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Abstract

In this work, we introduce 6D Convolutional Neural Network
(6DCNN) designed to tackle the problem of detecting rela-
tive positions and orientations of local patterns when process-
ing three-dimensional volumetric data. 6DCNN also includes
SE(3)-equivariant message-passing and nonlinear activation
operations constructed in the Fourier space. Working in the
Fourier space allows significantly reducing the computational
complexity of our operations. We demonstrate the properties
of the 6D convolution and its efficiency in the recognition of
spatial patterns. We also assess the 6DCNN model on several
datasets from the recent CASP protein structure prediction
challenges. Here, 6DCNN improves over the baseline archi-
tecture and also outperforms the state-of-the-art.

Introduction
Methods of deep learning have recently made a great leap
forward in the spatial data processing. This domain con-
tains various tasks from different areas of industry and natu-
ral sciences, including three-dimensional (3D) data analysis.
For a long time, convolutional neural networks (CNNs) re-
mained the main tool in this domain. CNNs helped to solve
many real-world challenges, especially in computer vision.
However, these architectures have rather strict application
restrictions. Unfortunately, real-world raw data rarely have
standard orientation and size, which limits the efficiency of
translational convolutions. This circumstance has created an
increased interest in the topic of SE(3)-equivariant opera-
tions in recent years. While most of SE(3)-equivariant meth-
ods are focused on learning relations between rotational in-
variants, this paper addresses the problem of recognition
of arbitrarily-positioned and -oriented volumetric patterns
by reusing some theory already developed in computational
physics and crystallography.

A volumetric pattern in 3D has six degrees of freedom
(DOFs), three to define a rotation, and three for a transla-
tion. Thus, a classical convolution technique would require
scanning through all these six DOFs and scale as O(N3M6)
if a brute-force computation is used, where N is the linear
size of the volumetric data, and M is the linear size of the
pattern.
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This work proposes a set of novel operations with the
corresponding architecture based on six-dimensional (6D)
roto-translational convolutional filters. For the first time,
thanks to the polynomial expansions in the Fourier space,
we demonstrate the feasibility of the 6D roto-translational-
based convolutional network with the leading complexity
of O(N2M4) operations. We tested our method on simu-
lated data and also on protein structure prediction datasets,
where the overall accuracy of our predictions is on par with
the state-of-the-art methods. Proteins play a crucial role in
most biological processes. Despite their seeming complex-
ity, structures of proteins attract more and more attention
from the data science community (Senior et al. 2020; Jumper
et al. 2021; Laine et al. 2021). In particular, the task of pro-
tein structure prediction and analysis raises the challenge of
constructing rotational and translational equivariant archi-
tectures.

Related Work
Equivariant operations. The first attempt of learning
rotation-equivariant representations was made in Harmonic
Networks (Worrall et al. 2017) in application to 2D im-
ages. Further, this idea was transferred to the 3D space
with the corresponding architecture known as 3D Steerable
CNNs (Weiler et al. 2018). In Spherical CNNs (Cohen et al.
2018), the authors introduced a correlation on the rotation
group and proposed a concept of rotation-equivariant CNNs
on a sphere. Spherical harmonics kernels that provide rota-
tional invariance have also been applied to point-cloud data
(Poulenard et al. 2019). A further effort on leveraging com-
pact group representations resulted in the range of meth-
ods based on Clebsh-Gordan coefficients (Kondor 2018;
Kondor, Lin, and Trivedi 2018; Anderson, Hy, and Kondor
2019). This approach was finally generalized in Tensor field
networks (Thomas et al. 2018), where rotation-equivariant
operations were applied to vector and tensor fields. Later,
SE(3)-Transformers (Fuchs et al. 2020) were proposed to
efficiently capture the distant spatial relationships. More re-
cently, (Hutchinson et al. 2021) continued to develop the the-
ory of equivariant convolution operations for homogeneous
spaces and proposed Lie group equivariant transformers, fol-
lowing works on the general theory of group equivariant op-
erations in SO(2) (Romero et al. 2020; Romero and Cor-
donnier 2021) and SO(3) (Cohen, Geiger, and Weiler 2018).
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Equivariant operations have been also applied to gauge fields
(Cohen et al. 2019). We should mention that the most com-
mon data representation in this domain is a 3D point cloud,
however, several approaches operate on regular 3D grids
(Weiler et al. 2018; Pagès, Charmettant, and Grudinin 2019).
We should also add that some of the above-mentioned meth-
ods (Cohen et al. 2018; Weiler et al. 2018; Kondor 2018;
Anderson, Hy, and Kondor 2019) employ Fourier transform
in order to learn rotation-equivariant representations.

