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Abstract

With the rapid progress of generation technology, it has be-
come necessary to attribute the origin of fake images. Exist-
ing works on fake image attribution perform multi-class clas-
sification on several Generative Adversarial Network (GAN)
models and obtain high accuracies. While encouraging, these
works are restricted to model-level attribution, only capable
of handling images generated by seen models with a specific
seed, loss and dataset, which is limited in real-world scenar-
ios when fake images may be generated by privately trained
models. This motivates us to ask whether it is possible to at-
tribute fake images to the source models’ architectures even
if they are finetuned or retrained under different configura-
tions. In this work, we present the first study on Deepfake
Network Architecture Attribution to attribute fake images on
architecture-level. Based on an observation that GAN archi-
tecture is likely to leave globally consistent fingerprints while
traces left by model weights vary in different regions, we
provide a simple yet effective solution named DNA-Det for
this problem. Extensive experiments on multiple cross-test
setups and a large-scale dataset demonstrate the effectiveness
of DNA-Det.

Introduction

The deepfake technology has raised big challenges to visual
forensics. Dedicated research efforts are paid (Durall, Keu-
per, and Keuper 2020; Wang et al. 2020; Liu, Qi, and Torr
2020; Zhang, Karaman, and Chang 2019; Jeon et al. 2020;
Nataraj et al. 2019; Chai et al. 2020; Frank et al. 2020; Zhao
et al. 2021; Haliassos et al. 2021; Liu et al. 2021; Chan-
drasegaran, Tran, and Cheung 2021; Li et al. 2020) to detect
generated images in recent years. However, only real/fake
classification is not the end: On the one hand, for malicious
and illegal content, law enforcers need to identify its owner.
On the other hand, GAN models need experienced designers
with laborious trial-and-error testings, some of which have
high commercial value and should be protected. These mo-
tivate works on fake image attribution, i.e., attributing the
origin of fake images. For fake image attribution, existing
works (Marra et al. 2019; Yu, Davis, and Fritz 2019; Frank
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et al. 2020; Joslin and Hao 2020) perform attribution for
multiple GAN models and obtain high classification accu-
racies. While encouraging, the problem of GAN attribution
is far from studied and solved sufficiently.

From the perspective of understanding GAN fingerprints,
previous works (Marra et al. 2019; Yu, Davis, and Fritz
2019; Frank et al. 2020; Joslin and Hao 2020) suggest that:
1) Models with different architectures have distinct finger-
prints. 2) With architecture fixed, changing only the model’s
random initialization seed or training data also results in a
distinct fingerprint. From 2), it can be deduced that model
weights may influence GAN fingerprints. While from 1), it
cannot be verified whether the GAN fingerprint is related to
the architecture since weights also change as the architec-
ture changes. This motivates us to investigate whether GAN
architectures leave fingerprints. In other words, do differ-
ent models with the same architecture share the same fin-
gerprint? Answering this question may help us understand
deeper into the generation of GAN fingerprints.

From the perspective of application, previous works on
GAN attribution only perform model-level attribution, i.e.,
training and testing images come from the same model,
which means for fake images, we can only handle those gen-
erated by seen models. However, this approach is limited
in real-world scenarios. For malicious content supervision,
the malicious producers would probably download a certain
deepfake project to their own computers from code host-
ing platforms at first, and then use their personal collected
training data to finetune or train from scratch instead of di-
rectly using the public available models. In such a situation,
model-level attribution is no longer applicable since it is un-
feasible to get the privately trained model. For intellectual
property protection, if an attacker steals a copyrighted GAN,
and modifies weights by finetuning, model-level attribution
will fail too. These motivate us to solve fake image attribu-
tion under a more generic setting, i.e., attribute fake images
to the source architecture instead of the specific model.

In this paper, we propose a novel task of Deepfake Net-
work Architecture Attribution. Compared with model-
level attribution, architecture-level attribution requires at-
tributing fake images to their generators’ architectures even
if the models are fine-tuned or retrained with a different
seed, loss or dataset. Although architecture-level attribution
is more coarse-grained than model-level attribution, it is still
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Figure 1: (a) The scenario for deepfake network architecture attribution. (b) The t-SNE visual comparison between our learned
features and AttNet (Yu, Davis, and Fritz 2019). When testing on images from the same set of GAN models and real images
used in training (above), AttNet and our method both extract distinct features. However, when testing on novel images from
finetuned models or models with changed seed, loss or dataset (below), features extracted by AttNet are highly entangled, but

our method can still extract well-separated feature.

