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Abstract

We model the societal task of redistricting political districts
as a partitioning problem: Given a set of n points in the plane,
each belonging to one of two parties, and a parameter k, our
goal is to compute a partition Π of the plane into regions so
that each region contains roughly σ = n/k points. Π should
satisfy a notion of “local” fairness, which is related to the
notion of core, a well-studied concept in cooperative game
theory. A region is associated with the majority party in that
region, and a point is unhappy in Π if it belongs to the minority
party. A group D of roughly σ contiguous points is called a
deviating group with respect to Π if majority of points in D
are unhappy in Π. The partition Π is locally fair if there is no
deviating group with respect to Π.
This paper focuses on a restricted case when points lie in
1D. The problem is non-trivial even in this case. We consider
both adversarial and “beyond worst-case” settings for this
problem. For the former, we characterize the input parameters
for which a locally fair partition always exists; we also show
that a locally fair partition may not exist for certain parameters.
We then consider input models where there are “runs” of red
and blue points. For such clustered inputs, we show that a
locally fair partition may not exist for certain values of σ, but
an approximate locally fair partition exists if we allow some
regions to have smaller sizes. We finally present a polynomial-
time algorithm for computing a locally fair partition if one
exists.

Introduction
Redistricting is a common societal decision making problem.
In its basic form, there are two parties, say red and blue, and
a parliament with some k representatives. Each individual
(or voter) in the geographic region is aligned with one of the
two parties. The goal is to divide the region into k parts –
called districts – so that each part elects one representative to
the parliament. It is typically assumed that each district does
majority voting, so that if a district has more red voters than
blue voters, then the chosen representative will be red.

The societal question then is how should these districts
be drawn? One natural constraint is that the district is a con-
nected region and, more preferably, has a compact shape.
Another consideration is that each district is population bal-
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anced, i.e., has roughly the same number of individuals.1
A final consideration, and one that will be the focus of this
paper, is fairness. If society has a large fraction of blue voters,
the districts should not be drawn so that most representatives
end up being red.

In this paper, we consider a local and strong notion of fair-
ness. Let us say that a voter is unhappy if she is in a majority
blue (resp. red) district, but her party is red (resp. blue). We
say that a given set of districts is locally fair if no subset of
unhappy voters of the same party can deviate and form a fea-
sible district (nicely shaped and balanced) so that they are the
majority in that district. In other words, these deviating voters
have a justified complaint – there was a different hypothetical
district where they could have been happy. This notion is
akin to that of the core from cooperative game theory (Scarf
1967). As such, if a partition is locally fair, then it is as fair
as possible to the relevant parties – there are no groups could
potentially form a region and do better.

There are examples in which a group of voters have argued
they have a justified complaint regarding the redistricting. In
the 2012 election in North Carolina, 13 House seats were
allocated, 4 to Democrats and 9 to Republicans. In contrast,
the percentage of voters who voted for a Democrat candidate
was 50.60%. The U.S. Court of Appeals ruled that two of
the districts’ boundaries in this map were unconstitutional
due to gerrymandering and required new maps to be drawn.
Considering this map, it is clear there exist compact potential
districts which could be considered a deviating group with
respect to the districting. This case (Cooper v. Harris (2017))
is just one in a long line of judgements on the fairness of
districting plans in the U.S.2 The exhibition of deviating
groups may help a political group or group of voters justify
their complaint that a redistricting is unfair, and it may be
effectively used in auditing proposed plans.

In contrast, some input instances may exhibit “natural
gerrymandering”, when the distribution of the population
prevents redistricting plans from being representative to all
groups (Borodin et al. 2018). For example, if the minority
party had 40% of the vote in total but the voters are uni-

1US courts have ruled that districts be population balanced,
compact, and contiguous; see, e.g., https://en.wikisource.org/wiki/
Reynolds v. Sims.

2See also, Benisek v. Lamone (2018), Gill v. Whitford (2018),
Rucho v. Common Cause (2019), etc.
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formly distributed, it is unlikely that any deviating groups
with a justified complaint would exist. In this case, one could
argue no reasonable redistricting could ensure the minority
group elects its fair share of the representatives. Thus, the
notion of local fairness introduced in the paper allows us to
distinguish between natural and artificial gerrymandering. In
contrast, when a redistricting plan is not globally fair (pro-
portionally representative), it is not clear whether any group
has a justified complaint regarding the redistricting, or if it is
an unavoidable consequence of the geometry of the map.

Our Results
In this paper, we study the existence and computation of a
locally fair partition in the one-dimensional case, where we
assume the n voters lie on a line or a circle. A feasible district
or region is now an interval containing σ = n/k voters. The
“niceness” aspect is captured by the region being an interval,
and the “balance” aspect is captured by the number of points
in each interval being n/k. Even in this setting, we show that
locally fair partitioning is surprisingly non-trivial, and leads
to a rich space of algorithmic questions.