Geometric learning on molecules. As graphs and point
clouds are natural structures for representing molecules, it
is reasonable that geometric learning methods have been ac-
tively evolving especially in application to biology, chem-
istry, and physics. More classical graph-learning meth-
ods for molecules include MPNNs (Gilmer et al. 2017),
SchNet (Schütt et al. 2017), and MEGNet (Chen et al.
2019). Ideas for efficient capturing of spatial relations in
molecules resulted in rotation-invariant message-passing
methods DimeNet (Klicpera, Groß, and Günnemann 2020)
and DimeNet++ (Klicpera et al. 2020). Extending message-
passing mechanism with rotationally equivariant representa-
tions, polarizable atom interaction neural networks (Schütt,
Unke, and Gastegger 2021) managed to efficiently predict
tensorial properties of molecules. (Satorras, Hoogeboom,
and Welling 2021) proposed E(n) equivariant GNNs for pre-
dicting molecular properties and later used them for devel-
oping generative models equivariant to Euclidean symme-
tries (Satorras et al. 2021).

Proteins are much bigger and more complex systems
than small molecules but are composed of repeating blocks.
Therefore, more efficient and slightly different methods are
required to operate on them. A very good example is the
two recent and very powerful methods AlphaFold2 (Jumper
et al. 2021) and RoseTTAFold (Baek et al. 2021). Most re-
cent geometric learning methods designed for proteins in-
clude deep convolutional networks processing either volu-
metric data in local coordinate frames (Pagès, Charmettant,
and Grudinin 2019; Hiranuma et al. 2021), graph neural net-
works (Ingraham et al. 2019; Sanyal et al. 2020; Baldas-
sarre et al. 2021; Igashov et al. 2021; Igashov, Pavlichenko,
and Grudinin 2021), deep learning methods on surfaces and
point clouds (Gainza et al. 2020; Sverrisson et al. 2020),
and geometric vector perceptrons (Jing et al. 2021b,a). In
addition, several attempts were made to scale tensor-field-
like SE(3)-equivariant methods to proteins (Derevyanko and
Lamoureux 2019; Eismann et al. 2020; Townshend et al.
2020; Baek et al. 2021).

Method
Workflow
Here, we give a brief description of all steps of our method
that are described in more detail below. Firstly, for each
residue in the input protein molecule, we construct a func-
tion f(r⃗) that describes its local environment. More techni-
cally, this function is a set of 3D Gaussian-shaped features
centered on the location of atoms within a certain distance
Rmax from the Cα atom of the corresponding residue (see
Fig. 1A).

Then, for each function f(r⃗), we compute its spherical
Fourier expansion coefficients Fk

l (ρ). The angular resolu-
tion of the expansion is determined by the maximum or-
der of spherical harmonics L. The radial resolution of the
expansion corresponds to the maximum reciprocal distance
ρmax and is inversely proportional to the resolution σ of
the real-space Gaussian features as ρmax = π/σ (see Fig.
1B). Similarly, the radial spacing between the reciprocal
points is inversely proportional to the linear size of the data,
∆ρ = π/(2Rmax). Without loss of generality, we can set
the number of reciprocal radial points to be equal L, such
that ρmax/∆ρ = L+ 1 = 2Rmax/σ.

Spherical Fourier coefficients Fk
l (ρ) constitute the input

for our network, along with the information about the tran-
sition from the coordinate system of one residue to another.
We start the network with the embedding block that reduces
the dimensionality of the feature space. Then, we apply a
series of 6D convolution blocks that consist of 6D convo-
lution, normalization, and activation layers, followed by a
message-passing layer. After a series of operations on con-
tinuous data, we switch to the discrete representation and
continue the network with graph convolutional layers (see
Fig. 1C-D). In the graph representation, each node corre-
sponds to a protein residue, and a graph edge links nodes if
the distance between the corresponding Cα atoms is smaller
than a certain threshold Rn. We should also mention that
the backbone structure of a protein residue can be used to
unambiguously define its local coordinate system (Pagès,
Charmettant, and Grudinin 2019; Jumper et al. 2021) using
the Gram–Schmidt orthogonalization process starting from
Cα −N and Cα − C vectors.