(d) MMDGAN
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Figure 2: Class activation maps from trained AttNet classify-
ing {real, ProGAN, InfoMaxGAN, MMDGAN, SNGAN}.

challenging. As Figure 1 shows, for seen GAN models with
certain architectures (above), there may exist other versions
of novel models different in training seed, loss or training
data (below). If we train on real images and seen models, as
the t-SNE plots show, although AttNet (Yu, Davis, and Fritz
2019) extracts distinct features when testing on images gen-
erated by seen models (above), features are highly entangled
on images from novel models (below). To explain the drop,
we visualize what regions the network focuses on for attribu-
tion in Figure 2. We notice that the network tends to focus on
local regions closely related to image semantics such as eyes
and mouth. However, for architecture attribution, it is prob-
lematic to concentrate on semantic-related local regions.

In this work, we observe that: GAN architecture is likely
to leave fingerprints, which are globally consistent among
the full image instead of gathered in local regions. Besides,
traces left by weights varies in different regions. This obser-
vation is based on an empirical study. Specifically, we di-
vide GAN images into patches of equal size and conduct
model weight classification and architecture classification
on patches. We train on patches from a single position and
then test on patches from every position respectively. We can
observe that: 1) In weight classification, the testing accuracy
is high on patches with the same position as patches used in
training, but drops largely on patches from other positions.
This result indicates that traces left by model weights are
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likely associated with the position. 2) In architecture classi-
fication, testing accuracies on patches from all positions are
higher than 90%, even though we trained solely on patches
from a single position. This suggests that there exist glob-
ally consistent traces on GAN images, which are distinct for
models of different architectures. This globally consistent
distinction is probably caused by the architecture under the
prior observation from 1) that weight traces vary in different
regions.

Motivated by the observation above, it is foreseeable that
if we concentrate on globally consistent traces, architecture
traces would play a primary role in decision, which gener-
alize better when testing on unseen models. Thus we design
a method for GAN architecture attribution, which we call
DNA-Det: Deepfake Network Architecture Detector. DNA-
Det explores globally consistent features that are invariant
to semantics to represent GAN architectures by two tech-
niques, i.e., pre-training on image transformation classifica-
tion and patchwise contrastive learning. The former helps
the network to focus on architecture-related traces, and the
latter strengthen the global consistency of extracted features.

To summarize, the contributions of this work include:

* We propose a novel task of Deepfake Network Architec-
ture Attribution to attribute fake images to the source ar-
chitectures even if models generating them are finetuned
or retrained with a different seed, loss function or dataset.
We develop a simple yet effective approach named
DNA-Det to extract architecture traces, which adopts
pre-training on image transformation classification and
patchwise contrastive learning to capture globally con-
sistent features that are invariant to semantics.

The evaluations on multiple cross-test setups and a large-
scale dataset verify the effectiveness of DNA-Det. DNA-
Det maintains a significantly higher accuracy than exist-
ing methods in cross-seed, cross-loss, cross-finetune and
cross-dataset settings.
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Figure 3: Empirical study on GAN fingerprint in architecture and weight classification. We only train on patches from a fixed
position, and test on patches from all positions respectively. We show the results training on patch 1 and 10.

Related Work

Fake image attribution can be classified into positive at-
tribution (Kim, Ren, and Yang 2020; Yu et al. 2020a,b)
and passive attribution (Marra et al. 2019; Yu, Davis, and
Fritz 2019; Frank et al. 2020; Joslin and Hao 2020; Xuan
etal. 2019). This paper focuses on passive attribution. Works
on positive attribution insert artificial fingerprint (Yu et al.
2020a,b) or key (Kim, Ren, and Yang 2020) directly into the
generative model. Then when tracing the source model, the
fingerprint or key can be decoupled from generated images.
Positive attribution requires “white-box” model training and
thus is limited in “black-box” scenario when only gener-
ated images are available. Passive attribution aims at finding
the intrinsic differences between different types of gener-
ated images without getting access to the generative model,
which is more efficient and challenging compared with pos-
itive attribution. The work in (Marra et al. 2019) finds av-
eraged noise residual can represent GAN fingerprint. The
work in (Yu, Davis, and Fritz 2019) decouples GAN finger-
print into model fingerprint and image fingerprint. Specif-
ically, this work takes the final classifier features and re-
construction residual as the image fingerprint and the corre-
sponding classifier parameters in the last layer as the model
fingerprint. The work in (Frank et al. 2020) observes the dis-
crepant DCT frequency spectrums exhibited by images gen-
erated from different GAN architectures, and then sends the
DCT frequency spectrum into classifiers for source identifi-
cation. The work in (Joslin and Hao 2020) derive a similarity
metric on the frequency domain for GAN attribution. Above
works on passive fake image attribution all conduct experi-
ments on multiple GAN models and achieve high accuracy.
While encouraging, these works are restricted to model-level
attribution (i.e., training and testing images come from the
same set of models), which is limited in the real scenario.
In this paper, we propose to solve fake image attribution on
architecture-level, which can attribute generative models to
their architectures even if they are modified by fine-tuning
or retraining.