Relaxed local fairness notions. In the 1D case, regulating
each interval to be containing exactly σ voters is extremely
restrictive, and it is relatively easy to show that even a bal-
anced (not necessarily fair) partition need not exist. We will
therefore allow ourselves to relax the interval size. We param-
eterize this by ε, so that the number of voters in any allow-
able interval lies in [(1− ε)σ, (1 + ε)σ]. This also relaxes
the number of intervals to be some number in [ k

1+ε ,
k

1−ε ].3

Further, we also relax the notion of deviation, so that if a
subset of voters deviate, they need to become “really happy”
– they need to be a strict majority in the interval to which
they deviate. We call this parameter β ∈ [1/2, 1], so that
unhappy points only deviate to a new allowable interval if
their population size is at least βσ. If a fair partition exists
under such relaxations, we term it (ε, β)-fair.

Under these relaxations, our first set of results in Section
characterizes the (ε, β) values for which a fair partition exists,
and those where it may not. For ε ≤ 1/5, we show a sharp
threshold at β = 1− ε: When β < 1− ε, for large enough
values of n, there is an instance with no (ε, β)-fair partition,
while when β ≥ 1−ε, the simple strategy of creating uniform
intervals is (ε, β)-fair. If we restrict points to deviate only
when the interval they create has exactly σ points, this sharp
threshold holds for all ε ≤ 1/3. To interpret this result, when
ε = 1/3, this means there is a fair partition where all intervals
have size in the range

[
2
3σ,

4
3σ
]
, and no subset of unhappy

points can create an interval with σ points, where they form
2/3-majority. Furthermore, there is an instance where the
bound of 2/3 on the majority cannot be reduced any further.

Beyond worst-case. The negative results above are adver-
sarial: they need careful constructions of sequences of runs of
red and blue points with precise lengths, so that any partition-
ing scheme that needs intervals of certain size to eventually

3Many of our results extend to the setting in which the number
of intervals must be exactly k.

straddle both red and blue points in a way that allows a de-
viating interval to take shape. However, this is an artifact
of the intervals needing almost precise balance, i.e., their
lengths being approximately σ. The next question we ask is:
suppose we are allowed to place a small fraction α of points
in intervals whose sizes can be smaller than (1 − ε)σ. In
particular, we could construct intervals for these points so
that they are all happy, preventing them from deviating; or
we could think of it as eliminating these points. Then is it
possible to circumvent these lower bounds?

In Section , we show that the above is indeed the case when
the input sequences are reasonably benign. By “benign”, we
mean that the input is clustered, i.e., composed of runs of red
and blue points of arbitrary lengths, as long as these lengths
are lower bounded by some value `. This models phenom-
ena like Schelling segregation (Schelling 1971; Zhang 2011;
Immorlica et al. 2017), where individuals have a slight pref-
erence for like-minded neighbors and relocate to meet this
constraint, which leads to “runs” of like-minded individuals.

For such input sequences, we show that as long as all runs
are of length at least ` = 2σ, once we allow a small fraction
α = O( 1

k ) of the points to be placed in unbalanced regions,
there is a locally fair partition even for the strictest setting
(ε, β) = (0, 1/2): the remaining points are placed in intervals
of size exactly σ, and no deviating interval of size σ has a
simple majority of unhappy points.

Efficient partitioning. In Section , we finally study the
algorithmic question: given parameters (ε, β), decide whether
a given input of length n admits a (ε, β)-fair partition. Note
that the results so far have been worst-case existential re-
sults, and it is possible that even when β < 1 − ε, many
inputs would have an (ε, β)-fair partition. The challenge in
designing an algorithm is that a deviating interval could in-
volve points from more than one interval in the partition. We
resolve this via a dynamic programming algorithm whose
running time is polynomial in n for any ε ∈ [0, 1/2].

Due to length constraints of the paper, many proofs and
discussion can be found in the full version (Agarwal et al.
2021).

Related Work
Fairness notions. Proportionality is a classic approach to
achieving fairness in social choice. In a proportional solution,
different demographic slices of voters feel they have been
represented fairly. This general idea dates back more than
a century (Droop 1881), and has recently received signifi-
cant attention (Chamberlin and Courant 1983; Monroe 1995;
Brams, Kilgour, and Sanver 2007; Aziz et al. 2017; Sánchez-
Fernández et al. 2017; Aziz et al. 2018). In fact, there are
several elections, both at a group level and a national level,
that attempt to find committees (or parliaments) that provide
approximately proportional representation.

