
Hierarchical Multi-Supervision Multi-Interaction Graph Attention Network for
Multi-Camera Pedestrian Trajectory Prediction

Guoliang Zhao1, Yuxun Zhou2, Zhanbo Xu1, Yadong Zhou1, Jiang Wu1

1Institute of Automation Science and Engineering, Xian Jiaotong University, China
2Department of Electrical Engineering and Computer Sciences, UC Berkeley, United States

zgl934455716@stu.xjtu.edu.cn, yxzhou@berkeley.edu,
zbxu@sei.xjtu.edu.cn, {ydzhou, jiangwu}@xjtu.edu.cn

Abstract

Pedestrian trajectory prediction has become an essential un-
derpinning in various human-centric applications including
but not limited to autonomous vehicles, intelligent surveil-
lance system and social robotics. Previous research endeav-
ors mainly focus on single camera trajectory prediction
(SCTP), while the problem of multi-camera trajectory predic-
tion (MCTP) is often overly simplified into predicting pres-
ence in the next camera. This paper addresses MCTP from a
more realistic yet challenging perspective, by redefining the
task as a joint estimation of both future destination and possi-
ble trajectory. As such, two major efforts are devoted to facil-
itating related research and advancing modeling techniques.
Firstly, we establish a comprehensive multi-camera Scenes
Pedestrian Trajectory Dataset (mcScenes), which is collected
from a real-world multi-camera space combined with thor-
ough human interaction annotations and carefully designed
evaluation metrics. Secondly, we propose a novel joint pre-
diction framework, namely HM3GAT, for the MCTP task by
building a tailored network architecture. The core idea be-
hind HM3GAT is a fusion of topological and trajectory infor-
mation that are mutually beneficial to the prediction of each
task, achieved by deeply customized networks. The proposed
framework is comprehensively evaluated on the mcScenes
dataset with multiple ablation experiments. Status-of-the-art
SCTP models are adopted as baselines to further validate the
advantages of our method in terms of both information fu-
sion and technical improvement. The mcScenes dataset, the
HM3GAT, and alternative models are made publicly available
for interested readers.

Introduction
The information about human behavior, especially human
trajectory, is of major importance for multiple human-
centric application domains, including autonomous driving
(Chai et al. 2019), intelligent surveillance system (Bastani,
Marcenaro, and Regazzoni 2016) and social robotic naviga-
tion (Rhinehart, Kitani, and Vernaza 2018). Trajectory pre-
diction, in a nutshell, aims to estimate socially acceptable
trajectories in a near future, according to historical records
in a time window from the past. Despite of an unprecedented
development in this research direction, most works only con-
sider pedestrian trajectory in a single scene from an aerial
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Figure 1: An illustration of the HM3GAT. By leveraging the
strong association between pedestrian trajectory and their
potential intention, HM3GAT achieves a joint prediction of
both next camera and future trajectory.

view, which is referred to as single camera trajectory pre-
diction (SCTP). This simplification leads to a critical draw-
back: The location and the inter-connection (topological) in-
formation among different camera scenes are completely ne-
glected. However in most public spaces, such as transporta-
tion hubs, shopping malls and subway stations, occupant
spaces are usually composed of multi-camera networks, and
pedestrian presence prediction in the next possible camera
scene is much more valuable. With that, we re-define the
multi-camera trajectory prediction (MCTP) task as follows:
In a space with a multi-camera network, MCTP performs a
comprehensive prediction about future trajectories, includ-
ing both the next camera and the detailed trajectory in the
current camera scene, based on topological information and
historical knowledge available from the multi-camera net-
work. A specific example is given in Fig. 1, where pedestri-
ans move in a space with a multi-camera network composed
of three cameras. The MCTP defined in this paper strives to
learn a model that not only can predict a target pedestrian’s
future trajectory, but also can predict the next camera that the
target pedestrian will likely reach. This combined approach
would resolve practical needs in an unified framework, and
as will be shown in this paper, would allow the fusion of
multi-supervision information to benefit each sub-task.