Pre-taining on image transformations was previously
used in image manipulation detection (Wu, AbdAlmageed,
and Natarajan 2019; Huh et al. 2018) based on the assump-
tion that there may exist post-processing discontinuity be-
tween the tampered region and its surrounding. Our ap-
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proach is inspired by these works but driven by a differ-
ent motivation: Many traditional image transformation func-
tions are similar to image generation operations, and pre-
training on classifying different image transformations can
help the network focus on architecture-related globally con-
sistent traces.

Empirical Study on GAN Fingerprint

Reviewing fake images’ generation process, the network
components (e.g. convolution, upsampling, activation, nor-
malization and so on) all operate on feature maps spatially
equal, thus traces left by these components is likely to be
identical on every patch. Intuitively, we hypothesize that if
GAN architecture leaves traces, they would be globally con-
sistent among patches. To verify this hypothesis, we design
an empirical study as follows: We conduct two attribution
experiments: 1) Architecture classification. We do four-class
classification classifying images from four GAN models
with different architectures, including ProGAN (Karras et al.
2017), MMDGAN (Binkowski et al. 2018), SNGAN (Miy-
ato et al. 2018) and InfoMaxGAN (Lee, Tran, and Cheung
2021), all of which are trained on celebA dataset (Liu et al.
2015). 2) Weight classification. Another four-class classifi-
cation classifying images from four ProGAN models trained
on celebA but with different training seed. It is foreseeable
that in weight classification, the network will depend on
weight traces for classification. In architecture classification,
the network may depend on architecture or weight traces, or
both. Implementation details are provided in the Appendix.
In detail, as Figure 3(a) shows, we divide each image into
4x4 grid of patches and number them from 1 to 16 accord-
ing to the position. We only train on patches from a fixed
position and test on patches from all positions respectively,
getting 16 testing accuracies for 16 positions. Fig. 3(b)(c)
shows the testing accuracies in architecture and weight clas-
sification when train solely on patches from position 1 and
position 10. From the experiment results, we have two ob-
servations: 1) Weight traces is likely associated with the po-
sition, a semantic association perhaps. Since in weight clas-
sification, when the network is trained on patches from a sin-
gle position, the testing accuracy is high on this position, but
drops a lot on patches from other positions. 2) Architecture
is likely to leave fingerprints, which are globally consistent
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Figure 4: Overview of DNA-Det’s learning pipeline. (a) Framework pipeline. In the first step, we use image-transformation
classification as a self supervision task to make the network focus on architecture-related traces. In the second step, we use
the weights learned in the former step as the initial weight and conduct GAN architecture classification. In the two steps, the
network is trained by a patchwise contrastive learning mechanism. (b) Patchwise contrastive learning used in the two steps
in (a), which force patches of the same class (image transformation type or GAN architecture type) close-by, and patches of

different classes far apart.

among the full image. In architecture classification, testing
accuracies on all positions are higher than 90% even though
only patches from one single position are used for training.
Given the prior observation from 1) that weight traces varies
in different regions, this globally consistent distinction is
probably caused by the architecture.

Our goal is to get a stable architecture representation re-
gardless of weights. Given the empirical observations above,
an intuitive approach is to restrict the global consistency of
extracted features, such that architecture traces would play a
decisive role in conducting architecture attribution.

