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Abstract

Heads-up no-limit Texas hold’em (HUNL) is the quintessen-
tial game with imperfect information. Representative prior
works like DeepStack and Libratus heavily rely on counter-
factual regret minimization (CFR) and its variants to tackle
HUNL. However, the prohibitive computation cost of CFR
iteration makes it difficult for subsequent researchers to learn
the CFR model in HUNL and apply it in other practical ap-
plications. In this work, we present AlphaHoldem, a high-
performance and lightweight HUNL Al obtained with an end-
to-end self-play reinforcement learning framework. The pro-
posed framework adopts a pseudo-siamese architecture to di-
rectly learn from the input state information to the output ac-
tions by competing the learned model with its different his-
torical versions. The main technical contributions include a
novel state representation of card and betting information, a
multi-task self-play training loss function, and a new model
evaluation and selection metric to generate the final model.
In a study involving 100,000 hands of poker, AlphaHoldem
defeats Slumbot and DeepStack using only one PC with three
days training. At the same time, AlphaHoldem only takes 2.9
milliseconds for each decision-making using only a single
GPU, more than 1,000 times faster than DeepStack. We re-
lease the history data among among AlphaHoldem, Slumbot,
and top human professionals in the author’s GitHub reposi-
tory to facilitate further studies in this direction.

Introduction

Poker is a typical imperfect information game (IIG) that
has a long history as a challenging problem for develop-
ing Artificial Intelligence (Al) that can address hidden in-
formation (Waterman 1970). Among different poker games,
Heads-up no-limit Texas hold’em (HUNL) is a two-player
poker game in which two cards are initially dealt face-down
to each player, and additional cards are dealt with face-up
in three subsequent rounds. No-limit means no restriction
on the bet size, although it may be restricted by the total
amount wagered in each game. Because of its explicit prob-
lem setting with large decision space (~10*¢! information
sets) and strategic complexity, HUNL has been an excellent
benchmark and challenging problem for developing Al al-
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gorithms for studying the two-player zero-sum games with
imperfect information (Bard et al. 2013; Jackson 2013).

Recently, with the aid of increasing computing resources,
computer programs have reached the performance that ex-
ceeds expert human players in many games, e.g., Go (Sil-
ver et al. 2016), MahJong (Li et al. 2020), DOTA (Berner
et al. 2019), and StarCraft (Vinyals et al. 2019). These Al
systems collect a tremendous amount of replay samples ei-
ther from human experts or self-play of the system to train
some complex learning models. The adoption of deep neu-
ral networks significantly improves the learning ability and
performance of these systems. However, the model train-
ing process often lasts for dozens of days using thousands
of CPU/GPUs, making these models extremely expensive to
obtain. According to the reported computing resources used
in AlphaGo (Silver et al. 2016), training an AlphaGo model
costs about 35 million dollars.

As for the HUNL AI, new algorithms are also pro-
gressing very fast under the counterfactual regret mini-
mization (CFR) framework (Zinkevich et al. 2007). Deep-
Stack (Moravcik et al. 2017) and Libratus (Brown and
Sandholm 2018) are independently developed and demon-
strate expert-level performance. Both DeepStack and Libra-
tus compute an abstraction of the game and introduce sub-
game solving with the CFR+ (Tammelin et al. 2015) algo-
rithm to learn HUNL Als. Under the CFR framework, the
primary computation cost comes from the CFR iteration pro-
cess performed in both the model training and testing stages.
To ensure high-quality prediction, this iteration process of-
ten needs to be carried out for more than 1,000 times in
practice (Moravcik et al. 2017). This restriction makes the
training of a high-performance CFR-based HUNL Al com-
putationally infeasible for most research institutions and pre-
vents the application of the CFR model into larger IIGs.

This work aims to develop a high-performance HUNL
Al with affordable computation and storage costs for small
research institutions and inspire further studies to develop
more universal solutions for Al of Texas hold’em and other
IIGs. To this end, we propose AlphaHoldem, a HUNL Al
trained from an end-to-end reinforcement learning frame-
work rather than the CFR framework that gives birth to most
of the current HUNL Als. We design a pseudo-Siamese ar-
chitecture in this framework that directly learns from the in-
put game information to produce the action through a single



feedforward pass of a neural network. This new architec-
ture eliminates the need for highly computationally intensive
CFR iterative inference during training and testing stages. To
accelerate the training process of AlphaHoldem, we develop
a set of new techniques for efficient learning the AlphaHol-
dem framework, including game state representations, train-
ing loss functions, and model generation strategies.