The MCTP task defined here is confronted by two major
challenges. Practically, most of the existing datasets are ac-
quired for SCTP, such as ETH and UCY (Pellegrini et al.
2009; Lerner, Chrysanthou, and Lischinski 2007), Although
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the WNMF (Styles et al. 2020) dataset includes several cam-
eras, it lacks the important pedestrian interaction annota-
tions hence are not suitable for MCTP considered in this
work. Technically, a joint modeling can be arduous as is-
sues about representation learning and information sharing
could arise when multiple layers of data sources are com-
bined together. On the one hand, pedestrian interaction, ran-
domness of motion and latent intent of pedestrian are already
hard to describe with many entangled factors. On the other
hand, it’s intuitively helpful for MCTP to include multi-
supervision information fusion, because knowledge about
topological layout, pedestrians’ mutual interaction, histori-
cal motion and latent intent are intrinsically entangled and
carry intimations on each other.

To overcome the challenges and solve the joint predic-
tion problem raised by the redefined MCTP task, we first
create a multi-camera pedestrian trajectory dataset, namely
mcScenes, that allows to train and compare different mod-
els in a quantitative way. Then we establish a joint future
destination and trajectory prediction framework, called hi-
erarchical multi-supervision multi-interaction graph atten-
tion network (HM3GAT), to capture the hierarchical, cou-
pled data structure with a history motion encoder, a social
interaction encoder, and a latent goal decoder. The final pre-
diction is achieved through the fusion of topological infor-
mation, pedestrian historical motion, hierarchical interaction
and latent intent by a future trajectory decoder. To summa-
rize the main contributions:
• We establish a carefully labeled multi-camera pedes-

trian trajectory dataset and evaluation metrics for MCTP,
which would benefit the community for future research.

• A joint future destination and trajectory prediction
framework is proposed for MCTP task, which effectively
captures both the human social interaction across multi-
camera scenes and the destination/topological informa-
tion for better prediction.

• We establish a benchmark for MCTP and compare vari-
ous methods on our multi-camera trajectory dataset.

Related Work
Single-camera Trajectory Prediction. Most previous
works on pedestrian trajectory prediction focused on single-
camera view, mainly based on two methods, i.e., RNNs and
GNNs. Because pedestrian trajectory prediction is a seq-to-
seq in nature, RNNs and their variants, e.g., LSTM, were
also adopted for this problem. (Alahi et al. 2016) proposed
a Social-LSTM model, which aggregates the hidden states
of neighbor pedestrians on a grid by a social pooling layer.
Extending the idea of Social-LSTM, Social-Attention (Vem-
ula, Muelling, and Oh 2018) modeled pedestrian interac-
tions as a spatio-temporal graph and adds attention mech-
anism to the social pooling layer. Group-LSTM (Bisagno,
Zhang, and Conci 2018) and SR-LSTM (Zhang et al. 2019)
reused the social pooling with different pooling mechanism.
Social-GAN (Gupta et al. 2018) combined GAN with LSTM
to generate multi-modal pedestrian trajectory.

With the pervasive success of graph neural networks
(GNN) for modeling relations, a large body of research be-