Proposed Approach

Problem definition. We set deepfake network architecture
attribution as a multi-class classification problem. Given an
image x¥ with source y € Y = {real,G1,G3,...,Gn},
where G1, ..., Gy are different architectures. Our goal is
to learn a mapping D(z¥) — y. Note that the architecture in
this paper refers to the architecture of the generator. Loss
functions and discriminator are not considered as part of
the architecture , since they only influence the generator’s
weights indirectly by gradient back propagation, while our
goal is to attribute fake images to the source architecture re-
gardless of model weights.

Framework overview. Figure 4 overviews the learning
pipeline for DNA-Det. We train our network by two steps. In
the first step, we use image transformation classification as
a pre-train task to make the network focus on architecture-
related traces. In the second step, we use the weights learned
in former step as the initial weight and conduct GAN ar-
chitecture classification. In the two steps, we use patchwise
contrastive learning to force patches of the same class (im-
age transformation type or GAN architecture type) close-by,
and patches of different classes would be pushed far apart.

Pre-train on Image Transformations

Given a certain number of GAN images with architecture
labels, the obvious idea is to use these labels to train a
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classifier using a supervised objective such as cross-entropy
loss. However, directly using features learned by supervised
training is problematic. This would make the classifier har-
vest any useful features to help classification, which may in-
clude semantic-related information as shown in Figure 2. In-
spired by works in (Huh et al. 2018; Wu, AbdAlmageed, and
Natarajan 2019), we use image transformation classification
as a pre-train task motivated two reasons: 1) We found that
some traditional image transformation operations are sim-
ilar to the generator’s components. For example, blurring
and noising with kernels resembles convolution computa-
tion, and the resampling operation is similar to the upsam-
pling layer. Thus traces left by traditional image transfor-
mations share similar properties with architecture traces. 2)
Traditional image transformations and the generator’s com-
ponents both conduct on the images spatially equal. Thus
pre-training on image transformation classification could aid
the network to focus on globally consistent traces.

In detail, four image transformation families are consid-
ered: compression, blurring, resampling and noising. We
randomly choose the parameters for each operation from a
discrete set of numbers. Each operation with a specific pa-
rameter is taken as a unique type and we finally get 170 types
of image transformations. In training, we apply these trans-
formations on a natural image dataset containing LSUN (Yu
et al. 2015) and CelebA. Then we conduct patchwise con-
trastive learning (described in the following section) to force
patches with the same image transformation close-by and
different image transformations far apart. We use this pre-
trained model to initialize model weights.

Patchwise Contrastive Learning

We adopt a contrastive learning mechanism on patches to
strengthen the global consistency of extracted features. De-
tails are shown in Figure 4(b). Instead of training on whole
images, randomly cropped patches are used as input sam-
ples. These patches are fed into an encoder followed by
a projection head and a classification head. The projection



celebA LSUN-bedroom
train-set  cross-seed cross-loss cross-ft cross—dataset\ train-set cross-seed cross-loss cross-ft cross-dataset
Real celebA - - - bedroom bedroom - - - celebA
ProGAN celebA-seed0 seed 1-9 - elders bedroom |bedroom-seed0 seed 1-9 - sofa celebA
MMDGAN celebA - CramerGAN elders  bedroom bedroom - CramerGAN sofa celebA
SNGAN celebA - - elders  bedroom bedroom - - sofa celebA
InfoMaxGAN celebA - SSGAN elders  bedroom bedroom - SSGAN sofa celebA

Table 1: Dataset split for cross seed, loss, finetune and dataset evaluation. The evalution consists of two groups: celebA and

LSUN-bedroom.

head consists of a two-layer MLP network, which maps
representations to the space where a supervised contrastive
loss (Khosla et al. 2020) is calculated. For an anchor patch,
patches with the same class are positives, and patches with
different classes are negatives. The contrastive loss forces
patches from the same class closer in the representation
space, and pushes patches from different classes farther
away. Specifically, the contrastive loss is calculated as fol-

lows:
Lcon = Z Z 1Og
pEP(i)

iel

exp (2i - 2p/T)
ZaGA(i) exp (2; - 24/T)

-1
P(%) M
Here, ¢ € [ is the index of an arbitrary training patch. P (%)
is the set of all positive pairs for the patch i. A(i) = I'\{i},
which includes all positive and negative pairs for patch 7. z;
is the feature vector for patch i. z, is the feature vector for
patches in A(3). z,, and z,, (shown in Figure 4(b)) refer to the
feature vector for positive and negative pairs respectively.

