
Deeply Tensor Compressed Transformers for End-to-End Object Detection

Peining Zhen, Ziyang Gao, Tianshu Hou, Yuan Cheng, and Hai-Bao Chen∗

Shanghai Jiao Tong University, China
{zhenpn, gaoziyang, houtianshu, cyuan328, haibaochen}@sjtu.edu.cn

Abstract

DEtection TRansformer (DETR) is a recently proposed
method that streamlines the detection pipeline and achieves
competitive results against two-stage detectors such as Faster-
RCNN. The DETR models get rid of complex anchor gen-
eration and post-processing procedures thereby making the
detection pipeline more intuitive. However, the numerous re-
dundant parameters in transformers make the DETR mod-
els computation and storage intensive, which seriously hin-
der them to be deployed on the resources-constrained de-
vices. In this paper, to obtain a compact end-to-end detection
framework, we propose to deeply compress the transform-
ers with low-rank tensor decomposition. The basic idea of
the tensor-based compression is to represent the large-scale
weight matrix in one network layer with a chain of low-order
matrices. Furthermore, we propose a gated multi-head atten-
tion (GMHA) module to mitigate the accuracy drop of the
tensor-compressed DETR models. In GMHA, each attention
head has an independent gate to determine the passed atten-
tion value. The redundant attention information can be sup-
pressed by adopting the normalized gates. Lastly, to obtain
fully compressed DETR models, a low-bitwidth quantization
technique is introduced for further reducing the model stor-
age size. Based on the proposed methods, we can achieve sig-
nificant parameter and model size reduction while maintain-
ing high detection performance. We conduct extensive exper-
iments on the COCO dataset to validate the effectiveness of
our tensor-compressed (tensorized) DETR models. The ex-
perimental results show that we can attain 3.7× full model
compression with 482× feed forward network (FFN) param-
eter reduction and only 0.6 points accuracy drop.

Introduction
Recent years have witnessed great success in object detec-
tion area with the rapid development of deep learning and
neural networks (Ren et al. 2015; Lin et al. 2017; Car-
ion et al. 2020). Numerous detectors have been proposed
to continually push forward the state-of-the-art. Nowadays,
anchor-based and anchor-free detectors are the dominant
methods for efficient target object detection. These meth-
ods make bounding box (bbox) predictions depending on
proposals (Cai and Vasconcelos 2018), anchors (Lin et al.
∗Corresponding Author

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2017), or key points (Zhou, Wang, and Krähenbühl 2019;
Law and Deng 2018). However, the design and generation of
the above prior knowledge make the corresponding network
structures more complex. Currently, another branch of ob-
ject detection methods beyond anchor-based ones has drawn
wide attention (Carion et al. 2020; Zhu et al. 2020; Dai et al.
2021). These methods are inspired by the widely used trans-
former architecture (Vaswani et al. 2017) and streamline the
detection pipeline.

The detection transformer (DETR) (Carion et al. 2020),
which achieves competitive results against strong baselines,
is the first attempt to simplify the detection pipeline based
on transformers. However, the vanilla DETR models suf-
fer from large model size and high computational cost since
most of their network structures are linear layers. Such high
demands for computing resources seriously hinder them to
be stored and deployed on mobile devices with limited hard-
ware resources and a tight power budget. It thereby remains
a great challenge to develop compact DETR models while
maintaining the simplicity of their detection pipeline. Al-
though the works (Zhu et al. 2020; Sun et al. 2021; Dai
et al. 2021) make efforts to improve the training efficiency
of DETR models, they do not focus on reducing the model
size. For resources-constrained AI applications, such as self-
driving cars and AR glasses, model compression is particu-
larly necessary.

It is intuitive to develop model compression methods
for reducing the complexity of neural networks. One of
the major compression methods is quantization-aware train-
ing (QAT), which aims to reduce the bitwidth of net-
work weights and activations during training based on pre-
trained models (Han, Mao, and Dally 2015; Jacob et al.
2018). Nevertheless, these QAT methods are tedious and
time-consuming, which hinder the immediate application
of quantization techniques.f Downstream toolchains (e.g.,
ONNX or TensorFlow-Lite) are required to accomplish the
model size reduction after QAT. Another main compres-
sion method is network pruning (He, Zhang, and Sun 2017;
Zhuang et al. 2018), which focuses on removing the re-
dundant network structure. However, the pruning metric is
difficult to decide and the retraining procedure is compli-
cated. In this work, we propose to compress the DETR mod-
els through low-rank tensor decomposition. The neural net-
work weights can be represented as a combination of mul-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

4716



tiple very small tensor arrays. Consequently, the number of
required trainable parameters can be significantly reduced.
Different from QAT and pruning methods, the tensor-based
compression methods directly reconstruct the network struc-
ture and the parameters can be learned from scratch. As a
result, the expensive computational costs in the retraining
procedure can be avoided, and high detection accuracy can
remain.

In this paper, we propose a tensorized compression frame-
work for the detection transformer. By reshaping the weight
matrices into high-dimensional tensors and adopting a low-
rank tensor factorization, significant redundant parameter
reduction can be achieved with maintained detection accu-
racy. Furthermore, to alleviate the accuracy drop caused by
the tensorized compression, we propose a gated multi-head
attention (GMHA) module. Learnable gates are attached
to every single attention head for spotlighting meaningful
heads and down-weighting uninformative ones. At last, a
post-training quantization technique is introduced for fur-
ther model size reduction. For the COCO detection bench-
mark, the tensorized DETR shows 3.7× model compression
with 482× FFN parameter reduction and only 0.6% accu-
racy drop (39.5% vs. 40.1%). The experimental results and
discussions can demonstrate the advantages of our proposed
method.