The notion of core from cooperative game theory (Scarf
1967) represents the ultimate form of proportionality: every
demographic slice of voters feel that they have been fairly
represented and do not have incentive to deviate and choose
their own solution which gives all of them higher utility. In the
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typical setting where these demographic slices are not known
upfront, the notion of core attempts to be fair to all subsets
of voters. Though the core has been traditionally considered
in the context of resource allocation problems (Lindahl 1958;
Gale and Shapley 1962; Foley 1970; Shapley and Scarf 1974),
one of our main contributions is to adapt this notion in a non-
trivial way to the redistricting problem.

Redistricting vs. clustering. The redistricting problem is
closely related to the clustering problem. In a line of recent
work, various models of fairness have been proposed for
center-based clustering. One popular approach to fairness en-
sures that each cluster contains groups in (roughly) the same
proportion in which they exist in the population (Chierichetti
et al. 2017; Zafar et al. 2017). The redistricting problem we
consider may take the opposite view – we effectively want
the regions or clusters to be as close to monochromatic as
possible to minimize the number of unhappy points in each
region.

Chen et al. studied a variant of fair clustering problem
where any large enough group of points with respect to the
number of clusters are entitled to their own cluster center, if
it is closer in distance to all of them (Chen et al. 2019). This
extends the notion of the core in a natural way to clustering.
However, this work defines happiness of a point in terms of
its distance, while in the redistricting problem, the happiness
is in terms of the color of the majority within that region. The
latter leads to fundamentally different algorithmic questions.

Redistricting Algorithms. There has been extensive work
on redistricting algorithms, going back to 1960s (Hess et al.
1965), for constructing contiguous, compact, and balanced
districts. Many different approaches, including integer pro-
gramming (Goderbauer 2014), simulated annealing (Altman
and McDonald 2010), evolutionary algorithms (Liu, Cho,
and Wang 2016), Voronoi diagram based methods (Svec,
Burden, and Dilley 2007; Cohen-Addad, Klein, and Young
2018), MCMC methods (Bangia et al. 2017; DeFord, Duchin,
and Solomon 2021), have been proposed; see (Becker and
Solomon 2020) for a recent survey. A line of work on re-
districting algorithms focuses on combating manipulation
such as gerrymandering: when district plans have been en-
gineered to provide advantage to individual candidates or to
parties (Borodin et al. 2018). For example, Cohen-Addad et
al. propose a districting strategy with desirable geometric
properties such as each district being a convex polygon with
a small number of sides on average (Cohen-Addad, Klein,
and Young 2018). Using similar methods, Wheeler and Klein
argue that the political advantage of urban or rural voters
tends to be dramatically less than that afforded by district
plans used in the real world (Wheeler and Klein 2020). In
fact, Chen et al. show that district plans can also have uninten-
tional bias arising from differences in geographic distribution
of two parties (Chen and Rodden 2013).

Auditing. Another line of work in redistricting focuses on
developing statistical tools to detect gerrymandering given a
districting plan (Herschlag et al. 2020). In many redistricting
algorithms, existing methods generate maps without explic-
itly incorporating notions of fairness, but instead focusing

on compactness. Popular methods generate an ensemble of
plans and compare the number of representatives each party
gets in the generated maps with the number received under
the actual proposed maps (Becker and Solomon 2020). In
practice, political groups use many justifications for whether
a plan is fair, and our paper offers a new formal model which
may be used for auditing– arguing that various plans satisfy
properties of fairness (Procaccia and Tucker-Foltz 2021; De-
Ford, Duchin, and Solomon 2021). Our work in contrast takes
a more algorithmic approach – given a natural definition of
what a fair redistricting should look like, we show existence
and computational results.

Preliminaries
LetX be a set of n points in R1, each colored red or blue, and
let σ ∈ [n] be a parameter called ideal population size.4 We
wish to construct a locally fair partition of X into intervals
so that all intervals have roughly σ points. Only ordering
of points in X really matters, so we describe the input as
a (binary) sequence X = x1, . . . , xn, where xi ∈ {R,B}
represents the color of the i-th point on the line.

Define R := {i ∈ [n] | xi = R} and B := {i ∈ [n] |
xi = B} to be the subset of all red points and blue points,
respectively. An interval is a contiguous sequence, defined
by a pair of integers i, j ∈ [n] and denoted as either [i, j]
(where both points i and j are included) or (i, j] (where only
j is included). For an interval I ⊂ [n], let |I| denote its size,
i.e., |[i, j]| = j − i+ 1, |(i, j]| = j − i.

An alternative way to describe the input. Sometimes it
is useful to re-describe the input as a series of alternating
maximal monochromatic intervals. When appropriate, we
denote the input as X = R1, B1, R2, . . . , Rη, Bη, where
each Rj ⊆ R (resp. Bj ⊆ B) is a maximal sequence of red
(resp. blue) points, Rj 6= ∅ for j > 1, and B 6= ∅ for j < η.
For each Rj , Bj , it suffices to specify its size.