The classification head maps the representation from the
encoder to the label space, in which we calculate a cross-
entropy loss L... Overall, the objective for patchwise con-
trastive learning is formulated as:

L= w1 - Lcon + wa - Lce (2)

where w; and wy are non-negative weights. Automatic
weighted learning mechanism (Kendall, Gal, and Cipolla
2018) is used to adaptively optimize the objective.

Experiments
Experimental Setup

Compared Methods. We compare our method with sev-
eral representative methods for fake image attribution as fol-
lows: 1) PRNU (Marra et al. 2019): a method using photo-
response non-uniformity (PRNU) patterns as the fingerprint
for fake image attribution. 2) AttNet (Yu, Davis, and Fritz
2019): a PatchGAN-like classifier for fake image attribution.
3) LeveFreq (Frank et al. 2020): a frequency-based method
that uses Discrete Cosine Transform (DCT) images for fake
image attribution and detection.

Implementation Details. For the network architecture,
we use a shallow 8-layer CNN network as the encoder.
The output channel numbers for convolution layers are
64,64,128,128,256,256,512 and 512. A Global Average
Pooling is added after the convolution layers. For patchwise
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contrastive learning, we firstly resize all images to 128px
(the lowest resolution in the dataset), and then resize them to
512px to magnify GAN traces, on which we randomly crop
16 patches of 64px as inputs. For inference, we test on the
full image instead of patches. For optimization, we choose
Adam optimizer. For the celebA experiment in section , the
initial learning rate is set to 10~ and is multiplied by 0.9
for every 500 iterations. For the LSUN-bedroom experiment
in section and the experiment in section , the initial learning
rate is set to 1072 and is multiplied by 0.9 for every 2500
iterations. The batch size is 32 x #classes in Section and
16 x #classes in Section with a class balance strategy. For
the GradCAM maps shown in this paper, we visualize on
layer-4. More details of the experiments could be found in
the appendix material.

Evaluation on Multiple Cross-Test Setups

Datasets. This experiment is conducted on 5 classes: real,
ProGAN, MMDGAN, SNGAN, InfoMaxGAN. Details of
the dataset split are shown in Table 1. As the table shows,
the experiment is composed of two groups named by celebA
and LSUN-bedroom, depending on the training dataset of
the GAN models and real images in the train-set. For each
group, we conduct cross-seed, cross-loss, cross-finetune,
and cross-dataset testings to evaluate the generalization of
architecture attribution on unseen models with different ran-
dom seed, loss function and dataset from the models in
the train-set. Specifically, for cross-seed testing, the Pro-
GAN model in the train-set is trained with seed 0, but
we test on ProGAN models with seed 1-9. For cross-loss
testing, we test on CramerGAN (Bellemare et al. 2017)
and SSGAN (Chen et al. 2019) models, which have the
same generator architecture as MMDGAN and InfoMax-
GAN respectively but with different loss functions. Note
that in cross-seed and cross-loss testing, models are trained
on the same dataset as models in the train-set to control
the dataset variable. For cross-finetune testing, we test on
models finetuned on the models in the train-set. We fine-
tune with FFHQ-elders and LSUN-sofa respectively in the
celebA and LSUN-bedroom experiment. For cross-dataset
testing, we test on models trained on different datasets, e.g.,
in the celebA experiment, the models in the train-set are
all trained on celebA, but we test on models all trained on
LSUN-bedroom. All of the GAN images and real images in
this dataset are 128px.

Results. The results are shown in Table 2, which are mea-



Method celebA LSUN-bedroom
closed-set cross-seed cross-loss cross-ft cross-dataset closed-set cross-seed cross-loss cross-ft cross-dataset

PRNU(MIPR2019) 90.64 20.69 29.33  48.88 21.27 66.31 30.50 3523 5358 24.13
LeveFreq(ICML2020) 99.50 86.02 92.50 52.19 47.07 99.53 82.76 7630  74.59 53.42
AttNet(ICCV2019) 98.88 83.50 87.10 35.21 38.54 99.25 88.73 89.28  35.21 21.88
AttNet+PT 99.50 93.46 82.65 36.89 44.71 98.77 98.19 97.60  73.29 49.82
AttNet+PCL 100.00 99.72 99.03  53.38 90.51 100.00 100.00 100.00 95.69 81.06
AttNet+PT+PCL 100.00 99.81 9980 57.48 93.76 100.00 98.69 99.95 93.81 79.47
Base 99.88 94.17 6293 4583 33.02 100.00 72.73 74.83  38.45 21.66
Base+PT 100.00 99.36 95.83  54.80 53.00 100.00 98.74 97.78 61.74 49.73
Base+PCL 100.00 99.96 98.30 77.89 89.93 100.00 100.00 99.25  94.19 81.09
Base+PT+PCL(DNA-Det) 100.00 99.99 99.53  97.65 94.95 100.00 99.99 99.90 97.50 83.45

Table 2: Evaluation on multiple cross-test setups and ablation study measured by accuracy. “PT” means pre-train on image
transformations. “PCL” means patchwise contrastive learning.