gins to use it to learn the social interaction graph repre-
sentation. STGAT (Huang et al. 2019) is the first attempt
to combine GAT (graph attention network) with LSTM in
the context of modeling pedestrian motions. STGCNN (Mo-
hamed et al. 2020) aggregated motion information using
GCN (Graph Convolutional Network) on a spatio-temporal
graph. DMRGCN (Bae and Jeon 2021) is also a GCN-based
method, which can learn sophisticated social relations be-
tween pedestrians using multi-scale aggregation. Similarly,
our HM3GAT also employs graph embedding methods to
capture pedestrian interactions. The difference is that our
method divides pedestrian interactions into person interac-
tion in single camera and group interaction across cameras.
Joint Prediction Framework and Multi-camera Trajec-
tory Prediction. Until recently, only a few works have ad-
dressed Multi-Camera Trajectory Prediction. The first work
(Styles et al. 2020) put forward a formulation of MCTP task
with a simplified goal to predict the next camera given ob-
served trajectory for several seconds in single camera. A
complete MCTP task, on the other hand, should consist of
both the next camera prediction and trajectory prediction.
Other recent works, e.g., (Liang et al. 2019) and PECNet
(Mangalam et al. 2020), attempted to combine the predic-
tion of activity/endpoint and trajectory. However their mod-
eling techniques were still traditional which might not be
able to comprehensively capture the complex structure of
MCTP data. To the best of our knowledge, this paper is the
first one to handle both destination and trajectory prediction
with a tailored and unified graph attention network.
Trajectory Datasets. Existing pedestrian trajectory datasets
can be divided into three categories: single-camera trajec-
tory datasets (Robicquet et al. 2016; Pellegrini et al. 2009;
Lerner, Chrysanthou, and Lischinski 2007), multi-future tra-
jectory datasets (Liang et al. 2020) and multi-camera tra-
jectory datasets (Styles et al. 2020; Ristani et al. 2016). To
overcome the limitation of previous datasets, we establish a
new one with enriched pedestrian interactions. Note that this
is the first real-world MTCP dataset with carefully labeled
pedestrian interaction annotations in crowds.

The HM3GAT Framework
In this section, we introduce a joint destination and trajec-
tory prediction framework, namely HM3GAT. It essentially
consists of a history motion encoder, a social interaction en-
coder, a latent goal decoder and a future trajectory decoder.
An overview is illustrated in Fig. 2.

Problem Definition
The multi-camera trajectory prediction problem involves a
joint prediction of future destination and trajectory based
on observed position sequences for all pedestrians across
multi-camera network. We assume that there are M scenes
involved in a multi-camera space. Given the topology of
multi-camera network and a set of N pedestrians across the
multi-camera network with their observed positions trn,iobs,
n ∈ {1, ..., N}, i ∈ {1, ...,M} over a time period Tobs, we
need to predict the next camera sj and the future trajectory
trn,ipred over a future time period Tpred. For each pedestrian n,

4699



History Motion Encoder

......PLSTM PLSTM PLSTM

Position

Step

(v,direction)

HMGAT

Social Interaction Encoder

C

MLP

C

Softmax

Softmax

Latent Goal Decoder

Future Trajectory Decoder

Mask

Multi-head

Attention

Add & 

Norm

HMGAT

G1

G3

G2

V
ie

w
D

is
ta

n
ce

R
el

at
iv

e 

D
is

p
la

ce
m

en
tG

ra
p

h
 I

n
p

u
ts

M
u
lt

i-
h
ea

d

G
A

T

Motion Feature

Inputs
G1,1

G1,2

G1,3

G2,1

G2,2

G2,3

G3,1

G3,2

G3,3

is the motion representation

G1

G3

G2

1
1

1 1
1

111
1

2
2

2
2

22

2

2
2

3
3

3
33

33 3
3

Maxpooling

Group1

Group2

Group1 Group2

Group3
Group3

H1: Person Interaction

H2: Group Interaction

.

is the H1 feature representation
is the HMGAT feature representation

1
0

3
3

2
3

0
3

3

3

2

1

......SLSTM SLSTM SLSTM

......GLSTM GLSTM GLSTM

Camera idCamera id

MLP

MLP MLP

Camera id

Destination

DLSTM

z

+

C Concat

+ Addition

Point-wise 

Multiplication
.

Figure 2: An overview of the HM3GAT model for a joint future destination and trajectory prediction, elaborated in sections of
diagram part. With 2-dimensional pixel coordinates of N pedestrians for Tobs frames, motion features are extracted by history
motion encoder and the multi-interaction graphs are constructed for HMGAT to generate the social interaction features. Then
pedestrian latent goals are decoded by HMC model. Finally, we use Transformer encoder to aggregate these three types of
features, and extrapolate future trajectories with DLSTM.

we denote the corresponding trajectory by trn,iobs = {pn,it =

(xn,it , yn,it )| t ∈ {1, ..., Tobs}}, where pn,it = (xn,it , yn,it )
are the pixel coordinates of pedestrian n at a specific time t
in the ith camera scene. Similar to the predicted trajectory.
We assume that the predicted coordinates (x̂n,it , ŷn,it ) and
sj are random variables. Therefore, with the observed tra-
jectory tr1:Tobs

for all pedestrians across the multi-camera
network, our goal is to predict the future camera sj and the
future trajectory trTobs+1:Tpred

.