Representation of Volumetric Data
Let us consider a function f(r⃗) : R3 → Rdf that describes
a distribution of df -dimensional features in the 3D space.
Very often, initial data is given as a point cloud, as it is typ-
ically the case for protein structures. Let us consider a set
of points located within a maximum radius Rmax at posi-
tions r⃗1, ..., r⃗n, ..., r⃗N with the corresponding feature vec-
tors t1, ..., tn, ..., tN . To convert this representation to a con-
tinuous one, we assume that each point feature has a Gaus-
sian shape with a standard deviation σ. Then, the continuous
function characterizing this area will have the form,

f(r⃗) =
N∑

n=1

fn(r⃗) =
N∑

n=1

tn exp(−
(r⃗ − r⃗n)

2σ2
), (1)

where σ is the spatial resolution of the features. It is very
convenient to use the Fourier description of this function in
spherical coordinates. The spherical harmonics expansion of
the Fourier transform of function f(r⃗) will be

Fk
l (ρ) = 4π(−i)l

N∑
n=1

jl(ρrn)Y k
l (Ωrn)

(
√
2πσ)3 exp(−σ2ρ2

2
)tn,

(2)

where ρ is the reciprocal distance. Please see Appendices A-
E (Zhemchuzhnikov, Igashov, and Grudinin 2021) for more
details.
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Figure 1: A. Six-dimensional (6D) convolution between a filter w(r⃗) and a function f(r⃗0+ r⃗). The function f(r⃗0+ r⃗) describes
the local environment of a protein residue and is defined within a certain radius Rmax from the corresponding Cα atom. The
local coordinate system xyz is built on the backbone atoms Cα, C, N of each protein residue. R denotes the location of a
residue’s side-chain. B. The spherical Fourier space with the reciprocal spacing ∆ρ and the maximum resolution of ρmax. Grey
dots schematically illustrate points where the Fourier image is stored. C. An illustration of a protein chain representation. Each
protein residue has its own coordinate system xyz and the corresponding local volumetric description Fk

l (ρ) within a certain
sphere of Rmax radius. Spheres of different residues may overlap. Two residues are considered as neighbors in the graph
representation if their Cα atoms are located within a certain threshold Rn. D. The graph representation of the protein structure.
The node features are learned by the network and are represented with colored rectangles. The edge features are assigned based
on the types of the corresponding residues and the topological distance of the protein graph.

6D Convolution Operation
The initial idea that prompted us to consider non-traditional
types of convolution is the intention to perceive spatial pat-
terns in whatever orientations they have. In a classical 3D
convolution, when a filter has learned a pattern in a partic-
ular orientation, a different orientation of this pattern may
result in a lower response to the same filter in the inference
mode. Keeping this in mind, we came with the idea to extend
the convolution with an integration of all possible filter rota-
tions. Let f(r⃗) : R3 → Rdi and w(r⃗) : R3 → Rdi ×Rdo

be the initial signal and a spatial filter, correspondingly. We
propose to extend the classical convolution as follows,∫
r⃗

dr⃗ f(r⃗0 + r⃗)w(r⃗) →
∫
Λ

dΛ

∫
r⃗

dr⃗ f(r⃗0 +Λ−1r⃗)w(Λr⃗),

(3)
where Λ ∈ SO(3) is a 3D rotation. Please see Fig. 1A for
an illustration. Let the functions f(r⃗) and w(r⃗) be finite-
resolution and have spherical Fourier expansion coefficients
F k
l (ρ) and W k

l (ρ), correspondingly, which are nonzero for
l ≤ than some maximum expansion coefficient L. Then, the
result of the 6D convolution has the following coefficients,

[Fout]
k
l (ρ) =

L∑
l1=0

l1∑
k1=−l1

8π2

2l1 + 1
W−k1

l1
(ρ)

l+l1∑
l2=|l−l1|

cl2(l, k, l1,−k1)F
k+k1

l2
(ρ),

(4)

where cl are the products of three spherical harmonics, see
Eq. 26 in Appendix D (Zhemchuzhnikov, Igashov, and Gru-
dinin 2021). The proof can be found in Appendix F (Zhem-
chuzhnikov, Igashov, and Grudinin 2021). For a single recip-
rocal distance ρ, the complexity of this operation is O(L5),
where L is the maximum order of the spherical harmonics
expansion.