GAN Block Type Skip Connection Upsample Norm
ProGAN DCGAN - Nearest PN
MMDGAN ResNet Up+Conv Depth2Space BN
SNGAN ResNet Up+Conv Nearest BN
InfoMaxGAN  ResNet Up+Conv Bilinear BN

Table 3: Structure components of four GANS.

sured by accuracy. Compare DNA-Det (the last row) with
existing methods (first three rows), we have several find-
ings: 1) In closed-set testing, nearly all methods achieve rel-
atively good performance, suggesting that features captured
by these methods are sufficient for model-level attribution.
2) In cross-testings, the performance degrades across all
methods with different degrees. Among these cross-testings,
the performance drops the most in cross-finetune and cross-
dataset testing, showing that attribution methods are likely
to learn content-relevant features, which is harmful for ar-
chitecture attribution. 3) Compared with existing methods,
DNA-Det achieves superior performance in closed-set and
all cross-testings, especially gaining large improvement in
cross-finetune and cross-dataset testing (from ~ 30% accu-
racy to over 80%). As a result, DNA-Det is qualified for
deepfake network architecture attribution.

Further Analysis. We show the confusion matrices on the
two cross-dataset testings in Figure 5. From the confusion
matrices, we find that SNGAN and InfoMaxGAN, SNGAN
and ProGAN tend to be confused. To explore the reason,
we check the details of the architecture components in Ta-
ble 3. We notice that ProGAN and SNGAN both use Nearest
upsampling layer but with different block structures (block
type and skip connection). SNGAN and InfoMaxGAN share
the same block structure but use different upsampling lay-
ers. From the relationship between the confusion matrices
and architecture components, we have the following find-
ings: 1) The successfully classified samples on the diag-
onal reflect that different block structures and upsampling
types leave distinct traces, such that ProGAN and SNGAN,
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(a) celebA -> LSUN-bedroom  (b) LSUN-bedroom -> celebA

ProGAN

MMDGAN

True label

SNGAN

InfoMaxGAN

&
Predicted label

&
Predicted label

Figure 5: Confusion matrices of two cross-dataset testings.

SNGAN and InfoMaxGAN can be distinguished in cross-
dataset testing. 2) The misclassified samples suggest that
the network doesn’t capture the overall architecture traces
on several samples, which causes the confusion between ar-
chitectures whose components are partly the same.

Evaluation on GANSs in the Wild

Datasets. In the real-world scenario, the collected data for
different architectures may be more complex. The mod-
els may generate diverse contents and don not overlap
among architectures. The content bias will mislead the net-
work to focus on useless semantics. Thus we simulate
the challenging real-world scenario and construct a large-
scale dataset containing multiple public-released GANs with
diverse contents. The dataset includes 59 GAN models
from 10 architectures with 3 resolutions. Apart from the
GAN models used in the section above, we further include
CycleGAN (Zhu et al. 2017), StackGAN2 (Zhang et al.
2019), StyleGAN (Karras, Laine, and Aila 2019) and Style-
GAN2 (Karras et al. 2020). Details about this dataset could
be found in the appendix. Note that we take the different res-
olution versions of the same algorithm as different architec-
tures, because they are different in the number of layers. The
performance is measured by accuracy and macro-averaged



closed-set cross-dataset

Method
Acc. F1 Acc. F1

PRNU(MIPR2019) 66.77 63.776 2031 12.58
LeveFreq(ICML2020) 70.53 7371 3896 22.73
AttNet(ICCV2019) 84.57 8648 5321 33.14
Base 88.11 90.27 4795 25.04
Base+PT 95.79 97.09 73.02 50.82
Base+PCL 99.99 99.99 92.60 80.54
Base+PT+PCL(DNA-Det) 9996 99.98 9294 83.54

Table 4: Evalution on GANSs in the wild

F1-score over all classes.