History Motion Encoder
The generation of pedestrian trajectory is related to pedes-
trian motion state. Each pedestrian has his/her own motion
pattern, including step length (representing direction and
speed) and position. Extracting above information from ob-
served trajectory is a key to the success of motion state rep-
resentation. Based on several established works from com-
puter vision (Alahi et al. 2016; Su et al. 2017), we propose
to use SLSTM for step encoding and PLSTM for position
encoding, which are two LSTMs that don’t share weights.

We use PLSTM and SLSTM to encode pedestrian posi-
tion information pn1:Tobs

= (xn1:Tobs
, yn1:Tobs

) and step infor-
mation ∆pn1:Tobs

= (∆xn1:Tobs
,∆yn1:Tobs

):

ent = φp(xnt , y
n
t ;W1) (1)

vnt = φs(∆xnt ,∆y
n
t ;W2) (2)

Pn
t = PLSTM(Pn

t−1, e
n
t ;Wp) (3)

Sn
t = SLSTM(Sn

t−1, v
n
t ;Ws) (4)

where φp(·) and φs(·) are embedding functions.W1 andW2

are the embedding weight. Pn
t and Sn

t are the hidden state
of the PLSTM and SLSTM at t time step. Wp and Ws are
the weight of PLSTM cell and SLSTM cell.

Social Interaction Encoder
Pedestrian trajectory is affected by the motion state of sur-
rounding pedestrians, called social interaction. In the past
few years, many methods were proposed to model social in-
teraction, such as Social Force (Helbing and Molnar 1995),
Social Pooling (Alahi et al. 2016; Zhang et al. 2019) and
Social Graph Embedding (Huang et al. 2019; Mohamed
et al. 2020). However, all existing methods are limited to
single camera scene. To model the social interaction across
the multi-camera network, this work proposes a novel Hi-
erarchical Multi-interaction Graph Attention Network (HM-
GAT) to encode the social interaction from two levels:
• H1: encode the social interactions in single camera scene,

referred to as the person interaction.
• H2: encode the social interactions of groups across multi-

camera scenes, named group interaction.
Regarding H1, the goal is to capture the person-to-person

social interactions in single camera scene. The factors af-
fecting the strength of pedestrian interactions mainly include
view, distance and relative displacement. Hence we intro-
duce a multi-relational social graph with three types of re-
lations R = {view, distance, relative displacement} (Li
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et al. 2019). As shown in Fig. 2, we assign different edges
on multi-relational social graphs to represent the existing
person-to-person interactions and place the output of his-
tory motion encoder as the nodes of multi-relational social
graphs. Mathematically, our spatio-temporal social interac-
tion graph can be described as a set of spatio social graph
G = {Gr,m

t |r ∈ R,m ∈ {1, ...,M} , t ∈ {1, ..., Tobs}},
where Gr,m

t is the rth relational social graph at t time step
in m camera scene. Its adjacency matrix Ar,m

t = {ar,mi,j,t|r ∈
R,m ∈ {1, ...,M} , i, j ∈ {1, ..., N} , t ∈ {1, ..., Tobs}}
represents the physical relationships between pedestrians i
and j. Its node representation Hr,m

t = {hr,mn,t |r ∈ R,m ∈
{1, ...,M} , n ∈ {1, ..., N} , t ∈ {1, ..., Tobs}} represents
the motion feature of pedestrian n. Ar,m

t is normalized by:

Âr,m
t = MinMaxScaler(Ar,m

t ) (5)

where Âr,m
t ∈ [0, 1].

As such, the node features of three types of social graphs
can be updated as fellows:

Ĥr,m
t = σ1(Ar,m

t Hr,m
t W r) (6)

where σ1(·) is a nonlinear activation function (such as
ReLU), and W r indicates a learnable weight matrix.