In contrast to previous abstraction-based methods in
HUNL AI design, AlphaHoldem does not perform any card
information abstractions using human domain knowledge.
Instead, it encodes the game information into tensors con-
taining the current and historical poker information. This
new multidimensional tensor representation permits effi-
cient learning of the decision model using convolutional net-
works. As for the learning algorithms, we propose a new loss
function in the actor-critic paradigm which significantly im-
proves the model learning speed and stability. To perform
better early-stopping and generate a strong HUNL model,
we propose a new self-play procedure to simultaneously re-
duce the training cost and guarantee the model performance.
This is achieved by keeping only one agent as the main train-
ing objective but maintains a pool of competing agents to
play with the main agent to ensure the replay sampling diver-
sity. The proposed new loss function also helps in selecting
the competing agents in the pool.

The size of the whole AlphaHoldem model is less than
100MB. We finish the training of the AlphaHoldem AI in
three days using only one single computing server of 8§ GPUs
and 64 CPU cores. During inference, AlphaHoldem takes
only 2.9 x 1072 second for each decision in a NVIDIA TI-
TAN V GPU. We evaluate the effectiveness of AlphaHoldem
through extensive experimental analyses and comparisons.
In a study involving 200,000 hands of poker, AlphaHoldem
beats DeepStack and Slumbot with statistical significance
by a margin of 16.91 mbb/h and 111.56 mbb/h, respectively.
This work makes the following three main contributions:

* We present a general and end-to-end self-play rein-
forcement learning framework to tackle the challeng-
ing HUNL problem: inference from state information di-
rectly to the final action using only a forward pass of the
neural network in each decision point.

* We develop a set of new techniques to speed up the learn-
ing process of the AlphaHoldem: a new game state rep-
resentation without the abstraction of the card informa-
tion or any human knowledge, a new policy loss function
that limits the distribution of policies, and a new self-play
procedure that quickly generates the best model.

* We obtain a high-performance HUNL AI AlphaHoldem:
it is trained in three days using a single machine and
beats the current two best HUNL Al, Slumbot and Deep-
Stack, with only 3ms decision time, more than 1,000
times faster than DeepStack.

We have released the history data among AlphaHoldem,
Slumbot, and top human professionals for research purposes
in the author’s GitHub repository' to facilitate further stud-
ies in large-scale IIGs.

"https://github.com/ZhaoEnMin/AlphaHoldem_Data/
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Train Resources Test
CPU hours GPU hours Storage Resources
DeepStack  1.53 x 10° 1.31 x 10* 16MB  aGPU
Libratus > 3 x 10° 0 > 100GB 14 CPUs
AlphaHoldem 4
(CPU Version) 5% 10 210 98MB a CPU
AlphaHoldem 3
(GPU Version) 4 x 10 580 98MB a GPU

Table 1: Cost comparisons of HUNL Als. AlphaHoldem
achieves good results with less computational resources.

Related Work

Texas hold’em has long served as the benchmarks for devel-
oping IIG algorithms (Rubin and Watson 2011; Bard et al.
2013). Most early studies are heuristic-based methods (Beat-
tie et al. 2007), and the Al performance based on them are
relatively weak. In 2007, the seminal counterfactual regret
minimization (CFR) (Zinkevich et al. 2007) algorithm is in-
troduced to efficiently solving two-player zero-sum IIGs.
CFR is a conceptually simple iterative algorithm that tries
to minimize the regrets of both players so that the time-
averaged strategy approach to the Nash equilibrium. There-
after, CFR-based methods dominate the design of Texas
hold’em AI (Lanctot et al. 2009; Jackson 2013; Burch, Jo-
hanson, and Bowling 2014). After the Head-up Limit Texas
hold’em is solved in 2015 (Bowling et al. 2015), much re-
search effort has focused on No-limit Texas hold’em and re-
cently made milestone progress. DeepStack (Moravcik et al.
2017) adopts a neural network to approximate the tabular
CFR and performs recursive reasoning. Libratus (Brown and
Sandholm 2018) computes a blueprint for the overall strat-
egy and fixes potential weaknesses identified by the oppo-
nents in the blueprint strategy. They are independently de-
veloped and both have defeated professional human players
in HUNL. Pluribus (Brown and Sandholm 2019b) further
applies similar procedure into multiplayer no-limit Texas
hold’em and report super-human performance.