Balanced Partition. We are interested in partitioning [n]
into pairwise-disjoint intervals, i.e., computing a partition
Π = 〈π1, . . . , πT 〉, where T = |Π|, πt = (it−1, it] for all
t ∈ [T ], and 0 = i0 < i1 < . . . < iT = n.

We parameterize the population deviation in an interval
using an input parameter ε: For ε ∈ [0, 1/2], an interval
πt ∈ Π is called ε-allowable (or allowable for brevity) if
it satisfies (1 − ε)σ ≤ |πt| ≤ (1 + ε)σ. The partition Π
is balanced if each of its interval is allowable. Note that
a balanced partition may not always exist (take n = 100,
ε = .01, and σ = 40). In the remainder of the paper, we
assume that σ is chosen such that a balanced partition exists.

For ε = 0, each interval has exactly σ points; and for
ε = 1/2, each interval contains between σ

2 and 3σ
2 points. In

principle, we can choose ε to be any value in [0, 1]; but as
the value of ε increases, the sizes of intervals in the partition
become increasingly unbalanced. At an extreme, when ε = 1,
every point could form its allowable interval. Thus, we only
consider the setting of ε ∈ [0, 1/2], though most of our results
extend to settings of larger ε.

4We assume points lie on a line for simplicity; our results extend
to the case of a ring in a straightforward manner.
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For an interval I ⊆ [n], it is sometimes more convenient
to work with the ratio |I| /σ, which is 1 for an interval of
σ points. We define the measure of I , denoted by ‖I‖, as
‖I‖ = |I| /σ.

Locally fair partition. Next, we turn our focus to defin-
ing the notion of local fairness. For an interval I , let χ(I)
represent its majority color. Formally, χ(I) = R if the inter-
val I has red majority, i.e. |R ∩ I| > |B ∩ I|. Similarly, set
χ(I) = B if |R ∩ I| < |B ∩ I|. Without loss of generality, if
|R ∩ I| = |B ∩ I|, i.e., there is no majority in I , we define
χ(I) = B.

A point i is happy in Π if it is assigned to an interval
matching its color, i.e., χ(πt) = xi, where πt ∈ Π is the
interval containing i; otherwise i is unhappy in Π. For an in-
terval I ⊆ [n], let uhp(I,Π) := {i ∈ I | i is unhappy in Π}
denote the subset of unhappy points in I in partition Π.
Note that here I can be any interval and is not necessar-
ily a part in Π. If Π is fixed or clear from the context, we
write uhp(I) := uhp(I,Π).

Intuitively, a partition Π is locally fair if there is no large
set of unhappy points which could form an allowable interval
in which they would be the majority. We make this concept
more precise below:

Definition 1. Given an input instance (X,σ) and a pa-
rameter β ∈

[
1
2 , 1
]
, a β-deviating group with re-

spect to a partition Π is an allowable interval D with
more than max

{
|D|
2 , βσ

}
unhappy monochromatic points,

or equivalently, max {‖uhp(D) ∩R‖ , ‖uhp(D) ∩B‖} >

max
{
‖D‖
2 , β

}
. Note that we do not require the existence of

a balanced partition with D being one of its intervals.

D is called a β-deviating group because D may deviate
from Π such that at least βσ points that were unhappy in Π
become happy if D was made a standalone part in another
partition. We sometimes omit β and use the term “deviating
group” when the context is clear. Intuitively, β controls how
difficult it is for a set of unhappy points to deviate and form
an interval in which they are happy. As β grows, the set of
unhappy points that may form a deviating group must grow
larger with respect to the desired interval size σ; to deviate
when β = 1/2, a set of more than σ/2 unhappy points must
lie in an allowable interval in which they are the majority.
At β = 1, the number of unhappy points required to form a
deviating group increases to σ. See Figure 1 for an example.

Definition 2. Given (X,σ), ε ∈ [0, 1/2], and β ∈ [1/2, 1],
we call a balanced partition Π (ε, β)-locally fair if there is
no β-deviating group with respect to Π.

Remark. While we focus on β ∈ [1/2, 1], the largest pos-
sible range to consider is β ∈ [(1− ε)/2, (1 + ε)]. For appli-
cations of our model, we would expect the requirement on β
to be stronger than a simple majority, so that we bias towards
solutions (partitions) which are presumably fair to the rest of
the points.

D

π1 π2 π3 π4 π5

π
′

1
π
′

3
π
′

2
π
′

4

Figure 1: An with n = 15 points, σ = 4, ε = 1/2, and
β = 2/3. The top partition {π1, . . . , π5} admits a blue devi-
ating group D, whereas the bottom partition {π′1, . . . , π′4} is
(1/2, 2/3)-locally fair.