Since GAT (Busbridge et al. 2019) allows for aggregat-
ing information from neighbors by assigning different im-
portance to different nodes, we use GAT as our informa-
tion sharing mechanism. As shown in Fig. 3, the graph at-
tention layer is introduced for single camera social graph,
which enables a node to assign different importance to dif-
ferent nodes within a neighborhood and to aggregate fea-
tures from them. The inputs of our Multi-head GAT are
Ĥr,m

t = {ĥr,mn,t ∈ RF |n ∈ {1, ..., N}}, where F is the
feature dimension of each node. From the Multi-head GAT,
the aggregated hidden state H̃r,m

t can be obtained for all
pedestrians of the rth social graph at t time step in m cam-
era scene, which contains the spatial influence from other
pedestrians in the same camera scene:

H̃r,m
t = MultiheadGAT (Ĥr,m

t ) (7)
where MultiheadGAT is the success of self-attention mech-
anism in graph network (Veličković et al. 2017). Finally, the
multi-relational aggregated motion features of all pedestri-
ans at t time step in m camera scene, are given by:

H̃m
t = σ2(

∑
r∈R

H̃r,m
t ;W ) (8)

Public Space

camera scene 1 camera scene 2 camera scene M... ...

... ...

dep 1 dep 2 dep K
1

dep K
M

dep 1 dep 2

Figure 4: An illustration of the hierarchical structure be-
tween camera scenes and departures of camera scenes.

where σ2(·) is a nonlinear activation function. W indicates
a weight matrix. H̃m

t = {h̃mn,t ∈ RF |n ∈ {1, ..., N}}.
Next we discuss H2, which models the interactions be-

tween pedestrian groups in different camera scenes. Inspired
by Starnet network (Zhu et al. 2019), the group motion fea-
ture of pedestrians in single camera scene m is given by:

g̃mt = MaxPooling(h̃m1,t, ..., h̃
m
Nm,t) (9)

then, we get the final interaction features of all pedestrians
by the weighted point-wise multiplication between group
motion features g̃mt and person motion feature h̃mn,t after H1:

h̄n,t =
M∑

m=1

(wmg̃
m
t � h̃mn,t) (10)

where wm is the weight coefficient, representing the impor-
tance of different group motion features, and � is the point-
wise multiplication. h̄n,t is the final output of HMGAT.

Finally, another LSTM is applied to explicitly incorpo-
rate the temporal correlations between interactions, named
GLSTM (Huang et al. 2019):

Gn
t = GLSTM(Gn

t−1, h̄n,t;Wg) (11)

where Gn
t is the hidden state of the GLSTM. Wg is the

weight of GLSTM cell.

Latent Goal Decoder
Various works suggested that a better decoding of the future
trajectory can be achieved by capturing the latent goal of
target pedestrian. Note that the choice of destination with a
pedestrian trajectory is often limited in a given scene. More-
over as shown in Fig. 4, the camera scenes and the exit-
entrance pairs between cameras (called departure) exhibit a
hierarchical structure. Consequently, we creatively propose
a Hierarchical Multi-label Classification (HMC) (Vens et al.
2008) model to predict pedestrian latent intention, which
consists of four MLPs and two Softmax layers in Fig. 2.

The inputs of HMC model are the outputs of history mo-
tion encoder: Pn

Tobs
and Sn

Tobs
, and the one-hot encoder of

current camera id On
Tobs

. With these inputs, we can predict
the next camera id and the departure of current camera scene
for target pedestrian. The processing is as follows:

qn,1l1
= MLP (||(Pn

Tobs
, Sn

Tobs
, On

Tobs
);W 1

l1) (12)

qn,1l2
= MLP (||(Pn

Tobs
, Sn

Tobs
, On

Tobs
);W 1

l2) (13)
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qnl1 = MLP (qn,1l1
;W 2

l1) (14)

qnl2 = MLP (qn,1l1
||qn,1l2

;W 2
l2) (15)

enc = Softmax(qnl1) (16)
end = Softmax(qnl2) (17)

where || represent concatenate. W 1
l1

, W 1
l2

, W 2
l1

and W 2
l2

are the weight matrix of four MLPs. enc ∈ R(M,1) is the
probability vector of the predicted next camera, and end ∈
R(