Nonparametric Message Passing of Continuous
Data
Let us assume that our spatial data can be represented with
overlapping spatial fragments, each having its own local co-
ordinate frame, as it is shown in Fig. 1C for the continuous
representation of a protein molecule. Then, we can recom-
pute the fragment representation in the neighboring coordi-
nate frames using spatial transformation operators. For this
purpose, we designed a message passing operation in a form
that recomputes the spherical Fourier coefficients in a new
reference frame. We should specifically note that this opera-
tion is SE(3)-equivariant by construction, because the spatial
relationship between molecular fragments remain the same
when rotating and shifting the global coordinate system. We
decompose such a spatial transformation in a sequence of
a rotation followed by a z-axis translation followed by the
second rotation. Indeed, the spherical Fourier basis provides
low computational complexity for the z-translation and ro-
tation operations. Let function fz(r⃗) be the results of trans-
lating function f(r⃗) along the z-axis by an amount ∆. Then,
the expansion coefficients of these two functions will have
the following relation,

[Fz]
k
l (ρ) =

L∑
l′=k

T k
l,l′(ρ,∆)Fk

l′(ρ)+O

(
1

(L− l)!
(
ρ∆

2
)L−l

)
,

(5)
where T k

l,l′ is a translation tensor specified in Appendix D
. The update of all the expansion coefficients costs O(L4)
operations.

Similarly, let function fΛ(r⃗) be the rotation of function
f(r⃗) by an amount Λ ∈ SO(3), fΛ(r⃗) = f(Λr⃗). The corre-
sponding expansion coefficients are then related as

[FΛ]
k
l (ρ) =

l∑
k′=−l

Dl
k′,k(Λ)F

k′

l (ρ), (6)
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where Dl
k′,k is a rotation Wigner matrix specified in Ap-

pendix C (Zhemchuzhnikov, Igashov, and Grudinin 2021).
The update of all the expansion coefficients will again cost
O(L4) operations.

Normalization
Since we are working with continuous data in the Fourier
space, we have to introduce our own activation and nor-
malization functions. When developing the normalization,
we proceeded from very basic premises. More precisely, we
normalize the signal f(r⃗) by setting its mean to zero and its
variance to unity. This can be achieved if the following op-
erations are performed on the spherical Fourier expansion
coefficients of the initial function,

[Fn]
k
l (ρ) =

{
0, if l = k = ρ = 0,

[F]kl (ρ)/S2, otherwise,
(7)

where S1 =
∫
R3 f(r⃗)dr⃗, S2 =

∫
R3(f(r⃗) − S1)

2dr⃗. We
should also notice that we apply the element-wise division in
Eq. 7 The proof can be found in Appendix G (Zhemchuzh-
nikov, Igashov, and Grudinin 2021).

Activation
The concept of our activation operation coincides with the
idea of the classical activation in neural networks, i.e. to non-
linearly transform the initial signal depending on how it dif-
fers from the bias. Let the initial signal be f(r⃗), and the bias
signal with trainable Fourier coefficients be b(r⃗). Then, we
propose the following output of the normalization-activation
block,

fa(r⃗) =

(
1

4

∫
R3

(N(f(r⃗) + b(r⃗))−N(b(r⃗)))2d3r⃗

)
N(f(r⃗) + b(r⃗)),

(8)

where N() is the normalization operation defined in Eq. 7
such that the value 1

4

∫
R3(N(f(r⃗) + b(r⃗))−N(b(r⃗)))2d3r⃗

lies in the interval [0, 1]. If the signal f(r⃗) is ’coherent’ to
b(r⃗) , f(r⃗) = Kb(r⃗),K > 0, then it does not pass the
block. The amplification factor reaches its maximum value
when the two signals are anti-coherent. Parseval’s theorem
allows us to translate these formulas into operations on their
expansion coefficients,

[Fa]
k
l (ρ) =

1

4

(
L∑

l′=0

l′∑
k′=−l′

∫ ∞

0

(N(Fk′

l′ (ρ) +Bk′

l′ (ρ))

−N(Bk′

l′ (ρ)))
2ρ2dρ

)
N(Fk

l (ρ) +Bk
l (ρ)),

(9)

where [Fa]
k
l (ρp) and Bk

l (ρp) are the expansion coefficients
of functions f(r⃗) and b(r⃗), correspondingly.