The highlights of this paper can be summarized as fol-
lows: 1) We first propose to compress the detection trans-
former based on the tensor decomposition. The storage-
intensive structures such as FFNs can be reconstructed in
tensor format to directly achieve parameter reduction. This
method does not need any downstream toolchains or back-
ends to realize model size compression; 2) A gated multi-
head attention module is proposed to mask the redundant
heads in the transformer architectures. The controllable gate
parameters are independently learned during training rather
than manually fixed. The accuracy drop after compression
can be mitigated with limited parameters increase; 3) A
post-training quantization technique is introduced to fur-
ther compress the model size. This method preserves high
model performance without any tedious model retraining
procedure; 4) Extensive results on the COCO dataset can
demonstrate the advantages of our proposed methods. The
DETR model is deeply compressed with competitive accu-
racy against state-of-the-art approaches.

Related Work
Object Detection
Modern object detection methods can be mainly divided
into two categories: anchor-based and anchor-free methods.
The anchor-based methods (Redmon and Farhadi 2017; He
et al. 2017) make predictions with the pre-defined anchor
boxes, and the quality of anchors is proven to have a signifi-
cant influence on the final performance (Zhang et al. 2020).
In general, the anchor-based methods have higher accuracy
compared with anchor-free methods since the positive and
negative samples are more balanced. However, the design
and generation of anchors will greatly increase the model
complexity, therefore the inference speed and model size

of anchor-based detectors are far from satisfactory. Most
anchor-free methods (Law and Deng 2018; Tian et al. 2019)
regress bounding boxes with the extracted keypoints. The
anchor-free methods remove heavy anchor generation net-
works and post-processing procedures thus they can easily
achieve high speed and lightweight while maintaining high
accuracy.

Recently, many works have been proposed to improve
the efficiency of DETR-series models (Zhu et al. 2020; Dai
et al. 2021; Zheng et al. 2020; Sun et al. 2021). In the
work (Zhu et al. 2020), the authors propose multi-scale de-
formable attention with learnable sparse sampling for boost-
ing the detection performance without increasing redundant
parameters. UP-DETR (Dai et al. 2021) involves the unsu-
pervised pretraining mechanism into DETR for fast conver-
gence and high performance. The adaptive clustering trans-
former (ACT) (Zheng et al. 2020) proposes to cluster the
query features adaptively using locality sensitive hashing
(LSH) for reducing the inference computation cost. TSP-
RCNN and TSP-FCOS are proposed based on the trans-
former set prediction (TSP) in (Sun et al. 2021) and can
achieve faster convergence speed with better detection per-
formance. The above methods mainly focus on improving
the training efficiency of DETR models while our method
is devoted to reducing the DETR model size for hardware-
friendly deployment on resources-constrained devices.

Neural Network Compression
Researchers have proposed a variety of neural network com-
pression methods. One of the major compression meth-
ods is quantization, which narrows the bitwidth of network
weights or activations to limit the model size. Recent re-
search efforts such as (Han, Mao, and Dally 2015; Hubara
et al. 2016; Rastegari et al. 2016) have significantly reduced
the computational complexity and model size by adopting
low-bitwidth weights and activations. Specifically, in BNN
(2016) and XNOR-Net (2016), the network parameters are
aggressively quantized into 2 bits with negligible accuracy
loss. Besides the above approaches with fixed bitwidth, the
works (Khoram and Li 2018; Wang et al. 2019) develop flex-
ible quantization policies. The network layers have different
bitwidths during training; nevertheless, they obtain similar
accuracy compared with fixed bitwidth methods. In sum-
mary, the above methods belong to quantization-aware train-
ing which require full training data and a time-consuming
retraining procedure.

Recently, the studies (Li, Wang, and Kong 2018; Gusak
et al. 2019; Yin et al. 2021) propose to compress neural
networks via tucker tensor decomposition methods. In (Li,
Wang, and Kong 2018; Yin et al. 2021), the authors adopt
tucker based low-rank approximation to compress the neu-
ral networks for classification tasks. And in (Li, Wang, and
Kong 2018), the compressed GoogLeNet can achieve about
2× compression on an ARM-based cell phone. In (Gusak
et al. 2019), the authors leverage tucker decomposition to
compress object detection models in an iterative procedure.
The compressed Faster-RCNN can achieve up to 3.16× pa-
rameters reduction with negligible detection accuracy loss.
Besides, in (Wang et al. 2018), the authors can compress the

4717



network up to 243× without losing accuracy. However, the
authors mainly focus on shallow networks and simple tasks;
they do not provide the results on more difficult tasks such
as detection or segmentation. In our work, the transformer
weights are factorized into a sequence of small tensors and
we can achieve a much higher compression ratio.

The Proposed Method
Notations and The Basis of Tensor A tensor-based com-
pression method with open boundary conditions, namely
tensor-train decomposition, is introduced in this paper for
further optimizing the DETR model. We limit our study to
only change FFN weights in this section.

In general, tensors are multi-dimensional arrays that can
generalize vectors and matrices. We refer the vectors and
matrices as 1-dimensional arrays and 2-dimensional arrays
respectively. In this section, the vectors are denoted by ordi-
nary lower case letters (e.g. v); the matrices are denoted by
boldface upper case letters (e.g. V); the tensors are denoted
by calligraphic upper case letters (e.g. V). A tensor slice is
a 2-dimensional fragment of one tensor, obtained by fixing
two of all indices. For example, given a 3-dimensional ten-
sor V ∈ RI×J×K , the horizontal, lateral, and frontal slices
of this tensor can be represented as V(i, :, :), V(:, j, :), and
V(:, :, k) respectively.