Existence of Locally Fair Partitions
In this section, we present our results on the existence of
locally fair partitions. We first give characterizations of pa-
rameters ε and β for which a locally fair solution is guar-
anteed to exist. We show that for every ε ∈ [0, 1/2], there
is a threshold β̄(ε) such that if β is above this threshold, a
simple partitioning strategy into small intervals results in a
(ε, β)-fair partition.

Theorem 3. Let (X,σ) be an input instance as defined above.
For any ε ∈ [0, 1/2], there is a value β̄(ε) such that for any
β > β̄(ε), there exists an (ε, β)-fair partition, where

β̄(ε) =

{
max

{
1− ε, 1+3ε

2

}
+O(δ) for ε ∈

[
0, 13

]
,

max
{

3(1−ε)
2 , 2ε

}
+O(δ) for ε ∈

[
1
3 ,

1
2

]
,

and δ ≤ 1
n
σ−1

+ 1
σ .

Proof sketch. (See the full version for a detailed proof.)
We construct a partition Π that uses as small as possible inter-
vals (the length of each interval takes the form (1− ε+ δ)σ).
For ε ≤ 1/3, an allowable deviating group D could intersect
at most 3 intervals. We show if D intersects only 2 intervals,
a simple calculation shows there are less than βσ unhappy
points and such a D cannot exist. On the other hand, if D
intersects 3 intervals πi, πi+1, πi+2, it must completely con-
tain πi+1. We can bound the number of points D can pull
from |πi ∪ πi+2| as (1 + ε)σ − |πi+1|, all of which could be
unhappy. Additionally, it must be |uhp(πi+1)| ≤ |πi+1/2|.
Combining the two above observations shows the total num-
ber of unhappy points is less than βσ, and so no deviating
group exists. A similar proof holds for ε ∈ [1/3, 1/2] by
increasing the number of intervals the deviating group could
intersect to 4.

Theorem 3 can be extended for any ε ∈ [0, 1]. Following
the same proof approach gives the general form of β̄(ε) =

max
{
t(1−ε)

2 , (3−t)+(t+1)ε
2

}
+O(tσ), where t is an integer

such that ε ∈
[
t−2
t ,

t−1
t+1

]
, or in other words, (t + 1) is the

largest number of intervals a deviating group can intersect.
Next, we show that for smaller values of β, a locally fair

partition may not exist.

Theorem 4. Let ε ∈ [0, 1/2) and β ∈ [1/2, 1− ε). For any
σ ≥ 1, there exists an input instance (X,σ) with |X| =

O
(

βσ
1−ε−β

)
for which no (ε, β)-locally fair partition exists.
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Proof. We construct an instance for which there is always
a deviating group. For simplicity, assume βσ is an inte-
ger; we will relax this assumption later. Specifying the in-
put using the runs of monochromatic intervals, let X =

R1, B1, R2, B2, . . . , Rη, Bη for η =
⌈

n
2βσ

⌉
. Set |Rj | = βσ

for j = 1, . . . , η and |Bj | = βσ for j = 1, . . . , η − 1, and
|Bη| = n− (2η − 1)βσ ≤ βσ.

In any fair partition Π, each Rj (resp. Bj) must intersect a
red (resp. blue) interval of Π; if there exists an entireRj (resp.
Bj) contained in a blue (resp. red) interval of Π, Rj (resp.
Bj) could form a deviating group with its own βσ unhappy
points, and (1− ε− β)σ points from a neighboring Bj (resp.
Rj). Since β ≥ 1/2, these unhappy red (resp. blue) points
are the majority in the deviating group. As a consequence, in
any fair partition Π, there exists no red (resp. blue) interval
πt that intersects multiple monochromatic red intervals Rj ,
Rj′ (resp. blue intervals Bj , Bj′ ) in X .

Suppose there exists a fair partition Π for (X,σ), and let π1
be a red interval of Π that intersects R1. Since β < 1− ε, π1
must include points from a neighboring blue monochromatic
interval; without loss of generality, let it intersect with B1.5
Then π1 cannot intersect R2; otherwise B1 would deviate.
Therefore, π1 includes at most βσ points from R1 and some
points from B1. Now, consider interval π2 of Π which is
blue and intersects B1 (but not B2). By size constraints,
‖π2‖ ≥ (1 − ε), and ‖π2 ∩B1‖ < β, since π1 ∩ B1 6= ∅.
This implies ‖π2 ∩R2‖ > (1− ε− β). Next, interval π3 is
red-majority and intersects R2 (but not R3); moreover, we
have ‖π3 ∩R2‖ ≤ ‖R2‖ − ‖π2 ∩R2‖ < β − (1 − ε − β).
This then implies ‖π3 ∩B2‖ ≥ ‖π3‖ − ‖π3 ∩R2‖ > (1 −
ε)− (β − (1− ε− β)) = 2(1− ε− β).