Despite significant progress, all the milestone Texas
hold’em Als are built upon CFR, which requires costly com-
putation to obtain the counterfactual values and large stor-
age to store the model. In the inference stage, the CFR it-
eration process also consumes much computation. Besides,
these methods only solve an abstracted game employ differ-
ent kinds of Texas hold’em domain knowledge. This work
aims to overcome these limitations of current HUNL Als
and produce a more general solution. Some recent works
also make efforts towards this direction. NFSP (Heinrich
and Silver 2016) and Poker-CNN (Yakovenko et al. 2016)
have approached state-of-the-art performance in limit Texas
hold’em. DeepCFR (Brown et al. 2019) further improves the
performance by approximates CFR’s behavior in the game
using deep neural networks and Discounted CFR (Brown
and Sandholm 2019a). Inspired by AlphaGo (Silver et al.
2016), ReBel (Brown et al. 2020) combines search and rein-
forcement learning in HUNL Al Despite superhuman per-
formance reported, it still needs iterative learning in both the
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(a) One examplar HUNL game

Name Example Description

Royal Flush Straight flush from Ten to Ace

Strong

Straight Flush [“v]*«]'v['*['v] Straight of the same suit
Four-of-a-Kind [‘a]'v["a]+]") Four cards of the same value
Full House [a['v] Combination of three of a kind and a pair
Flush  [af'a[a[a[%s] Five cards of the same suit

Straight  ['a]'v[%] +]"a) Sequence of 5 cards in increasing value

Three-of-a-Kind Three cards with the same value
Two Pair  ['a['v[/a[%a]°+] Two times two cards with the same value weak
One Pair  ['a|'v[“a%]'+| Simple value of two card with the same value
No Pair Simple value of the cards with no same value

(b) HUNL cards strength

Figure 1: An brief illustration of the HUNL game rules.

training and inference stages, consuming expensive compu-
tations. In Table 1, we compare typical HUNL Als from dif-
ferent aspects. AlphaHoldem is the first Al that obtains com-
petitive performance in HUNL solely through reinforcement
learning. It is also the AI with the lowest training and testing
costs without encoding any domain knowledge.

Prerequisites

Texas Hold’em Rules. Texas hold’em is a repeated game,
each of which begins with two cards (hole cards) dealt face
down to each player, and then five cards (community cards)
dealt face up in three stages. The stages consist of a series
of three cards (the flop), later an additional single card (the
turn), and a final card (the river). Each player seeks the
best five cards from any combination of the five commu-
nity cards and two hole cards. Players have betting options
to check, call, raise, or fold. Rounds of betting take place
before the flop is dealt with and after each subsequent deal.
The player who has the best hand and has not folded by the
end of all betting rounds wins all the money bet for the hand,
known as the pot. In HUNL, two players play the game with
the bet size restricted only by the total amount wagered in
each game. Figure 1(a) illustrates one HUNL game, and Fig-
ure 1(b) shows the cards strength.

Reinforcement Learning (RL). In self-play, given a fixed
opponent, the original two-player HUNL game reduces to
a single-player RL problem since the opponent can be re-
garded as part of the environment. We consider the standard
RL formalism, i.e., Markov Decision Process (MDP). An

MDP consists of a set of states S = {0, 51,82, -+, St,--- }»
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Figure 2: End-to-end learning architecture of AlphaHoldem.

a set of actions A = {ax}_,, and a reward function r :
S x A — R. After executing an action a; € A at each state
s¢ € S, the agent will enter a new state s;11 according to the
transition probability model and get a reward 7 (s;+1]8¢, at).
The objective of the agent is to maximize the cumulative re-
wards R = >°,° 7'r(si41]s¢, ar), where v is the discount
factor to favor more recent rewards.