Tensor-Train Preliminaries Via the tensor-train decom-
position, a high-order tensor can be expressed as a chain of
matrix products. For instance, we have a d-dimensional (or
d-way) tensor V ∈ Rl1×l2×···×ld , where entries are indexed
by d indices p1, p2, . . . , pk, . . . , pd. Each pk is within [1, lk]
for k = 1, 2, . . . , d. The high-order tensor V can then be
decomposed and represented using a collection of d tensor
cores G(k) ∈ Rrk−1×lk×rk with k ∈ [1, d]. Each entry in V
can be reconstructed by these tensor cores as:

Vp1,p2,··· ,pd
=

d∏
k=1

G(k)
pk
, (1)

where G
(k)
pk = G(k) (:, pk, :) ∈ Rrk−1×rk is the pk-th lat-

eral slice of the k-th tensor core G(k). In each tensor core,
r ∈ {r0, r1, · · · , rd} is called the tensor-train rank where
both boundaries r0 and rd are fixed to 1. Due to the compact
tensor representation scheme, the number of parameters to
formulate a d-way tensor V is only

∑d
k=1 rk−1lkrk while

the conventional explicit representation needs
∏d

k=1 lk pa-
rameters. We graphically show an example of tensor-train
decomposition in Fig. 1 for better explanation. For a 2-way
weight matrix, it has to be rearranged into a d-way tensor
representation before conducting the tensor-train decompo-
sition.

Tensor-Train Decomposition for Feed Forward Network
Feed forward networks in the DETR model are sequentially
connected linear layers, which take up most of the model
size. We simplify (omit the bias) and denote the linear lay-
ers in FFN modules with the matrix-by-vector multiplication
form as y = W · f , where input feature vector f ∈ RN ,
weight matrix W ∈ RM×N , and output feature vector

2 – dimensional 
matrix 

d – dimensional
tensor (d = 3)

reshape

Figure 1: A 2-way weight matrix example for tensor-train
decomposition.

y ∈ RM . Then we can rewrite this layer more explicitly
with indices yi =

∑N
j=1Wi,j · fj , where i ∈ [1,M ] and

j ∈ [1, N ].
For the 2-way weight matrix W as well as the input fea-

ture f and output feature y in FFN modules, they should be
rearranged to d-way tensor representations by the projection
function φ as follows:

φw : RM×N → R(m1×n1)×···×(md×nd), φw(W) =W,

φy : RM → Rm1×m2×···×md , φy(y) = Y,
φf : RN → Rn1×n2×···×nd , φf (f) = F .

(2)

We assume that both M and N can be factorized into two
integer arrays with M =

∏d
k=1mk and N =

∏d
k=1 nk

respectively. Following the above equation (2), the expres-
sion of the tensorized weight can be changed from Wi,j to
Wi1,j1,i2,j2,··· ,id,jd with 2d-tuple indices.

Then in FFN modules, the 2-way weight W and the input
feature f multiplication of linear layers can be represented
in tensor format as follows:

Yi1,i2,··· ,id =
∑

j1,j2,··· ,jd

Wi1,j1,i2,j2,··· ,id,jd · Fj1,j2,··· ,jd , (3)

whereY ,F , andW are the high-order tensor representations
of y, f , and W as depicted in Eq. (2).

Following the preliminaries, the d-way weight tensor W
can be further represented in the basic tensor-train form:

Wi1,j1,i2,j2,··· ,id,jd =
d∏

k=1

G̃
(k)
ik,jk

, (4)

where G̃
(k)
ik,jk

= G̃(k) (:, ik, jk, :) can be viewed as an rk−1×
rk slice of the 4-d tensor core G̃(k) ∈ Rrk−1×mk×nk×rk .
Here the index lk in G(k) ∈ Rrk−1×lk×rk is supposed to
be factorized as lk = mk · nk. We show the tensor-train
decomposition of FFN weight matrix W in Fig. 2.

In our experiments, the tensor decomposition is applied
to every W · f operation in the FFN modules following Eq.
(4) since linear layers are the most storage-intensive parts in
the DETR models. The tensorized multiplication of the input
feature and weights can then be represented as follows:

Yi1,i2,··· ,id =
∑

j1,j2,··· ,jd

G̃
(1)
i1,j1

G̃
(2)
i2,j2
· · · G̃(d)

id,jd
· Fj1,j2,··· ,jd . (5)

In our tensorized DETR model, each FFN module con-
sists of two tensor-compressed linear layers. The first lin-
ear layer has input length 256 and output length 2048 while

4718



W

Linear layer 
in FFN

Tensor-train Representation

Figure 2: Tensor-train decomposition of weight matrix W
in the feed forward networks.

the second linear layer has the swapped input and output
length. In the validation experiments, the vector length 256
(N ) is factorized to [2, 4, 4, 4, 2] and 2048 (M ) is factorized
to [4, 4, 8, 4, 4]. We have d = 5. The tensor-train ranks are
set to {1, 4, 4, 4, 4, 1}.

Theoretical Benefits The main benefit of using tensorized
linear is that the model size and computational complexity
can be reduced. For a vanilla linear layer in the FFN module,
the time complexity would beO(NM). Whereas in the ten-
sorized linear layer, the final time complexity isO(dr̂2n̂M),
where n̂ = maxk(nk), r̂ is the maximal rank (ranks are
equal in our experiments), and d is the dimensionality of a
tensor. The space complexities areO(NM) andO(dr̂2m̂n̂)
respectively, where m̂ = maxk(mk).