∑M
i=1(Ki),1) is the probability vector of the predicted de-

parture. Important prior knowledge and space outlines, such
as the multi-camera network topologyAc ∈ R(M,M) and the
camera-departure topology Ad ∈ RM,

∑M
i=1(Ki), are usually

accessible for a specific public area. Thus the masked prob-
ability vector of the predicted next camera and the masked
probability vector of the predicted departure can be written
as:

ênc = On
Tobs

Ac � enc (18)
ênd = On

Tobs
Ad � end (19)

where � is the point-wise multiplication.

Future Trajectory Decoder
At last, with the motion features, social interaction features
and latent goal features, we can generate the predicted future
trajectory. Firstly, the aforementioned three parts need to be
combined to accomplish the information fusion of multi-
supervision. To this end, three types of features are con-
nected by the encoder part of Transformer network (Jader-
berg et al. 2015) to achieve the effective fusion. More specif-
ically, the feature alignment is done by:

En = φl(ênc , ê
n
d ;Wl) (20)

where φl(·) is embedding function. Wl is the embedding
weight. En ∈ RD indicates the latent goal feature. So the
inputs of Transformer encoder reads:

Hn
F = Stack(Sn

Tobs
, Gn

Tobs
, En) (21)

where the function of Stack is a feature stacking, Hn
F ∈

R(3,D). With that the fusion of features yields:

Ĥn
F = MultiheadAttention(Hn

F ) (22)

H̄n
F = LayerNorm(Ĥn

F +Hn
F ) (23)

Finally, we customize LSTM to decode future trajectory,
namely DLSTM, with the following state vector:

Dn
Tobs

= Flatten(H̄n
F )‖z (24)

where the function of Flatten is flattening features. z is rep-
resents noise. The future trajectory is:

Dn
Tobs+1 = DLSTM(Dn

Tobs
, enTobs

;Wd) (25)
(∆xnTobs+1,∆y

n
Tobs+1) = δ(Dn

Tobs+1) (26)
where Wd is the weight of DLSTM cell. δ is a linear layer.
Similarly, we take the MSE of predicted positions and the
CEL of predicted departures (compared with groundtruth)
together as our loss functions. The proposed model is trained
for 256 epochs with the Adam optimizer. We use a mini-
batch size of 32. The initial learning rate is 0.01, and
changed to 0.005 after 128 epochs. The training is performed
on a NVIDIA TITAN V GPU. Each of the above compo-
nents has been fine-tuned for optimal hyper-parameters and
the readers are referred to the Github repo for more details.
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Figure 5: Visualization of camera scenes and camera net-
work topology. Where, these triangles represent the depar-
tures in each camera scene.

The Pedestrian Trajectory Dataset: mcScenes
In this section, we introduce our multi-camera scenes pedes-
trian trajectory dataset annotated by human, called mc-
Scenes, for multi-camera trajectory prediction evaluation.

Existing datasets. Since the trajectory prediction prob-
lem was proposed, many trajectory datasets have been es-
tablished, such as: (1) Single camera trajectory datasets:
SDD (Robicquet et al. 2016), ETH/UCY (Pellegrini et al.
2009; Lerner, Chrysanthou, and Lischinski 2007) and VI-
RAT/ActEV (Awad et al. 2018; Oh et al. 2011); (2) Sin-
gle camera multi-future trajectory datasets: Forking Paths
(Liang et al. 2020); (3) Multi-camera trajectory datasets:
WNMF (Styles et al. 2020).

mcScenes Overview. As shown in Fig. 5, Our dataset
is constructed from a laboratory space with a surveillance
camera angle of view, which consists of M = 4 camera
scenes and 11 departures in the whole multi-camera net-
work. We collected surveillance video data, and use video
processing tools to extract frames from original videos (5
frame/s). Then we use Deepsort (Veeramani, Raymond,
and Chanda 2018), that is a pedestrian tracking model, to
extract pedestrian trajectory roughly. Finally we hired some
volunteers to annotate the trajectories. The dataset contains
these fields: {frame, id, x, y, interaction category, camera id,
next camera id, departure id}. In total, mcScenes contains
263 pedestrian trajectories with multiple human interactions
and 8843 frames. Due to the page limit, details about the
data collection and processing are deferred to the supple-
ment material for interested readers.

