
NSGZero: Efficiently Learning Non-exploitable Policy in Large-Scale Network
Security Games with Neural Monte Carlo Tree Search

Wanqi Xue, Bo An, Chai Kiat Yeo
School of Computer Science and Engineering, Nanyang Technological University, Singapore

wanqi001@e.ntu.edu.sg, boan@ntu.edu.sg, asckyeo@ntu.edu.sg

Abstract

How resources are deployed to secure critical targets in net-
works can be modelled by Network Security Games (NSGs).
While recent advances in deep learning (DL) provide a pow-
erful approach to dealing with large-scale NSGs, DL meth-
ods such as NSG-NFSP suffer from the problem of data inef-
ficiency. Furthermore, due to centralized control, they cannot
scale to scenarios with a large number of resources. In this pa-
per, we propose a novel DL-based method, NSGZero, to learn
a non-exploitable policy in NSGs. NSGZero improves data
efficiency by performing planning with neural Monte Carlo
Tree Search (MCTS). Our main contributions are threefold.
First, we design deep neural networks (DNNs) to perform
neural MCTS in NSGs. Second, we enable neural MCTS with
decentralized control, making NSGZero applicable to NSGs
with many resources. Third, we provide an efficient learning
paradigm, to achieve joint training of the DNNs in NSGZero.
Compared to state-of-the-art algorithms, our method achieves
significantly better data efficiency and scalability.

Introduction
Network Security Games (NSGs) have been used to model
the problem of deploying resources to protect important tar-
gets in networks (Okamoto, Hazon, and Sycara 2012; Wang,
Yin, and An 2016; Wang et al. 2020). Many real-world
security problems, including infrastructure protection (Jain
et al. 2011), wildlife conservation (Fang, Stone, and Tambe
2015) and traffic enforcement (Zhang et al. 2017, 2019; Xue
et al. 2021), can be boiled down to NSGs. In NSGs, a de-
fender, controlling several security resources, interacts ad-
versarially with an attacker. The objective of the attacker
is to take a path from the starting point to a target with-
out being intercepted by the defender. The defender’s goal
is to develop a resource allocation policy to interdict the at-
tacker. Traditionally, mathematical programming-based ap-
proaches, e.g., the incremental strategy generation algo-
rithm (Bosansky et al. 2014), are proposed to compute the
optimal policy for the defender. However, limited scalability
prevents programming-based approaches from being appli-
cable to complex and real-world NSGs (Xue et al. 2021).

Recent advances in deep learning (DL) and reinforcement
learning have led to remarkable progress in playing com-

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

plex games, with successful applications surpassing human
performance in Go (Silver et al. 2016), chess (Silver et al.
2018), poker (Moravčı́k et al. 2017) and video games (Mnih
et al. 2015; Vinyals et al. 2019; Ecoffet et al. 2021). Deep
neural networks (DNNs), with strong representation ability,
are able to capture underlying structures of enormous game
state spaces when empowered with sufficient computational
resources. NSG-NFSP (Xue et al. 2021), a DL-based ap-
proach for solving NSGs, integrates representation learning
with the framework of NFSP (Heinrich and Silver 2016) and
enables NFSP with high-level actions to achieve efficient ex-
ploration in large-scale NSGs.

Although DL provides a powerful approach to dealing
with large-scale NSGs, existing approaches, e.g., NSG-
NFSP, have largely neglected intrinsic properties of the en-
vironment’s dynamics. Concretely, when a player in NSGs
selects an action (the node it will move to), the next state
of the game can be partially determined 1, because the next
location of the player can be inferred from the chosen ac-
tion. However, in NSG-NFSP, it samples many rounds of
the game and uses Monte Carlo method to estimate the dis-
tribution of the next state from scratch, leading to poor data
efficiency. Another problem is that the centralized control
of security resources in NSG-NFSP will inevitably result in
combinatorial explosion in action space (Oliehoek, Spaan,
and Vlassis 2008), making the algorithm unsuitable for han-
dling scenarios where there are many resources.

In this work, we propose a DL-based method, NSGZero,
for efficiently approaching a non-exploitable defender pol-
icy in NSGs. NSGZero improves data efficiency by mod-
eling the dynamics of NSGs and performing planning with
neural Monte Carlo Tree Search (MCTS) (Coulom 2007).
Our key contributions are in three aspects. First, we design
three DNNs, namely the dynamics network, the value net-
work and the prior network, to model environment dynam-
ics, predict state values, and guide exploration, respectively,
which unlock the use of efficient MCTS in NSGs. Second,
we enable decentralized control in neural MCTS, to improve
the scalability of NSGZero and make it applicable to NSGs
with a large number of security resources. Third, we de-

1The next state cannot be fully determined because players in
NSGs act simultaneously. No player can know what action its op-
ponent will take in the next step.

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

4646

sign an effective learning paradigm to joint train the DNNs
in NSGZero. Experimental results show that, compared to
state-of-the-art algorithms, NSGZero achieves significantly
better data efficiency and scalability.