We can also derive the compression ratio (z) in the FFN
linear layers as the ratio between the number of weights in a
vanilla layer and that in its tensor-compressed form:

z =

∏d
k=1 nk ·

∏d
k=1mk∑d

k=1 rk−1mknkrk
. (6)

We give the numerical analysis with a simple example. Sup-
pose we have a linear layer with input length 256 and output
length 2048, we will need 524,288 parameters to represent
the weight matrix. If we factorize the input vector into di-
mension 2× 4× 4× 4× 2 and the output vector into dimen-
sion 4 × 4 × 8 × 4 × 4, we only need 1088 parameters to
get the weight matrix using a tensor-train rank 4; and if the
tensor-train rank is 3, we will only need 624 parameters. As
a result, compression ratios of the corresponding ranks are
around 482× and 840× respectively.

The Gated Multi-head Attention Module
Formulation of the Learnable Gate Parameters Multi-
head attention (MHA) is a powerful and ubiquitous module
in the DETR model, which allows the network to obtain in-
formation from different mapping spaces. In vanilla DETR
models, we usually have 8 heads in each attention module.
However, not all the heads contribute equally for making
predictions (Vig and Belinkov 2019). The redundant infor-
mation causes the DETR model to overfit. We normalize the
vanilla multi-head attention module by multiplying the sin-
gle head representation Hi with a learnable gate parameter
gi. Consequently, the proposed GMHA can be written as:

G-MultiHead(Q,K,V) = Concat (gi ·Hi)W
O, (7)

where i ∈ {1, . . . , nh} denotes the number of heads. In-
spired by (Gal, Hron, and Kendall 2017; Maddison, Mnih,
and Teh 2017), our gate parameters are independently
learned from the binary hard concrete distributions. Given
the learnable parameter set q for all heads in a MHA mod-
ule, our gate parameter set g can be derived as follows:

s = Sigmoid ((q + log u− log (1− u)) /T ) , (8)
s̄ = s (λ− µ) + µ, (9)
g = clamp (s̄, 0, 1) . (10)

The set q only contains nh parameters which is the number
of heads. In the above Eq. (8), u is a random noise drawn
from the uniform distribution U(0, 1) and can push the s
away from middle values. T ∈ (0, 1) is the temperature that
controls the magnitude of value. As we can see from the Eq.
(8), the range of s is within (0, 1). Since we want the heads
can be totally opened or closed in GMHA modules, we in-
troduce two parameters µ, λ that can stretch the valve of s
to (µ, λ) with µ < 0 and λ > 1 as described in Eq. (9).
Then we can apply a hard-sigmoid function to clip the value
of gate g into range [0, 1] following Eq. (10). In our experi-
ments, the µ and λ are set to -0.1 and 1.1 respectively. T is
selected as 0.33.

To evaluate the performance of the GMHA module, we
conduct a series of experiments with GMHA applied to only
encoder self-attention and all multi-head attention (i.e. en-
coder and decoder self-attention and cross-attention from
encoder to decoder). Based on the experimental results, if
not specified, the GMHA module is only applied to encoder
self-attention.

Learning of the Gate Parameters Since some of the
heads contain redundant information that hinders the model
performance, we would like to down-weight or even dis-
able these heads. Inspired by (Louizos, Welling, and Kingma
2017), we propose a penalty function during the training
of tensorized DETR models that would push the models to
switch off those redundant heads. The penalty loss function
Lp can be expressed as follows:

Lp (g1, g2, · · · , gnh) =
∑nh

i=1 (1− P (gi = 0 | ϕi)) , (11)

where gi is the gate parameter. P is the probability mass
derived from the hard concrete distribution and ϕi is the dis-
tribution parameter. This penalty function is a relaxation of
L0 norm with the sum of probability mass of non-zero gates
(Louizos, Welling, and Kingma 2017). During the training
of our tensorized DETR models, the learning objective func-
tion L is a linear combination of the original DETR loss and
the penalty loss function L = Ld + ρ · Lp, where ρ is a
balancing parameter.

Low Bitwidth Compression
In the vanilla DETR models, the backbone network is an-
other major source of the large model size. To obtain a fully
compressed DETR model, we introduce the post-training
quantization technique for low-bitwidth backbone network
compression. This post-training quantization technique does
not require any tedious retraining procedure and the full
training dataset compared with QAT methods. Given the

4719



weight representation W, we need to find an optimal quanti-
zation interval for constraining the floating-point values into
a finite set of values. Following the uniform quantization for-
mulation, we obtain the quantization point:

Wq = clamp

(
bW

∆
e,−2s−1, 2s−1 − 1

)
, (12)

where ∆ is the quantization scale, s is the quantization level,
and Wq is the quantized weight. b·e denotes rounding to the
nearest integer.

For post-training quantization, our goal is to learn an opti-
mal mapping between the outputs of full-precision and low-
bitwidth convolutions. This quantization procedure can be
formulated as an optimization problem:

arg min
∆,Wq

‖y −∆Wq · f‖2F , (13)

where ∆ is the scale to be learned, y is the full-precision
convolution output, and f is the input feature. The similarity
between the vanilla and quantized output is measured using
the euclidean metric. This optimization problem for quan-
tization can be solved in an iterative way. The quantization
scale can be derived as:

∆ =
y>f>W>

q

Wqff>W>
q

. (14)

The quantization points can be optimized bit-by-bit follow-
ing (Wang et al. 2020).