Results. From the results in Table 4, we can observe that: 1)
With more GANs added, the experiment becomes more dif-
ficult as the accuracies of compared methods are all below
90% in closed-set; 2) Our method outperforms other meth-
ods, not only in closed-set but also in cross-dataset testing,
showing the effectiveness of our method in distinguishing
different architectures and the generalization ability in real-
world fake image architecture attribution.

Ablation Study

Quantitative Analysis. The results in Table 2 and Table 4
validate the effectiveness of pre-train on image transforma-
tions (PT) and patchwise contrastive learning (PCL). Re-
moving any of them on DNA-Det causes the performance
to drop in nearly all settings. PCL is by far the most impor-
tant one. In the hardest cross-dataset evaluation, removing it
results in a dramatic drop of 41.95, 33.72 and 32.65 points.
This shows that the global consistency assumption makes
sense and plays an important role in our method. With-
out PT, the performance drops by a modest 5.02, 2.36 and
3.28 points, respectively. But when PT is added to the base
network, it improves 19.98, 28.07 and 26.09 points, which
means features extracted by image transformation classifica-
tion is related to architecture traces in some aspects. We also
apply PCL and PT to the compared method AttNet, both re-
sults in a large improvement. The former improves 51.97
and 58.18 points, and the latter improves 6.17 and 27.94 in
cross-dataset evaluation as shown in Table 2.

Qualitative Analysis. We show in Figure 6 the Grad-
CAM (Selvaraju et al. 2017) heatmaps to visualize how fo-
cused regions change with PCL and PT added. The two in-
put images are from ProGAN and SNGAN respectively. The
base network tends to concentrate on semantic-related local
regions such as eyes and facial outline, which is untrans-
ferable for architecture attribution. With the PT added, the
areas of concern are no longer locally focused. Adding PCL
to the base network makes the feature extractor rely on more
global and fine-grained traces, yet some salient regions such
as eyes and face boundary can still be observed. PT plus
PCL promote the network to only focus on globally con-
sistent traces all around the image, and semantic-related re-
gions nearly disappear in the heatmap.
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Base+PT+PCL
(DNA-Det)

Figure 6: Qualitative Analysis. Comparison of GradCAM
heatmaps. Bluer color indicates a higher response for better
visualization.

Method Crop Blur JPEG Noise Relight Com.
Closed-Set

PRNU 49.55 71.00 64.57 72777 72.09 40.71
LeveFreq 8596 77.58 71.00 85.07 66.41 45.37
AttNet 89.99 89.76 85.26 90.65 80.39 73.40
DNA-Det 100.00 100.00 97.68 100.00 96.39 80.16
Cross-Dataset

PRNU 20.29 20.1 20.58 19.55 19.09 20.17
LeveFreq 32.18 30.67 29.14 31.70 30.32 23.83
AttNet 24.01 22.65 23.89 24.67 23.70 22.65
DNA-Det 82.48 82.69 76.43 81.72 78.90 59.53

Table 5: Robustness analysis against common attacks.

Robustness Analysis

We consider five types of attacks that perturb test images:
noise, blur, cropping, JPEG compression, relighting and ran-
dom combination of them. Detailed parameters of these at-
tacks are the same with the work in (Yu, Davis, and Fritz
2019). Table 5 reports the closed-set and cross-dataset test-
ing accuracy in the celebA experiment under these attacks,
which are included as a data augmentation in training for all
methods. From the results, in closed-set testing, our method
overcomes all attacks when any single attack is applied, and
over other methods. The performance drops the most on
combination attacks due to its complexity, but we can still
get an acceptable 80% accuracy. In cross-dataset testing, our
method can get almost 80% accuracy under any of these
attacks and a 59.53% accuracy under combination attack,
much superior to compared methods.

Conclusions

In this work, we present the first study on deepfake network
architecture attribution. Our empirical study verifies the ex-
istence of GAN architecture fingerprints, which are globally
consistent on GAN images. Based on the study, we develop a
simple yet effective approach named by DNA-Det to capture
architecture traces by adopting pre-training on image trans-
formations and patchwise contrastive learning. We evalu-
ate DNA-Det on multiple cross-test setups and a large-scale
dataset including 59 models derived from 10 architectures,
verifying DNA-Det’s effectiveness.
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