AlphaHoldem Architecture

AlphaHoldem aims to remove the expensive computation of
CFR iteration in both the training and testing stages of a
HUNL AL It thus pursues an end-to-end learning framework
to perform efficient and effective decision-making in IIGs.
Here end-to-end means that the framework directly accepts
the game board information and outputs the actions without
encoding handcrafted features as inputs or performing itera-
tive reasoning in the decision process. AlphaHoldem adopts
the RL framework to achieve this goal, and the only force to
drive the model to learn is the game reward.

In HUNL, the game board information includes the cur-
rent and historical card information and the player action
information. The agent chooses from a set of betting actions
to play the game and try to win more rewards. To capture the
complex relationship among the game board information,
the desired betting actions, and the game rewards, Alpha-
Holdem designs a pseudo-Siamese architecture equipped
with the RL schema to learn the underlying relationships
from end to end. We illustrate the end-to-end learning ar-
chitecture of AlphaHoldem in Figure 2.

As shown in Figure 2, the input of the architecture is the
game state representations of action and card information,
which are respectively sent to the top and bottom streams
of the Siamese architecture. Since the action and card rep-
resentations provide different kinds of information to the
learning architecture, we first isolate the parameter-sharing
of the Siamese architecture to enable the two ConvNets to
learn adaptive feature representations, which are then fused
through fully connected layers to produce the desired ac-
tions. This design is the reason why we call it pseudo-
Siamese architecture. To train this deep architecture, we
present a novel Trinal-Clip loss function to update the model
parameters using off-policy RL algorithms. We obtain the fi-
nal model through a new self-play procedure that plays the
current model with a pool of its K best historical versions to
sample diverse training data from the huge game state space.
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Figure 3: A state representation example when Player 1 in
the small blind plays ‘bet pot” after getting an hand ‘AsAc’.

Learning Speedup Techniques

The core to the success of AlphaHoldem depends on a set
of training speedup techniques that makes the learning of a
superhuman HUNL AI with the current lowest computation
and storage costs possible. In the following, we highlight
and expatiate three new crucial techniques in speedup train-
ing the AlphaHoldem model. We believe these new tech-
niques and underlying principles are helpful to develop gen-
eral learning algorithms for more IIG Als.

Effective Game State Representation

The existence of private information and flexibility of bet
size cause the HUNL Al learning extremely challenging.
Previous CFR-based methods often abstract the cards and
bet information into different groups and use their concate-
nated coding vectors as game state representation to make
the iterative reasoning process feasible. The abstracted code
vector loses many important game information and may not
capture the complex relationship between the game informa-
tion and optimal decisions. To obtain an effective and suit-
able feature representation for end-to-end learning from the
game state directly to the desired decision, we design a new
multidimensional feature representation to encode both the
current and historical card and bet information.

In HUNL, the card information and action information ex-
hibit different characteristics. We thus represent them as two
separated three-dimension tensors and let the following net-
work learn to fuse them (Figure 2). We design the card tensor
in six channels to represent the agent’s two hole cards, three
flop cards, one turn card, one river card, all public cards, and
all hole and public cards. Each channel is a 4 x 13 sparse
binary matrix, with 1 in each position denoting the corre-
sponding card. For the actor tensor, since there are usually
at most six sequential actions in each of the four rounds, we
design it in 24 channels. Each channel is a 4 X n;, sparse bi-
nary matrix, where ny is the number of betting options, and
the four dimensions correspond to the first player’s action,
the second player’s action, the sum of two players’ action,
and the legal actions. To understand this representation, Fig-
ure 3 illustrates one example that a player in the small blind
plays an action ‘bet pot’ after getting a hand ‘AsAc’.

This representation has several advantages: 1) there is no
abstraction of the card information thus reserves all the game
information; 2) the action representation is general and can
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denote different number of betting options (though n, = 9
produce satisfactory results in the experiment); 3) all the his-
torical information is encoded to aid reasoning with hidden
information; and 4) the multidimensional tensor represen-
tation is very suitable for modern deep neural architectures
like ResNet (He et al. 2016) to learn effective feature hierar-
chies, as verified in the AlphaGo Al training.