Switching the Representations
For most of the real-world tasks that may require the pro-
posed architecture, a transition from a continuous functional
representation f(r⃗) : R3 → Rdf to a discrete vector repre-
sentation h ∈ Rdf is necessary. There can be several ways

to achieve it. In the simplest case, when the input function
f(r⃗) can be unambiguously associated with some reference
coordinate system, as in the case of protein’s peptide chain,
we may use the following operation,

h =

∫
R3

f(r⃗)w(r⃗)dr⃗, (10)

where w(r⃗) : R3 → Rdf is a filter function element-wise
multiplied with the input function. If the functions f(r⃗) and
w(r⃗) have corresponding expansion coefficients Fk

l (ρp) and
Wk

l (ρp), then this operation will have the following form
(please see more details in Appendix H )(Zhemchuzhnikov,
Igashov, and Grudinin 2021),

h =
L∑

l=0

l∑
k=−l

∫ ∞

0

Fk
l (ρ)W

k

l (ρ)ρ
2dρ. (11)

Graph Convolutions Layers
In our model, the continuous representation is followed by
the classical graph convolutional layers (see Fig. 1C-D). In-
deed, protein structures, on which we assess our model, al-
low us to use the graph representation. In such a graph, each
node corresponds to an amino acid residue and characterizes
the 3D structure of its neighborhood, and each edge between
two nodes indicates their spatial proximity, i.e. the distance
between the corresponding C-alpha atoms within a certain
threshold Rn (see Fig. 1D).

Let us consider a graph G that is described by the feature
matrix H ∈ RN×dv , where N is the number of graph nodes
and dv is the dimensionality of the node feature space, and
the adjacency matrix A ∈ RN×N×de , where de is the di-
mensionality of the edge feature space. We decided to use
one-hot edge features that would encode the types of amino
acids of the associated nodes. To reduce the dimensionality
of the edge feature space to d′e, we use the following train-
able embedding Re ∈ Rde×d′

e , and a reduced adjacency
matrix Ar = ARe. Finally, the graph convolution step is
defined as

Hk+1 = σa(ArHkWk +HkW
s
k + bk), (12)

where Wk ∈ Rdk×dk+1×d′
e and Ws

k ∈ Rdk×dk+1 are train-
able matrices.

Experiments
6D Filters
Our first step was to study the properties of the 6D roto-
translational convolution operation. To do so, we generated
a small 3D pattern, f(r⃗), composed of six 3D Gaussians with
σ = 0.4 Å shown in Fig. 2A-B. We then created a function
h(r⃗), rotated and translated f(r⃗) to a new location. Figures
2C-D show the result of the 6D convolution between h(r⃗)
and f(r⃗) given by Eq. 4. As we can expect, the maximum
of this convolution corresponds to the position of the center
of mass of function h(r⃗), and the value of the convolution
reduces as we go further from this point. We used the fol-
lowing parameters for this experiment, σ = 0.4 Å, L = 4,
ρmax = 0.6π Å−1, ∆ρ = 0.2π Å−1.
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Figure 2: A-B. Six Gaussian volumetric features of σ = 0.4 Å shown in the xy-plane (A) and xz-plane (B). The center of
mass of the whole pattern is shown with the pink star. C-D. The density map of the resultant 6D convolution between an
original pattern and its translated and rotated copy to the pink star position, shown in the xy-plane (C) and xz-plane (D). E. The
maximum error in determining the center of the translated and rotated pattern as a function of the expansion order L divided by
the Gaussian feature σ for 3D and 6D convolutions. F. Relative error of the recovering volumetric patterns as a function of the
translation amplitude and the expansion order. G-H. Results of the 6D convolution in the translated coordinate system, by 3

√
3

Å, shown in the xy-plane (G) and xz-plane (H).

We then compared the result of the classical 3D convolu-
tion (see Appendix B ) with the proposed 6D convolution.
Using the same initial pattern, randomly rotated multiple
times, we recorded the maximum positional error in deter-
mining the center of mass of the translated pattern with re-
spect to the maximum expansion order L. As we can see
in Fig. 2E, the 6D convolution detects the position of the
shifted pattern more accurately compared to its classical 3D
counterpart, and the accuracy increases with the maximum
expansion order L.

Message Passing and Translation Operator
Our next experiment was the assessment of the message-
passing step. Our main goal was to study the conditions of
validity for the translation operator 28 given in Appendix
D (Zhemchuzhnikov, Igashov, and Grudinin 2021), which
is also implicitly used in the 6D convolution part. Specif-
ically, we were interested in whether the result of the 6D
convolution will be preserved after changing the coordinate
systems. For this experiment, we used the same volumetric
pattern f(r⃗) described above and shown in Fig. 2A-B. We
then shifted this pattern to a new location and recorded the
value of the 6D convolution, as described above, shown in
Fig. 2C-D. For the comparison, we computed the same 6D
convolution from a different coordinated system, shifted by
3
√
3 Å from the original one. We used parameters from the

previous experiment. The result is shown in Fig. 2G-H. Both

convolution functions have their maximums near the loca-
tion of the center of mass of the shifted pattern, however,
their volumetric shapes are slightly different.