Experiments
In this section, we evaluate various methods for multi-
camera trajectory prediction on our mcScenes dataset.
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Figure 6: Qualitative analysis. According to the social interaction categories (a∼f), we compare HM3GAT with MC-STGAT in
visualization. MC-STGAT is retrained by merging with our proposed joint prediction framework. See text for details.

Benchmark and Evaluation Metrics
Although no off-the-shelf method is previously available
for MCTP, we establish several non-trivial baselines and
compare them with our HM3GAT model on the mcScenes
dataset, to reveal the insight behind HM3GAT and to jus-
tify the designed architecture. The first alternative is called
LSTM+FC∗, which can be viewed as a segregated block of
our proposed framework. A comparison with LSTM+FC∗
will show that the proposed framework can achieve effective
information fusion and can reveal latent goals that would
otherwise be undetectable using individual data source. The
second class of alternatives are constructed by replacing the
social interaction encoder part of our framework with ex-
isting modules in literature, so as to verify the technical
advancement of the proposed HM3GAT. More specifically,
the following classical methods are included. Linear (Alahi
et al. 2016): a linear regressor that predicts the next coordi-
nates based on previous points. Social-LSTM (Alahi et al.
2016): a LSTM model with social pooling layer. STGAT
(Huang et al. 2019): a graph attention model for spatio-
temporal social graph. Social-STGCNN (Mohamed et al.
2020): a graph embedding model, GCN, for spatio-temporal
social graph.

For the sake of fairness, random re-sampling is performed
with a ratio of 8:1:1 to divide the training, validation and
test set. Same as prior works, the number of observed time
steps is 8 (3.2 sec) of each person and the upcoming trajec-
tory is 12 (4.8 sec). Three metrics are considered to evaluate
the performance of different models: minADE, minFDE and

mcScenes
minADE20 minFDE20 maxACC20

LSTM+FC∗ 0.066 0.127 0.641
MC-LSTM 0.058 0.113 0.747

MC-S-LSTM 0.050 0.095 0.786
MC-STGAT 0.056 0.108 0.774

MC-STGCNN 0.054 0.101 0.783
HM3GAT 0.049 0.095 0.789

Table 1: Comparison of different methods on the mcScenes
dataset. Methods are marked with ∗ (LSTM+FC∗), which
indicates not adopting our proposed joint prediction frame-
work. The pixel coordinate (x, y), used to calculate the ADE
and FDE, is normalized by the resolution ([856, 480]).

maxACC (the proportion of correctly predicted samples in
the total number of samples for the next camera prediction).

Quantitative Analysis
Table 1 reports the results of our HM3GAT and other base-
line methods on the mcScenes dataset in terms of the evalu-
ation metrics. It appears that:
• All baseline methods except for LSTM+FC∗ are adapt-

able to our proposed joint future destination and tra-
jectory prediction framework. Methods using the pro-
posed framework all yield acceptable estimation as far
as the three evaluation metrics are concerned, e.g., ADE
(0.49∼0.58), FDE (0.095∼0.113) and ACC (average
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Figure 7: Example of a group of complete trajectories across
the multi-camera network.

Components
Variants M&T SIE LGD AVG

H MI (ADE/FDE)
MC-STGAT X × × X 0.056/0.108

HGAT X X × X 0.054/0.100
HM3GAT X X X X 0.049/0.095
HMGAT X X X × 0.050/0.095

Table 2: Ablation experiments. M&T, SIE and LGD respec-
tively denote motion encoder, trajectory decoder, social in-
teraction encoder and latent goal decoder. SIE contains H
(hierarchical interaction) and MI (multiple interaction).