Effective Learning with Trinal-Clip PPO

With the multidimensional feature representation, one key
factor to train the deep architecture is the learning paradigm
with suitable loss functions. We adopt the actor-critic
paradigm with off-policy training (Konda and Tsitsiklis
2000), which performs updating asynchronously on re-
played experiences. The actor-critic paradigm trains a value
Sunction Vy(s;) and a policy mg(as|s¢), and updates them it-
eratively by sampling from the replay buffer.

We employ the popular Proximal Policy Optimization
(PPO) (Schulman et al. 2017) learning algorithm to update
the policies 7y in the actor-critic framework. PPO defines

the ratio function () % as the ratio between
the current policy 7y and the old policy 7y, the advantage
function A, which describes how much better between two
consecutive states s;41, S¢, over randomly selecting an ac-

tion according to 7, and the policy loss function L? as:

LP(0) = E, [min (rt(G)At, clip (1¢(0),1 —¢,1+¢) At)] ,
ey
where clip(r(0),1 — €,1 + €) ensures r; lie in the interval
(1 — €1+ €), and € is a clip ratio hyper-parameter with
typical value 0.2. The value loss L is defined as:

£7(0) = Eq (R} = Va(s1))’]

2

in which R] represents the traditional y-return.

In the HUNL training process, however, the above PPO
loss function is difficult to converge. We find two main rea-
sons for this problem: 1) when mg(at|s:) > mg,,, (at|s:)
and the advantage function A, < 0, the policy loss £7(6)
will introduce a large variance; 2) due to the uncertainty of
the opponent’s policy distribution in HUNL (e.g., player per-
forms bluffing), the value loss £¥(#) is often too large. To
speed up and stabilize the training process of AlphaHoldem,
we design a Trinal-Clip PPO loss function. It introduces one
more clipping hyper-parameter ; for the policy loss when
A, < 0, and two more clipping hyper-parameters do and 03
for the value loss. The policy loss function £ for Trinal-
Clip PPO is defined as:

LIP(0) = E, [Clip (r¢(0),clip (r+(0),1 — e, 1 4+¢€),61) flt}
3)
where §; > 1 + € indicates the upper bound, and € is the

original clip in PPO. The clipped value loss function £V
for Trinal-Clip PPO is defined as:
£1°(0) = By [(clip (R}, —55,65) = Va(s0))*]| . @)

In training the HUNL Al, the hyper-parameters do and d3
represent the total number of chips the player has placed
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and the opponent has placed, respectively. Thus, these two
hyper-parameters do not require manual tuning but are dy-
namically calculated according to the chips played in the re-
play. This constriction significantly reduces the variance of
the value function, while also eliminates the influence of the
polices’ irrationality.

Some previous works also report that clipping on PPO’s
policy loss achieves better results in MOBA games (Ye et al.
2020a,b) and MuJoCo (Andrychowicz et al. 2020). Our pro-
posed Trinal-Clip PPO loss further verifies this point in
training a HUNL AI. Moreover, this work finds that clip-
ping on the value function further improves the training effi-
ciency and stability significantly, especially for imperfect-
information games like HUNL which contains rewarding
signals with high variance. The Trinal-Clip PPO loss func-
tion improves the learning effectiveness of the actor-critic
framework, and we believe it is applicable for a wide range
of RL applications with imperfect information.

Efficient Model Selection and Generation

With the proposed Trinal-Clip PPO loss function, the most
direct way is using the self-play algorithm (Samuel 1959) to
train the HUNL agent. However, due to the private informa-
tion in HUNL, simple self-play learning designed for perfect
information game (Heinrich, Lanctot, and Silver 2015; Sil-
ver et al. 2016, 2018) often causes the agent trapped in a lo-
cal minimum and defeated by agents with counter-strategies.
AlphaStar (Vinyals et al. 2019) designs a population-based
training (PBT) procedure to maintain multiple self-play
agents and obtains promising results in the real-time strategy
game StarCraft II. The PBT procedure needs a tremendous
computational resource to ensure good performance.