For a more rigorous experiment, we examined the relative
error of the translation operator 28 (Appendix D ,(Zhem-
chuzhnikov, Igashov, and Grudinin 2021)) as a function of
the displacement of the coordinate system and the expansion
order. Here, we fixed parameters to σ = 0.4 Å, ρmax = 0.6π
Å−1, ∆ρ = 0.2π Å−1, and varied the value of L. From
the results shown in Fig. 2F we can see that for the dis-
placements within about σL/2, the error is negligibly small,
which is the consequence of the Nyquist–Shannon theorem.

Technical Details
Amino-acid residues can contain atoms of 167 distinguish-
able types. We have also included one additional type for the
solvent molecules. Overall, the dimensionality of the volu-
metric function characterizing the protein model Na = 168.
We choose some maximum value of the radius Rmax, which
limits the set of atoms that fall in the amino-residue neigh-
borhood. We also choose some parameter Rn, which is the
maximum distance between amino residues that considered
as neighbors in the graph.

We use 20 amino acids types. The edge between two
amino acids can be determined by a vector of the size
20 × 20 + dt, where the first 20 × 20 elements are a one-
hot representation of the amino acids pair, with the distin-
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guishable order of residues in a pair. The last dt elements
in this vector is a one-hot representation of the topological
distance between the residues in the protein graph. The val-
ues of Rmax, Rn, dt, and L are the hyper-parameters of the
network that were optimized with a grid search.

Baseline Architecture
For the comparison, we introduced a baseline architecture
that would help us to assess the novel layers. It begins with
trainable embedding in the feature space. We then applied
the transition from the continuous to the discrete represen-
tation using operation 11 that is followed by three graph
convolutional layers described in Eq. 12. For the activation,
we used the tanh function in the last layer and the LReLU
function with the ’leak’ parameter of 0.05 in all other lay-
ers. We also introduced two trainable parameters µt and σt

for the mean and the standard deviation of the local rates
in the training sample. The relationship between the out-
put of the last layer lN and the output of the network o is
o = σtlN +µt. Overall, the baseline architecture had 21,026
trainable parameters.

Training. This network was trained on CASP 8-11
datasets (see Appendix J, (Zhemchuzhnikov, Igashov, and
Grudinin 2021) for more detail) in 1, 280 iterations. At each
iteration, the network was fed with 16 input protein models.
One training iteration took ≈ 5 minutes on Intel ©Xeon(R)
CPU E5-2630 v4 @ 2.20GHz. We used a composite loss
function that is described in Appendix L (Zhemchuzhnikov,
Igashov, and Grudinin 2021).

Hyperparameters. The network has the following hyper-
parameters, σ = 2 Å, Rn = 12 Å, dt = 10, L = 4, and
Rmax = 8 Å.

6DCNN Networks
The main difference between the baseline architecture and
the 6DCNN networks is the presence of 6D convolution
layers in the latter. Our first architecture (6DCNN-1) con-
tains only one 6D convolution layer. The second architec-
ture (6DCNN-2) has two 6DCNN layers. The 6DCNN layer
is composed of the following operations: 6D convolution,
followed by normalization and activation. Consecutive 6D
convolution layers are linked with the message passing step.
Table 3 in Appendix I lists the architectures of the net-
works. Overall, the 6DCNN-1 and 6DCNN-2 architectures
had 187,326 and 283,426 trainable parameters, correspond-
ingly. Figure 3 A in Appendix N (Zhemchuzhnikov, Igashov,
and Grudinin 2021) shows real-space projections of two 6D
convolution filters learned by 6DCNN-1.

Training. The two networks were trained on CASP 8-11
datasets (see Appendix J, (Zhemchuzhnikov, Igashov, and
Grudinin 2021) for more detail) in 1, 280 iterations. At each
iteration, the networks were fed with 16 protein models. One
training iteration took ≈ 6 minutes for 6DCNN-1 and ≈ 15
minutes for 6DCNN-2 on Intel ©Xeon(R) CPU E5-2630
v4 @ 2.20GHz. Figure 3 D in Appendix N (Zhemchuzh-
nikov, Igashov, and Grudinin 2021) demonstrates the learn-
ing curves on the validation dataset of three architectures,
baseline, 6DCNN-1, and 6DCNN-2. We used the same loss
function as for the baseline architecture.