Experiments
Datasets
COCO (Lin et al. 2014) is used to validate our proposed
method, which contains 118k training images and 5k valida-
tion images. Following the DETR baseline, we report bbox
AP on the validation dataset for ablations and comparisons
with state-of-the-art.
ImageNet-1k (Deng et al. 2009) is leveraged to calibrate
and validate our quantization compressed backbone. The
dataset consists of 1.28M training images and 50k valida-
tion images from total 1000 semantic categories.

Implementation Details
DETR Training We adopt the vanilla DETR as our
baseline model which is implemented based on the
mmdetection. The CNN backbone is the ImageNet pre-
trained ResNet-50 (He et al. 2016). All models are trained
on 4 NVIDIA GTX 1080Ti GPUs with 2 images per GPU.
We train the models by using AdamW optimizer with 150
epochs in total. The learning rates of transformer encoder-
decoder and the CNN backbone are initialized to 5 × 10−5

and 5×10−6 respectively. The weight decay is set to 0.0001.
The learning rates are divided by 10 at the decay step 100
epoch. The balancing parameter ρ for the penalty function is
set to 0.1. As for the transformer implementations, we lever-
age 6 encoder layers and 6 decoder layers with embedded
dimension 256. Each encoder and decoder layer has 8 at-
tention heads. Following DETR, we leverage a simple data
augmentation technique by resizing the input images with

the short side ranging from 480 to 800 pixels and the long
side at most 1333 pixels.

All the results of speed (FPS) in our experiments are mea-
sured under one NVIDIA GTX 1080Ti GPU. FPS is com-
puted by averaging the speed for inferencing 2000 images
from the COCO validation dataset.

Quantization ResNet-50 is employed as the basic back-
bone network of DETR models. We randomly sample 300
images from ImageNet-1k and COCO training datasets re-
spectively as our calibration datasets.

Ablation Study
Effectiveness of the Tensorized Compression We per-
form ablation studies on the COCO dataset to verify the ef-
fectiveness of tensor decomposition. The experimental re-
sults are given in Table 1. We first reproduce the baseline
model and it can achieve 40.1% AP as shown in Table 1.
Then we show the results obtained by the proposed ten-
sorized DETR (T-DETR) model. Note that the GMHA mod-
ule and quantization are not leveraged in this experiment. As
can be seen from Table 1, our proposed tensorized DETR
model only has 2.5 points accuracy drop with 47.9MB trans-
former model size reduction. It should be noted that the
vanilla ResNet-50 backbone has 90.0MB model size, which
occupies most of the model size in one DETR model. Here
we only consider the transformer architecture in the DETR
model, and we achieve 3.3× model size reduction with the
introduced tensor decomposition method.

Method AP Size FPS Mem

DETR 40.1 69.0 MB 16.6 7.9 GB
Ours 37.6 21.1 MB 15.6 7.5 GB

Table 1: Comparison between the vanilla DETR model and
our tensorized DETR model. Size here is the transformer
storage size. Mem denotes the training memory consump-
tion.

In addition, as shown in Table 1, the tensorized DETR
model has slightly lower FPS than the vanilla DETR model.
Because tensor decomposition requires more mathematical
operations instead of one highly optimized matrix multipli-
cation during implementation (in PyTorch). However, these
computation overheads are acceptable since we mainly aim
at deeply compressing the model size. The experimental
results can demonstrate that the proposed method benefits
from the tensor decomposition.

Analysis About the Tensor-Train Rank The tensor-train
decomposition rank r plays an important role in reducing
the redundant parameters of the transformers. We provide
a numerical analysis of different tensor-train ranks to show
their impact on the model performance. The experiments are
conducted based on the FFN modules with two linear layers
in the DETR model. The input vector of length 256 (N ) is
factorized as 2 × 4 × 4 × 4 × 2, and the output vector of
length 2048 (M ) is factorized as 4× 4× 8× 4× 4. In most
applications, ranks are manually selected and set to equal

4720



since we can not list all the rank values exhaustively. Here
the ranks are selected from 3 to 5. The experimental results
are summarized in Table 2. In this table, the ranks are fixed
with a total of 6 numbers, for example, {1, 4, 4, 4, 4, 1}.

Method Rank #Param z AP FPS

Ours (T-DETR)

FFN 1,048,576 1× 40.1 16.6
3 1,248 840× 36.9 15.9
4 2,176 482× 37.6 15.6
5 3,360 312× 37.7 15.6

Tucker (2009) 2 2,208 475× 37.4 9.0
Tucker (2009) 3 118,338 9× 37.7 8.8

Tucker-2 (2009) 4 14,283 73× 37.6 16.3

Table 2: Numerical analysis about the tensor-train rank and
comparisons with other tensor decomposition methods. z
denotes the compression ratio. AP and FPS are measured
using corresponding DETR models.

As shown in Table 2, the tensor-train decomposition can
achieve up to 840× parameter reduction with a slight accu-
racy drop. Moreover, we can see that the detection accuracy
will slightly increase as the tensor-train rank grows; how-
ever, the number of parameters increases significantly. We
have similar speed due to the powerful parallel computing
capabilities of GPUs. As a result, to obtain the best accuracy
and parameter number trade-off, we choose the tensor-train
rank 4 as the default setting in our experiments.

