector b̃ can be written as
(b1, . . . , bK , b

∗
K+1, . . . , b

∗
n), for some index 0 ≤ K ≤ n.

We set K to the largest index such that ∀i ≤ K we have
b̃i = bi > b∗i , or bi = b∗i and there is j ≤ K such that
b̃j = bj > b∗j and b∗j < b∗i . If there is no such index, we
simply set K = 0. Intuitively, we choose K as the largest
index such that Õ qualifies as a well-structured allocation in
the sense of Definition 1. Hence, by Proposition 2, we have
that BALANCE(I, Õ) returns an optimal allocation.

Suppose we run BALANCE(I, Õ). Let Õt denote the al-
location after t time steps, and let T̃ be the last step before
BALANCE(I, Õ) terminates. By the choice of Õ, the allo-
cation ÕT̃ is an optimal allocation (possibly different from
O∗). BALANCE moves big goods from agents i ≤ K and as-
signs them as small to agents j > K as long as it is strictly
profitable for the NSW. Hence, for every agent j > K the
number of big goods stays the same during the procedure. In
ÕT̃ , every agent j > K has b∗j big goods, while, for agents
i ≤ K, the numbers of big goods can be different from b∗i .

To show the approximation factor of our algorithm, we
relate ÕT̃ to the output of our algorithm, i.e., the output
of BALANCE(I, Õ) to the one of BALANCE(I, O). For this
purpose, we track the allocations in BALANCE(I, Õ) and si-
multaneously apply them onO. LetOt denote the allocation
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after t time steps. We couple the changes to big goods in Õt
and Ot in the following way:
1. In a step t of phase 2, a globally small good from S is

added to both Ot and Õt. It is given to an agent with the
current smallest valuation in the respective allocation.

2. In a step t of phase 3, in which a big good is removed
from the bundle of agent i ≤ K in Õt, we also remove
one big good from i’s bundle in Ot. The good is given
to an agent with the current smallest valuation in the re-
spective allocation.

Note that we couple the removal of the big good, but as small
it gets assigned to potentially different agents in Ot and Õt.

Let T be the final step of BALANCE(I, O). Observe that
in every step t ≤ T , we can assume that the coupled pro-
cess on O behaves exactly like BALANCE(I, O). However,
it might be that T̃ 6= T . Then, if T̃ > T , the coupled process
forces BALANCE(I, O) to continue turning big goods into
small ones although this is not profitable for the NSW.

We also observe that, if i is the agent with current lowest
valuation in OT̃ , then she will receive a small good. More
generally, we show that for any t < T̃ :
1. no agent i ≤ K has a minimum valuation in Ot,
2. no agent j > K receives big goods,
3. no agent i > K has a maximum valuation in Ot .

These properties also lead to the following result.

Lemma 4. NSW(OT̃ ) ≤ NSW(OT ).
As a consequence, we can upper-bound the approxima-

tion factor of our algorithm by NSW(ÕT̃ )/NSW(OT̃ ).
Finally, to bound the approximation factor of Algorithm

1, we show that we can partition the agents into two groups.
In one group, the agents have the same valuation in OT̃ and
ÕT̃ . In the other, the following properties are satisfied: 1)
the utilitarian social welfare and, in particular, the number
of goods assigned as big/small is the same 2) in OT̃ valua-
tions of any pair of agents differ by at most v. The properties
suffice to prove the main result of this section.
Theorem 2. Algorithm 1 has an approximation factor of at
most 24

29 exp
(
110
493

)
< 1.0345.

Observe that Example 1 provides a lower bound to Al-
gorithm 1 of ≈ 1.01418. It is an interesting open problem
whether the approximation of Algorithm 1 can be tight.

NP-Hardness when p ≥ 3
In this section we almost complement our positive results on
polynomial-time NSW optimization. In particular, we show:
Theorem 3. No polynomial-time algorithm computes an al-
location with optimal NSW for 2-value instances, for any
coprime integers q > p ≥ 3, unless P=NP.

We provide a reduction from Exact-p-Dimensional-
Matching (Ex-p-DM): Given a graph G consisting of p dis-
joint vertex sets V1, . . . , Vp, each of size n, and a set E ⊆
V1 × . . . × Vp of m edges, it is NP-hard to decide whether
there exists a p-dimensional perfect matching in G or not.

Note that for p = 3 the problem is Ex-3-DM and thus NP-
hard. NP-hardness for p > 3 follows by simply copying the
third set of vertices in the Ex-3-DM instance p − 3 times,
thereby also extending the edges to the new vertex sets.

Reduction: There is one good for each vertex of G, call
them vertex goods. Additionally, there are q(m−n) dummy
goods. For each edge ofG, there is one agent who values the
p incident vertex goods 1 and all other goods p/q.

Lemma 5. If G has a perfect matching, then there is an
allocation A of goods with NSW(A) = p.

Proof. Suppose there exists a perfect matching in G. We al-
locate the goods as follows: Give each agent corresponding
to a matching edge all p incident vertex goods. Now there
are m − n agents left. Give each of them q dummy goods.
As each agent has valuation p, the NSW is p as well.

Lemma 6. If G has no perfect matching, then for every al-
location A of goods, NSW(A) < p.

Proof. Suppose there is an allocationA = (A1, . . . , Am) of
goods with NSW(A) ≥ p. We show that in this case there
must be a perfect matching in G. First, observe that if we
allocate each good to an agent with maximal value for it,
we obtain an upper bound on the average utilitarian social
welfare ofA, i.e. 1

m

∑
i vi(Ai) ≤

1
m (pn+q(m−n)· pq ) = p.

Applying the AM-GM inequality gives us also NSW(A) =
(
∏
i vi(Ai))

1/m ≤ p, and, in particular, NSW(A) = p iff
vi(Ai) = p for all agents i. Hence each agents valuation
must be p inA and each vertex good must be allocated to an
incident agent. The next claim allows to conclude that there
are only two types of agents in A:

Claim. If an agent i has valuation vi(Ai) = p, then she
either gets her p incident vertex goods or q other goods.

We show that (p, 0) and (0, q) are the only integral so-
lutions (i, j) of the equation p = i + j pq , where i, j ≥ 0.
Clearly, every solution different from the above must satisfy
0 < i < p. Assume for contradiction that there exists such a
solution. Then it must hold (p− i)q = jp. Since p and q are
coprime, p− i must be a multiple of p and thus i ∈ {0, p}, a
contradiction. This concludes the proof of the claim.

Let b be the number of agents receiving their p incident
vertex goods inA, andm−b the number of agents receiving
q other goods. Since each vertex good must be allocated to
an incident agent, bp = np and thus b = n. Hence there
must be n agents receiving their p incident vertex goods,
which implies that there is a perfect matching in G.

Lemma 5 and Lemma 6 yield the proof of Theorem 3.
Using a similar reduction (with slightly different number

of dummy goods), we provide a gap-preserving reduction
from Gap-4D-Matching with almost perfect completeness
to get the following APX-hardness result.

Theorem 4. No polynomial-time algorithm approximates
the maximum NSW for 2-value instances to within a factor
better than 1.000015, unless P=NP.
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