Hyperparameters. The networks have the following hy-
perparameters, σ = 2 Å, Rn = 12 Å, dt = 10, L = 4, and
Rmax = 8 Å.

CASP Results
In order to assess the 6DCNN architectures, we compared
their performance on the CASP12 (Table 1) and CASP13
(Table 2) datasets, described in Appendix J (Zhemchuzh-
nikov, Igashov, and Grudinin 2021), with the baseline model
and also with the state-of-the-art single-model quality as-
sessment methods SBROD, SVMQA, VoroCNN, Ornate,
ProQ3, and VoroMQA (Cheng et al. 2019). SBROD is a
linear regression model that uses geometric features of the
protein backbone (Karasikov, Pagès, and Grudinin 2019).
SVMQA is a support-vector-machine-based method that
also uses structural features (Manavalan and Lee 2017).
VoroMQA engages statistical features of 3D Voronoi tes-
sellation of the protein structure (Olechnovič and Venclo-
vas 2017). VoroCNN is a graph neural network built on the
3D Voronoi tessellation of protein structures (Igashov et al.
2021). Ornate is a convolutional neural network that uses 3D
volumetric representation of protein residues in their local
reference frames (Pagès, Charmettant, and Grudinin 2019).
ProQ3 is a fully connected neural network operating on the
precomputed descriptors (Uziela et al. 2016). We computed
the ground-truth lDDT values ourselves. Therefore, we were
forced to limit the datasets to only those models that had
publicly available target structures. As a result, the CASP12
dataset turned out to be significantly bigger than CASP13,
with more demonstrative and representative results.

On the CASP12 test set, we achieved a noticeable im-
provement in comparison with the state-of-the-art meth-
ods. Even though the difference between the 6DCNN net-
works and the baseline model performance is not big, one
of the 6DCNN architectures outperforms the baseline in ev-
ery metric except for the z-score. We can also notice that the
6DCNN-2 method gives significantly higher global correla-
tions and R2 metrics on the CASP12 dataset than 6DCNN-
1 and all other methods. However, 6DCNN-1 demonstrates
better per-target correlations on CASP12 data than 6DCNN-
2. Both of the networks have higher per-target correlations
than most of the state-of-the-art methods. Unfortunately,
we did not manage to achieve satisfying performance on
the z-score metric. However, z-scores are rather noisy com-
pared to correlations, and not directly linked to the op-
timized loss function. The fact that 6DCNN-2 has better
global correlation scores confirms the importance of the ad-
ditional 6D correlation block. Figures 3 (B-C) in Appendix
N (Zhemchuzhnikov, Igashov, and Grudinin 2021) show cor-
relations between the ground-truth global scores from the
CASP12 dataset and the corresponding predictions by the
two 6DCNN models. The 6DCNN-2 map has a higher den-
sity near the diagonal, indicating a better absolute predic-
tions of global scores and a better R2 metric.

On the CASP13 dataset, we did not greatly outperform the
state-of-the-art methods (see Table 2). However, we reached
a performance that is on par with the state of the art. More-
over, we should notice that 6DCNN-2 did not outperform
6DCNN-1. This can be explained by the fact that we trained
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Global Per-target
Method z-score R2 Pearson, r Spearman, ρ R2 Pearson, r Spearman, ρ
SBROD 1,29 -33,66 0,55 0,54 -325,18 0,76 0,67
SVMQA 1,48 0,32 0,82 0,80 -2,44 0,76 0,73
VoroCNN 1,39 0,61 0,80 0,80 -2,79 0,73 0,69

Ornate 1,42 0,36 0,78 0,77 -5,14 0,73 0,69
ProQ3 1,18 0,26 0,74 0,77 -4,85 0,73 0,68

VoroMQA 1,18 -0,25 0,59 0,62 -6,23 0,74 0,70
Baseline 1,34 0,55 0,82 0,82 -2,35 0,78 0,71

6DCNN-1 1,26 0,57 0,81 0,81 -2,29 0,80 0, 73
6DCNN-2 1,19 0,63 0,85 0,84 −1,95 0,79 0,71

Table 1: Comparison of the 6DCNN networks with the baseline architecture and the state-of-the-art methods on the unrefined
CASP12 stage2 dataset. The best value for each metric (see Appendix K, (Zhemchuzhnikov, Igashov, and Grudinin 2021)) is
highlighted in bold.