To obtain a high-performance HUNL AI with both low
computation cost and strong decision-making ability, we
propose a new type of self-play algorithm which trains only
one agent but learns strong and diverse policies. The pro-
posed algorithm maintains a pool of competing agents from
the historical versions of the main agent. Then, by com-
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peting among different agents, the algorithm selects the K
best survivors from their ELO (Vinyals et al. 2019) scores
and generates experience replays simultaneously. The main
agent learns from the replays and thus can compete with
different opponents, maintaining a strong decision-making
ability of high-flexible policies. Since the proposed algo-
rithm performs self-play among the main agent and its K
best historical versions, we refer to it as /-Best Self-Play.

In Figure 4, we compare the proposed K -Best Self-Play
algorithm against five existing self-play algorithms: 1) the
Naive Self-Play (Samuel 1959; Silver et al. 2018), which
plays with the agent itself; 2) the Best-Win Self-Play (Sil-
ver et al. 2016), which plays with the best agent in his-
tory; 3) the Delta-Uniform Self-Play (Bansal et al. 2018),
which plays with the agent in the last § timestamps; 4) the
PBT Self-Play (Vinyals et al. 2019), which trains multiple
agents and play with each other; and 5) NFSP (Heinrich and
Silver 2016), which plays with the best responses. K -Best
Self-Play inherits PBT’s merit of diverse policy styles while
maintains computational efficiency of single-thread agent
training as in Naive, Best-Win, Delta-Uniform self-plays. It
also approximates NFSP’s best-response calculation strat-
egy by exploring the policies from the K best agents. As
reported in the NFSP paper (Heinrich and Silver 2016), cal-
culating the best response to a HUNL AI from the whole
policy space is currently computational prohibitive.

Experimental Evaluations

We train the AlphaHoldem model on one computing server
with 8 NVIDIA TITAN V GPUs and one AMD 2.00 GHz
CPU with 64 cores. For each of the experiments conducted
below, including ablations, performance, and comparisons,
we use the same quantity of resources to train the model: one
ordinary machine with 8 GPUs and 64 CPU cores, unless
otherwise stated. AlphaHoldem has a total of 8.6 million pa-
rameters, including 1.8 million parameters in the ConvNets
and 6.8 million parameters in the fully connected layers.

As for the experimental settings, the mini-batch size per
GPU is set to 2,048; thus, the total batch size is 16,384. We
use Adam (Kingma and Ba 2015) with initial learning rate
0.0003. For the Trinal-Clip PPO loss, the hyper-parameters
01 is set to 3, and J, and J5 is dynamically calculated accord-
ing to the chips played by the players, which range from 0
to 2,0000. The discount factor is set to 0.999. For policy up-
dates, we use GAE (Schulman et al. 2016) with A = 0.95 as
the advantage estimator. The best performing AlphaHoldem
model is trained for a total of 50,000 iterations. During one
iteration, there are eight MPI threads, each of which contains
128 environments and 128 steps. Therefore, AlphaHoldem
uses a total of 6.5 billion training samples (about 2.7 bil-
lion hands). The model winning performance is measured
in milli-big-blinds per hand (mbb/h), a standard metric in
the poker Al community, representing the average winnings
measured in thousandths of the big blinds.

Ablation Studies

To analyze the effectiveness of each component in Alpha-
Holdem, we have conducted extensive ablation studies, as



Name Training Time ELO

Vector 3.8 78
PokerCNN 5.4 359

W/O History Information 6.3 896
Original PPO Loss 8.4 1257
Dual-clip PPO Loss 8.4 1308
Naive Self-Play 8.4 1033
Best-Win Self-Play 8.4 1024
Delta-Uniform Self-Play 8.6 931
PBT Self-Play 8.9 892
AlphaHoldem 8.4 1597

Table 2: Ablation analyses of AlphaHoldem. Key compo-
nents include: 1) State representations: Vector, PokerCNN,
and W/O History Information; 2) Loss functions: Original
PPO Loss and Dual-clip PPO Loss; 3) Self-Play methods:
Native Self-Play, Best-Win Self-Play, Delta-Uniform Self-
Play, and PBT Self-Play.

shown in Table 2. The results of each row are obtained by
replacing one component of AlphaHoldem, and the rest re-
mains unchanged. All models use the same number of train-
ing samples (i.e., 0.65 billion), and we use ELO scores to
compare their performance.