We also make comparisons with other tensor compres-
sion methods in Table 2. When using ranks 2 and 3, tucker-
compressed DETR models show lower compression ratio
and similar detection accuracy. When the rank is 4, the pa-
rameters in one tucker-compressed FFN is 2,097,472, which
are more than those in one vanilla FFN. The parameters
in tucker representation will explode when the rank grows
since they are proportional to r10. Our method shows much
better efficiency than the tucker decomposition method.

Effectiveness of the GMHA Module In this section, ex-
periments are performed to demonstrate the effectiveness of
the proposed GMHA module. The quantitative results are
shown in Table 3. First, we integrate the proposed GMHA
module into vanilla DETR models. It is shown in Table 3 that
the GMHA module helps the vanilla DETR model achieve
1.6 points AP improvement. Furthermore, we can see that
the tensorized DETR (T-DETR) model obtains 1.9 points
accuracy improvement with the GMHA module. The experi-
mental results can demonstrate the advantages of the GMHA
module for suppressing the uninformative attention values
and alleviating the overfitting problem.

We find that our GMHA module is more effective when
applied to only encoder attentions. The experimental results
are summarized in Table 4. In this experiment, GMHA is
leveraged based on the tensor-compressed DETR model. As
shown in Table 4, the obtained accuracy is 39.2% for models
with GMHA module in all attentions, whereas the accuracy
is 39.5% for models with GMHA module in only encoder
attentions. Note that we only need 48 additional parameters

Method AP Size FPS Mem

DETR 40.1 69.0 MB 16.6 7.9 GB
+ GMHA 41.7 (1.6 ↑) 69.0 MB 16.3 7.9 GB

Ours (T-DETR) 37.6 21.1 MB 15.6 7.5 GB
+ GMHA 39.5 (1.9 ↑) 21.1 MB 15.2 7.5 GB

Table 3: Effect of the proposed GMHA module on model
performance. Size is the transformer storage size.

for leveraging the GMHA modules into only encoder lay-
ers and 144 additional parameters for leveraging them into
all encoder and decoder layers. Results came out that these
gate parameters do not cause significant drop in the detec-
tion quality, and also do not increase the model size.

Attentions AP #Param g Size FPS

Only encoder 39.5 48 21.1 MB 15.2
All heads 39.2 144 21.1 MB 14.9

Table 4: Detection performance for GMHA modules in dif-
ferent attentions. #Param represents the additional gate pa-
rameters. Size is the transformer storage size.

Furthermore, we show an example of the learned gate pa-
rameters g in Fig. 3. The first observation is that most of
the gates are totally opened or closed, which means the gate
values are either 1 or 0. The second observation is that the
first head contains the most redundant information since all
the first heads have gate parameters 0. We hypothesize this
is because edge pixels of images or features contribute little
to the detection results. The third observation is that the first
two layers are less important than the following layers. The
first two layers have three closed gates while the other layers
mostly have one closed gate. We argue that deep feature rep-
resentations are more informative than the shallow features
in the transformer architecture.

1 2 3 4 5 6 7 8
Heads

1

2

3

4

5

6

La
ye

rs

0.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00

0.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00

0.00 1.00 1.00 0.97 1.00 1.00 1.00 0.97

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.0

0.2

0.4

0.6

0.8

1.0

G
ate Value

Figure 3: Heap map of the learned gate parameters from the
encoder layers.

Quantization Evaluation For ImageNet-1k evaluation,
the PyTorch pretrained ResNet-50 is leveraged. We quantize
all the weight layers into 4-bit and 8-bit while keeping the
activations in full precision (FP32). The results are shown in

4721



Method Backbone Size AP AP50 AP75 APS APM APL

RetinaNet (Lin et al. 2017) ResNet-50 145.1 MB 36.5 55.4 39.1 20.4 40.3 48.1
Faster-RCNN DC5 (Ren et al. 2015) ResNet-50 631.8 MB 37.2 58.3 39.9 19.5 41.4 50.4
Faster-RCNN FPN (Ren et al. 2015) ResNet-50 159.5 MB 37.4 58.1 40.4 21.2 41.0 48.1
Mask-RCNN (He et al. 2017) ResNet-50 169.6 MB 38.2 58.8 41.1 21.9 40.9 49.5
Faster-RCNN FPN (Ren et al. 2015) ResNet-101 232.2 MB 39.4 60.1 43.1 22.4 43.7 51.1

FCOS-GN (Tian et al. 2019) ResNet-50 123.5 MB 36.6 56.0 38.8 21.0 40.6 47.0
RepPoints (Yang et al. 2019) ResNet-50 140.8 MB 37.0 56.7 39.7 20.4 41.0 49.0
Deformable-DETR† (Zhu et al. 2020) ResNet-50 156.0 MB 39.7 60.1 42.4 21.2 44.3 56.0
YOLOS-S (Fang et al. 2021) DeiT-S 351.3 MB 36.1 56.4 37.1 15.3 38.5 56.2
UP-DETR (Dai et al. 2021) ResNet-50 164.0 MB 40.5 60.8 42.8 19.0 44.4 60.0

Baseline (DETR) ResNet-50 159.0 MB 40.1 60.6 42.0 18.3 43.3 59.5
Ours (T-DETR) ResNet-50 111.1 MB 39.5 59.9 41.6 18.7 42.5 58.0
Ours (T-DETR) R-50 8-bit 43.6 MB 39.5 59.8 41.6 18.8 42.4 58.0
Ours (T-DETR) R-50 4-bit 33.4 MB 37.9 57.9 39.8 17.3 40.6 56.3

Table 5: The quantitative comparisons with state-of-the-art methods on the COCO validation dataset. For fair comparison, the
results are measured under mmdetection implementation. Size is the full model storage size here. † denotes single-scale
Deformable-DETR. ResNet-101 is not desirable in our method since we aim to reduce the model size.