Continuing this argument, it can be shown that (i) every
Rj must intersect a red interval in Π that also intersects with
Bj ; and (ii) every Bj must intersect a blue interval in Π
that also intersects with Rj+1. Combined with the fact that
each red- (resp. blue-) majority πt cannot intersect multiple
monochromatic red (resp. blue) intervals of X , for every j it
must hold that:

• π2j−1 is red-majority and intersects Rj ;
• π2j is blue-majority and intersects Bj ;
• ‖π2j−1 ∩Rj‖ < β − (2j − 3) · (1− ε− β);
• ‖π2j−1 ∩Bj‖ > (2j − 2) · (1− ε− β);
• ‖π2j ∩Bj‖ < β − (2j − 2) · (1− ε− β);
• ‖π2j ∩Rj+1‖ > (2j − 1) · (1− ε− β).

Denote j′ =
⌈

3−3ε−2β
4(1−ε−β)

⌉
, and assume η ≥ j′. By the

above, π2j′ is blue-majority, and we have ‖π2j′ ∩Bj′‖ <
β−(2j′−2)·(1−ε−β) < 1−ε

2 , which implies π2j′ cannot be
blue-majority, a contradiction. In other words, there are not
enough points in π2j′ to create a majority matching its color.

Since η =
⌈

n
2βσ

⌉
, the above holds for n

2βσ >
3−3ε−2β
4(1−ε−β) , or

n > (3−3ε−2β)βσ
2(1−ε−β) = O

(
βσ

1−ε−β

)
. Finally, if βσ is not an

5We assume the input lies on a circle. Since π1 must intersect at
least one of the two blue monochromatic intervals neighboring R1,
we can order the input so that the intersected interval is B1.

π1 π2 π3 π4

· · ·

BD
5
8σ

Figure 2: An instance so that each monochromatic interval
has length 5σ/8, which does not admit a ( 1

4 ,
5
8 )-fair partition.

For example, partition Π is made of intervals of length (1−
ε)σ = 3σ/4; however,BD forms a deviating group by pulling
in points from neighboring intervals.

integer, let β′ = dβσe
σ . Then the above argument still holds

for n > (3−3ε−2β′)β′σ
2(1−ε−β′) .

See Figure 2 for an example of the construction. For ε ∈
[0, 1/5], Theorem 3 and Theorem 4 provide an almost sharp
threshold: if β > 1− ε+O(δ) (for δ defined in Theorem 3),
a locally fair partition always exists, but for β < 1 − ε
there are instances that do not admit fair partitions. In fact,
if we enforce the deviating group to have exactly σ points,
Theorems 3 and 4 become almost tight for all ε ∈ [0, 1/3].
We next extend Theorem 4 so that a single instance X has no
locally fair partition for a wide range of σ values.

Corollary 5. Let ε ∈ [0, 1/2), β ∈ [1/2, 1 − ε), and let
S = {σ1, σ2, . . . , σM} be the set of desired interval sizes. If
n

Mσm
>
⌈

1
1−ε−β

⌉
holds for all m ∈ [M ], there exists an

input X such that (i) |X| = n; (ii) for all m = 1, . . . ,M ,
the instance (X,σm) has no (ε, β)-locally fair partition.

Clustered Instances
As manifested in the previous section, under many specific
parameters ε, β, there exist adversarial input instances (X,σ)
that rule out the existence of any locally fair partition. How-
ever, such negative instances often seem artificial, and are not
robust to perturbation. In this section, we turn our attention to
a category of interesting inputs, when points are “clustered”
into large monochromatic intervals. Such instances arise in
applications in which we expect points of the same color to
gather together. We show that fair partitions exist when the
input instance is comprised of large monochromatic intervals,
while incurring a small approximation on the balancedness
of the fair partition.

For a constant α ∈ [0, 1), we say a partition Π of X is
α-balanced if the union of all its allowable intervals make
up at least a (1 − α)-fraction of the total input. Formally,
let Π̃ := {πt ∈ Π | |πt| ∈ [(1 − ε)σ, (1 + ε)σ]} be the
set of allowable intervals in Π. Then Π is α-balanced if∣∣∣⋃πt{πt ∈ Π̃}

∣∣∣ ≥ (1− α)n.

In fact, in this section our results hold for any β ∈ [1/2, 1],
so we omit β as a parameter, and instead refer to a fair parti-
tion as ε-locally fair.

First, we show that if the size of each monochromatic
interval in X is at least 2σ, we can compute a fair partition
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R′′j R′j

· · · · · ·

Rj

D

Figure 3: No deviating group D intersects R′′j and R′j .

by letting allowable intervals not contain a small fraction of
the population.

Theorem 6. Given instance (X = R1, B1, R2, . . . , σ) with
‖Rj‖ , ‖Bj‖ ≥ 2, for all j and parameter ε ∈ [0, 1/2], there

is a
(

(1−ε)σ
n

)
-balanced, ε-locally fair partition Π.