Global Per-target
Method z-score R2 Pearson, r Spearman, ρ R2 Pearson, r Spearman, ρ
SBROD 1,23 0,07 0,72 0,69 -1,44 0,81 0,74

VoroCNN 1,15 0,67 0,84 0,82 0,03 0,79 0,77
VoroMQA 1,32 0,20 0,77 0,79 -1,10 0,79 0,75
ProQ3D 1,39 -0,03 0,75 0,75 -2,07 0,76 0,72
Ornate 0.93 0,26 0.62 0.67 -2,10 0,78 0,77

Baseline 1,35 0,44 0,78 0,77 -0,30 0,82 0,77
6DCNN-1 1,03 0,59 0,82 0,80 -0,02 0,83 0,79
6DCNN-2 1,30 0,56 0,79 0,78 -0,12 0,82 0,77

Table 2: Comparison of the 6DCNN networks with the baseline architecture and the state-of-the-art methods on the unrefined
CASP13 stage2 dataset. The best value for each metric (see Appendix K, (Zhemchuzhnikov, Igashov, and Grudinin 2021)) is
highlighted in bold.

our models on CASP[8-11] datasets, which are rather differ-
ent from CASP13, and also that the CASP13 dataset is less
representative than CASP12.

Table 4 in Appendix M (Zhemchuzhnikov, Igashov, and
Grudinin 2021) lists Spearman rank correlations of local
quality predictions with the corresponding ground-truth val-
ues of our networks and the state-of-the-art methods on
model structures of 11 targets from CASP13. For the com-
parison, we chose only those models that had both publicly
available target structures and local score predictions by all
other methods. As we did not have these predictions for
the CASP12 dataset, we limited local score evaluation by
CASP13 data only. Here, we did not achieve the best results
that could be explained by the small size of the dataset.

Conclusion
This work presents a theoretical foundation for 6D roto-
translational spatial patterns detection and the construction
of neural network architectures for learning on spatial con-
tinuous data in 3D. We built several networks that consisted
of 6DCNN blocks followed by GCNN layers specifically de-
signed for 3D models of protein structures. We then tested
them on the CASP datasets from the community-wide pro-
tein structure prediction challenge. Our results demonstrate
that 6DCNN blocks are able to accurately learn local spa-
tial patterns and improve the quality prediction of protein
models. The current network architecture can be extended
in multiple directions, for example, including the attention

mechanism.
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sessment of protein structure quality using interatomic con-
tact areas. Proteins, 85(6): 1131–1145.
Pagès, G.; Charmettant, B.; and Grudinin, S. 2019. Protein
model quality assessment using 3D oriented convolutional
neural networks. Bioinformatics, 35(18): 3313–3319.
Poulenard, A.; Rakotosaona, M.-J.; Ponty, Y.; and Ovs-
janikov, M. 2019. Effective rotation-invariant point CNN
with spherical harmonics kernels. In 2019 International
Conference on 3D Vision (3DV), 47–56. IEEE.
Romero, D.; Bekkers, E.; Tomczak, J.; and Hoogendoorn,
M. 2020. Attentive Group Equivariant Convolutional Net-
works. In III, H. D.; and Singh, A., eds., Proceedings of the
37th International Conference on Machine Learning, vol-
ume 119 of Proceedings of Machine Learning Research,
8188–8199. PMLR.
Romero, D. W.; and Cordonnier, J.-B. 2021. Group Equiv-
ariant Stand-Alone Self-Attention For Vision. In Interna-
tional Conference on Learning Representations.

4714



Sanyal, S.; Anishchenko, I.; Dagar, A.; Baker, D.; and Taluk-
dar, P. 2020. ProteinGCN: Protein model quality assessment
using graph convolutional networks. BioRxiv.
Satorras, V. G.; Hoogeboom, E.; Fuchs, F. B.; Posner, I.;
and Welling, M. 2021. E (n) Equivariant Normalizing
Flows for Molecule Generation in 3D. arXiv preprint
arXiv:2105.09016.
Satorras, V. G.; Hoogeboom, E.; and Welling, M. 2021.
E (n) equivariant graph neural networks. arXiv preprint
arXiv:2102.09844.
Schütt, K. T.; Kindermans, P.-J.; Sauceda, H. E.; Chmiela,
S.; Tkatchenko, A.; and Müller, K.-R. 2017. Schnet: A
continuous-filter convolutional neural network for modeling
quantum interactions. arXiv preprint arXiv:1706.08566.
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