Table 6. As shown in this table, the 8-bit quantized model
has higher accuracy than the full-precision model. As for
the 4-bit quantized model, there is only 0.64 / 0.27 accu-
racy drop from the full-precision model. In the classification
evaluation, the size of the full-precision model is 97.7MB
while the sizes of 8-bit and 4-bit quantized models would
be 24.5MB and 12.3MB. Note that there are no linear layers
in the backbone of DETR models, thus the backbone model
size would be 90.0MB.

FP32 8-bit 4-bit

76.15 / 92.87 76.18 / 92.95 75.51 / 92.60

Table 6: Performance comparison between full-precision
and quantized backbone networks. Acc (%): top-1 / top-5.

Furthermore, we quantize the backbone network in DETR
models and measure the performance on the COCO valida-
tion dataset. The results are summarized in Table 7. The re-
sults in this table show that the 8-bit quantized backbones
lead to no accuracy degradation. For vanilla DETR and our
tensor-compressed DETR models, the bbox AP results are
the same for both full-precision and 8-bit quantized back-
bones. We observe a significant accuracy drop when quanti-
zation is extended to the tensorized transformers. The exper-
imental results demonstrate that quantization is an effective
way for our backbone compression in DETR models.

Comparison with State-of-the-arts
Research works focusing on compressing detection trans-
formers are limited; therefore in this section, we directly
provide the quantitative comparisons with other object de-
tection methods on the COCO validation dataset. To make
the comparisons fair, we report the results based on the
mmdetection implementation rather than from the orig-
inal paper. The results are summarized in Table 5. First
and foremost, our tensorized DETR model with an 8-bit

Backbone AP AP50 AP75 APS APM APL

R-50 40.1 60.6 42.0 18.3 43.3 59.5
R-50 8-bit 40.1 60.7 42.0 18.5 43.4 59.6

R-50 39.5 59.9 41.6 18.7 42.5 58.0
R-50 8-bit 39.5 59.8 41.6 18.8 42.4 58.0
R-50 4-bit 37.9 57.9 39.8 17.3 40.6 56.3

Table 7: Quantitative comparisons between full-precision
and quantized DETR backbones. The top and bottom rows
show the results of the baseline DETR and our T-DETR re-
spectively.

quantized backbone achieves 3.7× model size compression
with only 0.6 points accuracy drop. Moreover, with a 4-bit
backbone, we obtain 4.8× model size compression with 2.2
points accuracy drop. The experimental results show that our
compressed models can maintain competitive detection ac-
curacy against state-of-the-art methods.

Conclusion
In this paper, we demonstrate that tensor decomposition is
a promising way to efficiently compress the detection trans-
former. By incorporating the tensor-train decomposition into
FFN modules, we obtain up to 840× parameter reduction
under comparable detection accuracy. A novel gated multi-
head attention module with limited parameters is proposed
for down-weighting the redundant attention values. Based
on the GMHA module, the significant detection accuracy
drop can be circumvented. With further low-bitwidth quan-
tization techniques, we achieve up to 4.8× whole DETR
model compression. Extensive experiments are performed
on the COCO benchmark to validate our proposed meth-
ods. The results show we can achieve 39.5% AP after com-
pression which is only 0.6 percentage points lower than the
vanilla DETR model.

4722



Acknowledgements
This work is supported by the National Key Re-
search and Development Program of China under grant
2019YFB2205005.

References
Cai, Z.; and Vasconcelos, N. 2018. Cascade r-cnn: Delv-
ing into high quality object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 6154–6162.
Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov,
A.; and Zagoruyko, S. 2020. End-to-end object detection
with transformers. In Proceedings of the European Confer-
ence on Computer Vision, 213–229.
Chen, K.; Wang, J.; Pang, J.; Cao, Y.; Xiong, Y.; Li, X.; Sun,
S.; Feng, W.; Liu, Z.; Xu, J.; Zhang, Z.; Cheng, D.; Zhu, C.;
Cheng, T.; Zhao, Q.; Li, B.; Lu, X.; Zhu, R.; Wu, Y.; Dai,
J.; Wang, J.; Shi, J.; Ouyang, W.; Loy, C. C.; and Lin, D.
2019. MMDetection: Open MMLab Detection Toolbox and
Benchmark. arXiv preprint arXiv:1906.07155.
Dai, Z.; Cai, B.; Lin, Y.; and Chen, J. 2021. Up-detr: Unsu-
pervised pre-training for object detection with transformers.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 1601–1610.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 248–255.
Fang, Y.; Liao, B.; Wang, X.; Fang, J.; Qi, J.; Wu, R.; Niu,
J.; and Liu, W. 2021. You Only Look at One Sequence:
Rethinking Transformer in Vision through Object Detection.
arXiv preprint arXiv:2106.00666.
Gal, Y.; Hron, J.; and Kendall, A. 2017. Concrete dropout.
arXiv preprint arXiv:1705.07832.
Gusak, J.; Kholiavchenko, M.; Ponomarev, E.; Markeeva,
L.; Blagoveschensky, P.; Cichocki, A.; and Oseledets, I.
2019. Automated multi-stage compression of neural net-
works. In Proceedings of the IEEE International Conference
on Computer Vision Workshops.
Han, S.; Mao, H.; and Dally, W. J. 2015. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149.
He, K.; Gkioxari, G.; Dollár, P.; and Girshick, R. 2017. Mask
r-cnn. In Proceedings of the IEEE International Conference
on Computer Vision, 2961–2969.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
770–778.
He, Y.; Zhang, X.; and Sun, J. 2017. Channel pruning for ac-
celerating very deep neural networks. In Proceedings of the
IEEE International Conference on Computer Vision, 1389–
1397.

Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; and
Bengio, Y. 2016. Binarized neural networks. In Advances in
Neural Information Processing Systems, volume 29.
Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard,
A.; Adam, H.; and Kalenichenko, D. 2018. Quantization and
training of neural networks for efficient integer-arithmetic-
only inference. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2704–2713.
Khoram, S.; and Li, J. 2018. Adaptive quantization of neural
networks. In International Conference on Learning Repre-
sentations.
Kolda, T. G.; and Bader, B. W. 2009. Tensor Decomposi-
tions and Applications. SIAM Review, 51(3): 455–500.
Kuchaiev, O.; and Ginsburg, B. 2017. Factorization tricks
for LSTM networks. arXiv preprint arXiv:1703.10722.
Law, H.; and Deng, J. 2018. Cornernet: Detecting objects as
paired keypoints. In Proceedings of the European Confer-
ence on Computer Vision, 734–750.
Li, D.; Wang, X.; and Kong, D. 2018. Deeprebirth: Accel-
erating deep neural network execution on mobile devices.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 32.
Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; and Dollár, P.
2017. Focal loss for dense object detection. In Proceedings
of the IEEE International Conference on Computer Vision,
2980–2988.
Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ra-
manan, D.; Dollár, P.; and Zitnick, C. L. 2014. Microsoft
coco: Common objects in context. In Proceedings of the
European Conference on Computer Vision, 740–755.
Louizos, C.; Welling, M.; and Kingma, D. P. 2017. Learn-
ing sparse neural networks through L0 regularization. arXiv
preprint arXiv:1712.01312.
Maddison, C.; Mnih, A.; and Teh, Y. 2017. The concrete dis-
tribution: A continuous relaxation of discrete random vari-
ables. In Proceedings of the International Conference on
Learning Representations.
Rastegari, M.; Ordonez, V.; Redmon, J.; and Farhadi, A.
2016. Xnor-net: Imagenet classification using binary con-
volutional neural networks. In Proceedings of the European
Conference on Computer Vision, 525–542.
Redmon, J.; and Farhadi, A. 2017. YOLO9000: better,
faster, stronger. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 7263–7271.
Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster r-
cnn: Towards real-time object detection with region proposal
networks. In Advances in Neural Information Processing
Systems, 91–99.
Sun, Z.; Cao, S.; Yang, Y.; and Kitani, K. M. 2021. Rethink-
ing transformer-based set prediction for object detection. In
Proceedings of the IEEE International Conference on Com-
puter Vision, 3611–3620.
Tian, Z.; Shen, C.; Chen, H.; and He, T. 2019. Fcos: Fully
convolutional one-stage object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 9627–9636.

4723



Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. In Advances in Neural Information
Processing Systems, 5998–6008.
Vig, J.; and Belinkov, Y. 2019. Analyzing the Structure of
Attention in a Transformer Language Model. In Proceedings
of the ACL Workshop BlackboxNLP, 63–76.
Wang, K.; Liu, Z.; Lin, Y.; Lin, J.; and Han, S. 2019. Haq:
Hardware-aware automated quantization with mixed preci-
sion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 8612–8620.
Wang, P.; Chen, Q.; He, X.; and Cheng, J. 2020. Towards
accurate post-training network quantization via bit-split and
stitching. In International Conference on Machine Learn-
ing, 9847–9856.
Wang, W.; Sun, Y.; Eriksson, B.; Wang, W.; and Aggarwal,
V. 2018. Wide compression: Tensor ring nets. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 9329–9338.
Yang, Z.; Liu, S.; Hu, H.; Wang, L.; and Lin, S. 2019. Rep-
points: Point set representation for object detection. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, 9657–9666.
Yin, M.; Liao, S.; Liu, X.-Y.; Wang, X.; and Yuan, B. 2021.
Towards Extremely Compact RNNs for Video Recognition
With Fully Decomposed Hierarchical Tucker Structure. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 12085–12094.
Zhang, S.; Chi, C.; Yao, Y.; Lei, Z.; and Li, S. Z. 2020.
Bridging the gap between anchor-based and anchor-free de-
tection via adaptive training sample selection. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 9759–9768.
Zheng, M.; Gao, P.; Wang, X.; Li, H.; and Dong, H. 2020.
End-to-end object detection with adaptive clustering trans-
former. arXiv preprint arXiv:2011.09315.
Zhou, A.; Yao, A.; Guo, Y.; Xu, L.; and Chen, Y. 2017. In-
cremental network quantization: Towards lossless cnns with
low-precision weights. arXiv preprint arXiv:1702.03044.
Zhou, X.; Wang, D.; and Krähenbühl, P. 2019. Objects as
points. arXiv preprint arXiv:1904.07850.
Zhu, X.; Su, W.; Lu, L.; Li, B.; Wang, X.; and Dai, J. 2020.
Deformable detr: Deformable transformers for end-to-end
object detection. arXiv preprint arXiv:2010.04159.
Zhuang, Z.; Tan, M.; Zhuang, B.; Liu, J.; Guo, Y.; Wu, Q.;
Huang, J.; and Zhu, J. 2018. Discrimination-aware channel
pruning for deep neural networks. In Advances in Neural
Information Processing Systems, 883–894.

4724