Proof. We assume that the first monochromatic interval R1

is red and the last monochromatic interval Bη is blue. The
other cases follow analogously. Consider an arbitrary maxi-
mal monochromatic red interval Rj with measure ‖Rj‖ ≥ 2.
We divide Rj into allowable intervals such that the residual
interval R′j (points of Rj not assigned to an allowable in-
terval) is as small as possible. Note that

∥∥R′j∥∥ ∈ [0, 1 − ε).
We assign the points of R′j to a size d(1− ε)σe interval us-
ing d

(
(1− ε)−

∥∥R′j∥∥)σe points from the next interval, Bj .
Partition the entire instance in this manner and let Π be the
resulting partition. All intervals of Π are allowable except for
the residual interval B′η from the last monochromatic interval

Bη . Since |B′η| < (1− ε)σ, Π is
(

(1−ε)σ
n

)
-balanced.

We next show Π is locally fair regardless of the value of
ε. Suppose there exists a deviating group D. Without loss of
generality, assume D is red-majority and D intersects two
consecutive red intervals Rj and Rj+1 of X . Then we have
Bj+1 ⊂ D. Since ‖Bj+1‖ ≥ 2, we have ‖D‖ > 2 > (1+ε),
a violation of the size constraint. Hence, D can only intersect
one monochromatic red interval Rj for some j.

DefineR′′j ⊆ Rj (resp.R′j ⊆ Rj) to be the (not necessarily
non-empty) set of red points assigned to the same interval,
denoted by π′′ (resp. π′) as a subset B′j of Bj (resp. B′j+1 of
Bj+1) (See Figure 3). If π′ is blue majority, then

∥∥R′′j ∥∥ <
1−ε
2 , by construction. Similarly, if π′ is blue majority, then∥∥R′j∥∥ < 1−ε

2 . Assume D intersects both R′j and R′′j . Then
both π′ and π′′ need to be blue-majority, and we have R \(
R′j ∪R′′j

)
⊂ D. But this implies

∥∥R \ (R′j ∪R′′j )∥∥ > 2−
1−ε
2 −

1−ε
2 = 1 + ε and thus ‖D‖ > 1 + ε, a contradiction.

Hence, D can only intersect either R′j or R′′j . In both
cases, ‖uhp(D)‖ < 1−ε

2 , implyingD does not have sufficient
points to form a deviating group. Therefore, no deviating
group exists in Π.

In fact, we can use the same partitioning strategy to find
balanced fair partitions (i.e., every point belongs to an al-
lowable interval πt) if each monochromatic interval of an
instance has size at least

⌈
(1−ε)2

2ε

⌉
.

π1 · · ·πT−3 πT−2 πT−1 πT

i j

i3 i2 i1

Figure 4: Π is a partition of interval (i, j], where i1, i2, and
i3 are the last three boundaries.

Corollary 7. For an instance (X,σ) and parameter ε, such

that for all j: ‖Rj‖ , ‖Bj‖ ≥
⌈
(1−ε)2

2ε

⌉
, there is always a

balanced ε-locally fair partition Π of X .

Next, we relax the requirement that every monochromatic
interval is long and consider “mostly” clustered instances.
Specifically, assume that at most γn points of X lie in
monochromatic intervals smaller than size 2σ. Applying The-
orem 6 to this setting, we can construct an α-balanced fair
partition with α depending on γ.

Theorem 8. Given (X,σ) and parameter ε ∈ [0, 1/2],
where X = R1, B1, . . . , Rη, Bη, let Y denote the set of
monochromatic intervals of X of length smaller than 2σ:
Y := {I ∈ {R1, . . . , Rη, B1, . . . , Bη} | ‖I‖ < 2}.

If
∣∣⋃

I∈Y I
∣∣ ≤ γn, then there is a

(
(1−ε)σ
n + γ

)
-balanced,

ε-locally fair partition.

For all ε, α improves (i.e., decreases) as γ decreases, as
more of the input lies in larger monochromatic intervals.
Similar to Corollary 7, if ε ≥ 3 − 2

√
2, we can prove the

above process gives a γ-balanced, ε-locally fair partition.

Partitioning Algorithm
Finally, we shift our focus to following algorithmic question:
Given an instance (X,σ) and parameters ε ∈ [0, 1/2], β ∈
[1/2, 1], does a (ε, β)-locally fair solution exist for (X,σ)?

In this section, we focus on a fixed input instance, so
throughout this section, treat X,σ, ε, and β as fixed, and de-
scribe an algorithm that determines whether an (ε, β)-locally
fair balanced partition, possibly with additional constraints,
exists, for an interval I ⊆ [n] of the input, where |X| = n.