For state representation comparison, we consider three
alternative methods: 1) Vectorized state representation like
DeepCFR (Brown et al. 2019) (Vector). It uses vectors to
represent the card information (two 52-dimensional vectors)
and the action information (each betting position represented
by a binary value specifying whether a bet has occurred and
a float value specifying the bet size); 2) PokerCNN-based
state representation (Yakovenko et al. 2016) (PokerCNN)
uses 3D tensors to represent card and action information to-
gether and use a single ConvNet to learn features; 3) State
representation without history information (W/O History In-
formation) is similar to AlphaHoldem except that it does not
contain history action information.

As shown in Table 2, state representation has a significant
impact on the final performance. PokerCNN performs better
than the vectorized state representation Vector, demonstrat-
ing that it is more effective to represent state information
using structured tensors. AlphaHoldem outperforms Poker-
CNN since it uses a pseudo-Siamese architecture to handle
card and action information separately. AlphaHoldem is also
better than W/O History Information since historical action
information is critical to decision-making in HUNL. Alpha-
Holdem obtains the best performance thanks to its effective
multidimensional state representation, which encodes his-
torical information and is suitable for ConvNets to learn ef-
fective feature hierarchies.

For the loss function, we evaluate the Trinal-Clip PPO
loss in AlphaHoldem against two kinds of PPO losses: 1)
the Original PPO loss (Schulman et al. 2017) (Original
PPO); 2) the Dual-clip PPO loss (Ye et al. 2020b) (Dual-
clip PPO). Compared with the Original PPO, Dual-clip PPO
has a slight performance boost. Triple-Clip PPO (AlphaHol-
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Figure 5: Loss Curves for Original PPO, Dual-clip PPO and
Trinal-Clip among the whole training process. The model
with smaller overall loss (shown as blue circles) generally
performs better.

dem) obtains the best performance. The results in Table 2
show that adding policy-clip and value-clip upon the PPO
loss help improve the performance.

To further demonstrate the benefits of the Trinal-Clip PPO
loss, we compare the learning curves of these three models
in Figure 5. It demonstrates that the Triple-Clip PPO loss’s
learning curve is more stable than those of the Original PPO
and the Dual-clip PPO. This performance improvement is
mainly because AlphaHoldem’s policy-clip and value-clip
loss effectively limit its output to a reasonable range, thus
ensuring the stability of the policy update. In addition, we
find the model with a minor overall loss generally performs
better after adding the value-clip loss, which is also very
convenient for model selection during training. This phe-
nomenon also demonstrates that the Trinal-Clip loss helps
the model to converge to a better policy.

For self-play methods, we compare AlphaHoldem’s K-
Best Self-Play with Naive Self-Play (Samuel 1959; Sil-
ver et al. 2018), Best-Win Self-Play (Silver et al. 2016),
Delta-Uniform Self-Play (Bansal et al. 2018), and PBT Self-
Play (Vinyals et al. 2019). Interestingly, compared with the
more sophisticated Delta-Uniform Self-Play and PBT Self-
Play, Naive Self-Play and Best-Win Self-Play achieve bet-
ter performance, possible because more complex self-play
strategies are more data-hungry. However, the performance
of Naive and Best-Win Self-Play are still behind K-Best
Self-Play, since simplistic self-play methods can not over-
come the notorious cyclical strategy problem in IIGs. Our
K -Best Self-Play method obtains the best performance un-
der the same amount of training data, striking a good balance
between efficiency and effectiveness.