0.776). By contrary, LSTM+FC∗, not adopting the joint
prediction framework, performs the worst with ADE
(0.066), FDE (0.127) and ACC (0.641). This justifies our
designed information fusion scheme for the MCTP task,
and implies that the knowledge about destination would
benefit the estimation of trajectory and vice versa.

• Compared with these baseline approaches, HM3GAT
achieves remarkable performance gains. our method
HM3GAT outperforms all the previous approaches in
terms of the average ADE (0.049) and FDE (0.095).
This demonstrates that our HM3GAT with a hierarchi-
cal multi-interaction graph attention network to model
the social interaction between all pedestrians across the
multi-camera network indeed helps for MCTP task.

Qualitative Analysis
In this subsection, we provide examples to show intuitively
how our HM3GAT successfully captures complex motion
behaviors of pedestrians. The prediction results are quali-
tatively compared between MC-STGAT (Huang et al. 2019)
and HM3GAT. It’s evident that our model performs better
in most instances, especially when the pedestrians’ motion
exhibit nonlinear patterns.

Fig. 6 shows diverse predictions from multiple so-
cial interaction situations, including linear, leader follower,
group, static, collision avoidance and non interaction. Fig.
6(a)(b)(c) show three different situations (linear, leader fol-
lower and group). By comparison, we observe that our

model generates trajectories much closer to ground truth,
especially for walking in the same direction in group and
following others. Fig. 6(d)(f) show two different situations
(static, non interaction). Both of two models can predict the
future trajectories precisely. Fig. 6(e) shows the most diffi-
cult collision avoidance situation, in which one pedestrian
and another two pedestrians are heading towards the op-
posite directions. The prediction trajectories of the single
pedestrian present the avoidance intention away from an-
other two pedestrians, but the final accuracy is deteriorated.
This demonstrates that our model can learn the initial phase
in collision avoidance, but fails to emulate the subsequent
trajectory. One possible reason is that the samples of colli-
sion avoidance are still insufficient in our mcScenes dataset.

Fig. 7 shows a group of complete trajectories across the
multi-camera network. From the pedestrians entering the
multi-camera space to leaving the scene, our model accu-
rately predicts the future trajectories and the next camera in
each scene. At the same time, our model achieves the conti-
nuity of motion state between adjacent scenes, demonstrat-
ing the advantages and effectiveness of our model for MCTP.

Ablation Experiments
To further evaluate each component of our model sys-
tematically, we conduct a series of ablation experiments
with the following variants of our model: MC-STGAT:
modified model without hierarchical interaction or multi-
interaction module; HGAT: modified model without multi-
interaction module, but with hierarchical interaction and
latent goal module; HMGAT: modified model without la-
tent goal module, but including hierarchical interaction and
multi-interaction module.

In Table 2, comparing HM3GAT with HMGAT, the aver-
age ADE and FDE reduce from 0.050/0.095 to 0.049/0.095
with LGD module. It proves that the latent goal decoder
module of our joint prediction framework provides ef-
fectively destination information for trajectory prediction.
From the comparison of MC-STGAT, HGAT and HM3GAT,
we can see that the average ADE and FDE are reduced from
0.056/0.108 to 0.054/0.100 to 0.049/0.095, which indicates
that our HM3GAT can successfully capture the multiple in-
teractions between pedestrians and the hierarchical interac-
tion among different camera scenes.

Conclusion
In this paper, we redefined the multi-camera trajectory pre-
diction problem and introduced the mcScenes dataset for
MCTP. Our study is the first to combine the next cam-
era prediction and the future trajectory prediction within
a novel joint future destination and trajectory prediction
framework. Besides, by introducing existing methods of sin-
gle camera trajectory prediction into our framework, we pro-
vided a quantitative benchmark and evaluation methodology
for multi-camera trajectory prediction. It’s shown that our
method achieves state-of-the-art performance on our pro-
posed mcScenes dataset. We believe our dataset, together
with the proposed models, will facilitate future research and
uphold applications on multi-camera trajectory prediction.
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