We now define the recursive subproblems. For any interval
I = (i, j] ∈ [n] and for i ≤ i3 ≤ i2 ≤ i1 < j, define
LF(I, i1, i2, i3) = True if and only if there exists at least
one fair partition Π = {π1, . . . , πT } of I that satisfies the
following conditions:

i1 = i2 = i3 = i, Π = {(i, j]}, for T = 1;

i1 > i2 = i3 = i, Π = {(i, i1], (i1, j]}, for T = 2;

i1 > i2 > i3 = i, Π = {(i, i2], (i2, i1], (i1, j]}, for T = 3;

i1 > i2 > i3 > i, Π = {π1, . . . , (i3, i2], (i2, i1], (i1, j]}, o/w.

In other words, i1, i2, and i3 are the last three “interval
boundaries” in Π; see Figure 4.

We first define the base cases of our algorithm. Consider
every interval I = (i, j] that is allowable, i.e., (1 − ε)σ ≤
|I| ≤ (1 + ε)σ. Without loss of generality, let χ(I) = B.
We consider letting Π = {(i, j]} be the trivial partition for
I . This is locally fair if and only if no deviating group can

4757



form within I , i.e., there exists no (i′, j′] ⊂ (i, j] such that
(i) (1 − ε)σ ≤ (j′ − i′) (so that (i′, j′] is allowable), and
(ii) |uhp((i′, j′] ∩R)| ≥ max{βσ2 ,

j′−i′
2 } (so that (i′, j′] is

deviating). If the above holds, we have LF(I, i, i, i) = True,
and LF(I, i1, i2, i3) = False for any other values of i1, i2,
and i3.

Intuitively, if an interval I = (i, j] ⊆ [n] has a fair
partition, either I is a standalone fair allowable interval
(i.e., LF((i, j], i, i, i) = True), or there must exist a point
j′ ∈ [j − (1 + ε)σ, j − (1− ε)σ) such that
(i) there is a fair partition for (i, j′];
(ii) (j′, j] is a fair unpartitioned standalone interval;
(iii) no deviating group is formed by the last 3 intervals of

fair partition of (i, j′] and the interval (j′, j].
Accordingly, we have the following lemma:

Lemma 9. LF((i, j], i1, i2, i3) = True if and only if there
exists a point i4 ∈ [max{i, i3 − (1 + ε)σ}, i1] such that
• LF((i1, j], i1, i1, i1) = True, and
• LF((i, i1], i2, i3, i4) = True, and
• There is no deviating group forming within (i4, j] with the

partition {(i4, i3], (i3, i2], (i2, i1], (i1, j]}.
Hence, for a general interval (i, j], to compute

LF((i, j], i1, i2, i3), it suffices to check for all possible values
of i4, each incurring two lookups of previously computed
subquery results and one check of fairness in a partition for
an interval of length at most 4(1 + ε)σ.

Algorithm. We use Lemma 9 and dynamic programming
to compute

∨
1≤i1≤i2≤i3≤n LF ([0, n], i1, i2, i3), as follows.

Our algorithm first enumerates all possible allowable inter-
vals (i, j] as base cases (i.e., (1− ε)σ ≤ j − i ≤ (1 + ε)σ),
and computes LF((i, j], i, i, i) for each such (i, j]. Then, for
general (i, j], the algorithm computes LF((i, j], i1, i2, i3) for
all possible values of i1, i2, and i3 given i and j, in increasing
order of (i+ j); this ensures all the intermediate subqueries
are already computed before LF((i, j], i1, i2, i3) is evaluated.
After it computes LF((i, j], i1, i2, i3) for all possible values
of i, j, i1, i2, i3, it examines whether LF((0, n], i1, i2, i3) =
True for some i1, i2, i3; any such true entry implies a fair par-
tition of [n], i.e., the original input. Note that (0, n] = [1, n]
is the complete set of points.

Running time and Enhancements. Refer to the full ver-
sion for a detailed analysis of the algorithm, as well as two
enhancement strategies that exploit precomputation to avoid
redundant computations. We present the final result:
Theorem 10. Given an instance (X,σ) with |X| = n and
σ ∈ [n], and parameters ε ∈ [0, 1/2] and β ∈ [1/2, 1], a
(ε, β)-locally fair partition of [n] can be computed, or report
that none exists, in timeO(nσ3) for ε ∈ [0, 1/3) andO(nσ4)
for ε ∈ [1/3, 1/2].

Conclusion
The main open question is extending the model to two dimen-
sions, which poses several challenges: how to define feasible
regions, how these regions tile the plane, how a deviating
group/region is defined. Part of the difficulty stems from the

fact that points are no longer linearly ordered. Despite the
challenges, the lower bounds presented in the paper directly
extend to two dimensions. Additionally, the algorithm de-
scribed in Section may extend to 2D when the partitions
considered have sufficient structure, such as when we restrict
to a hierarchical partition of simple shapes, and the deviating
region spans O(1) regions of the partition.
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