Comparison with State-of-the-arts and Humans

Although many milestone events (e.g., DeepStack, Libratus,
ReBeL, etc.) have been achieved in HUNL Al research in re-



Slumbot OpenStack  Professionals

AlphaHoldem 111.56 + 16.06 16.91 £ 22.34 10.27 + 65.13
Hands 100,000 100,000 10,000

Table 3: Head-to-head results of AlphaHoldem against
Slumbot, OpenStack, and human professionals, measured in
mbb/h. We list the results against human professionals in ag-
gregate. The & shows 95% confidence interval.

cent years, almost all of these Als are not publicly available,
making the comparison between different Als extremely
difficult. To the best of our knowledge, Slumbot (Jackson
2013), the champion of the 2018 annual computer poker
competition, is the only publicly available HUNL AI that
provides comparisons through an online website?. Slumbot
is a strong abstraction-based static agent whose entire policy
is precomputed and used as a lookup table. Overall, Slumbot
first uses some abstraction algorithms to create a smaller ab-
stract HUNL game. Then it approximates the Nash equilib-
rium in the abstract game using a CFR algorithm and finally
executes the resulting strategy in the original game.

Static Als like Slumbot suffer from the off-tree action
problem, i.e., an action taken by an opponent that is not in
the abstraction. A more principled approach is to solve sub-
games that immediately follow that off-tree action online.
DeepStack and Libratus are representative online Als based
on this idea. We reimplement DeepStack following the orig-
inal paper’s key ideas and obtain a strong Al named Open-
Stack®. Specifically, we spend three weeks using 120 GPUs
to generate millions of samples to train the value networks.
It is worth noting that the creator of Libratus, recently co-
authored a paper (Zarick et al. 2020), in which they also
reimplemented DeepStack. OpenStack has achieved simi-
lar results to theirs, i.e., playing with Slumbot for 100,000
games, OpenStack’s gain is 103.08 mbb/h, which validates
the correctness of our reimplementation.

We compare our AlphaHoldem with the above two strong
HUNL Als, i.e., Slumbot and OpenStack for 100,000 hands,
and Table 3 shows the head-to-head comparison results.
We can see from Table 3 that AlphaHoldem outperforms
Slumbot by a large margin. Compared with Slumbot, Al-
phaHoldem does not require domain knowledge for abstrac-
tion and achieves better performance while significantly re-
ducing computational and storage resources. AlphaHoldem
also beats OpenStack by 16.91 mbb/h. Unlike OpenStack,
AlphaHoldem does not need iterative learning in both the
training and inference stages. Given input state representa-
tion, it performs only one feedforward pass of the neural
network to output the action directly.

To further verify AlphaHoldem’s performance, we eval-
uate it against four HUNL human professionals. We in-
vite these professional players who have participated in
many continental level invitational tournaments, two of
whom achieved in the top 10 of continental level tourna-
ments. We ask each player to play against AlphaHoldem

2https://www.slumbot.com/
3https://holdem.ia.ac.cn/
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Figure 6: Probabilities for not folding as the first action for
each possible hand. The bottom-left half shows the policy
when the suits of two private cards do not match, and the
top-right half shows the policy when the suits of two private
cards match. Left to right represent the policies of Profes-
sional Human, DeepStack, and AlphaHoldem, respectively.

for about 2,500 hands. AlphaHoldem beats these profes-
sionals by 10.27 mbb/h in average, which supports its high-
performance in beating Slumbot and DeepStack.

Visualization of AlphaHoldem’s Learned Policy

To analyze AlphaHoldem’s learned policy, we compare the
action frequencies where the agent is the first player to act
and has no prior state influencing it (Zarick et al. 2020) with
those from human professional*, DeepStack, and Open-
Stack. Figure 6 shows the policies on how to play the first
two cards from the professional human and the three agents.
AlphaHoldm’s policy is very similar to those of the human
professional and the two well-trained agents. These results
validate that AlphaHoldem learns a reasonable policy.

Conclusive Remarks and Future Works

We have presented AlphaHoldem, an end-to-end reinforce-
ment learning framework to obtain superhuman HUNL
Al with the current lowest computation and storage costs
and without encoding any human domain knowledge. We
achieve this goal through a set of new technical contributions
to speed up the training process and simultaneously guar-
antees the adaptability of the HUNL agent. The proposed
learning framework and the speedup training techniques are
extendable to the multi-player Texas hold’em and other IIGs
like MahJong and Bridge. In future, we plan to expand the
proposed framework on more IIG games to promote the de-
velopment of more general IIG learning frameworks.

*https://www.pokersnowie.com/
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