Related Work
Neural MCTS. Monte Carlo Tree Search (Coulom 2007) is
a planning method which explores possible future states and
actions by querying a simulator or model of the environ-
ment. At each decision point, MCTS repeatedly performs
multiple simulations, to evaluate the probability of choos-
ing each available action. There have been many attempts to
combine MCTS with neural network function approxima-
tions to solve complex games, notably the AlphaGo series.
AlphaGo (Silver et al. 2016), the first algorithm that defeats
human professional players in the full-sized game of Go,
conducts lookahead searches by using a policy network to
narrow down the decision to high-probability moves and us-
ing a value network to evaluate state values in the search
tree. AlphaGo Zero (Silver et al. 2017) achieves superhu-
man performance purely from random initialization, with-
out any supervision or use of expert data. AlphaZero (Sil-
ver et al. 2018) generalizes its predecessor into a single al-
gorithm which can master many challenging domains, in-
cluding chess, shogi and Go. For the aforementioned al-
gorithms, they assume complete access to the rules of the
game. MuZero (Schrittwieser et al. 2020) lifts this restriction
and uses neural networks to approximate the transition func-
tion and the reward function of the environment. Recently,
Sampled MuZero (Hubert et al. 2021) extends MuZero to
complex action space by performing policy improvement
and evaluation over small subsets of sampled actions. De-
spite the great breakthroughs, all the previously discussed
approaches have focused on controlling a single agent, while
whether and how neural MCTS can be applied to multi-
agent scenarios like NSGs remains unexamined.

DL for Security Games. Applying DL to solve se-
curity games has recently received extensive attention.
DeDOL (Wang et al. 2019) computes a patrolling strat-
egy by solving a restricted game and iteratively adding
best response strategies to it through deep Q-learning. Opt-
GradFP (Kamra et al. 2018) addresses security games with
continuous space by policy gradient learning and game the-
oretic fictitious play. NSG-NFSP (Xue et al. 2021) integrates
representation learning into the framework of NFSP (Hein-
rich and Silver 2016), to handle complex action spaces. De-
spite the progress, these methods are model-free, and they
suffer from data inefficiency. Moreover, they are not suitable
for high-dimensional action spaces. Recently, CFR-MIX (Li
et al. 2021) is proposed to deal with high-dimensional action
spaces. However, it requires traversing the entire game tree,
which makes it impractical for games with a large branching
factor and long time horizon such as NSGs.

Problem Formulation
Network Security Games (NSGs) are used to describe the
problem of deploying resources to protect against an adap-
tive attacker in networks (Jain et al. 2011). An NSG can

be formulated by a tuple ⟨G,Vs, Vt, Vm, T ⟩, where G =
(V,E), consisting of a set of nodes V and a set of edges
E, is the graph on which the NSG is played. Vs ⊂ V is
the set of possible starting nodes of the attacker. The target
nodes, which represent destinations to be attacked or exits
to escape, are denoted by Vt ⊂ V . The defender controls
m = |Vm| resources and the resources start from the nodes
in Vm ⊂ V . T is the time horizon. The attacker and re-
sources move on graph nodes, and a move is valid if and only
if (vt, vt+1) ∈ E. Let vattt and ldeft = ⟨v0t , . . . , vm−1

t ⟩ de-
note the positions of the attacker and the m resources at step
t respectively, following former works (Zhang et al. 2019;
Xue et al. 2021). The state of the attacker sattt is the sequence
of the nodes he has visited, i.e., sattt = ⟨vatt0 , vatt1 , . . . , vattt ⟩,
and the state of the defender sdeft consists of sattt and the re-
sources’ current locations, i.e., sdeft = ⟨sattt , ldeft ⟩. The de-
fender and the attacker interact sequentially, and their poli-
cies π(st) = ∆(A(st)) are mappings from state to a distri-
bution ∆ over valid moves (legal actions) 2. Here, A(st) is
a function which returns the set of legal actions at st, e.g.,
A(sattt) = {vattt+1|(vattt , vattt+1) ∈ E}. For both players, they
have free access to A(st). An NSG ends when the attacker
reaches any of the target nodes within T or is caught 3. If the
attacker is caught, the defender will receive an end-game re-
ward rdef = 1, otherwise, no award will be awarded to her.
The game is zero-sum, so ratt = −rdef . A policy is said
to be non-exploitable if it achieves the best performance in
the worst-case scenario. Therefore, the optimization objec-
tive in NSGs is to maximize the worst-case defender reward
maxπdef minπatt E

[
rdef |πdef , πatt

]
.

Efficiently Learning Non-Exploitable Policy
In this section, we introduce our approach, NSGZero, for
efficiently learning a non-exploitable policy in NSGs. The
algorithm improves data efficiency by performing planning
with neural MCTS and improves scalability by enabling
neural MCTS with decentralized execution. We begin by
introducing the DNNs required to perform neural MCTS
in NSGs. Next, we introduce how NSGZero enables neu-
ral MCTS with decentralized execution. Finally, we present
how to effectively train the DNNs in NSGZero.

Designing the DNNs Required by Neural MCTS
To perform neural MCTS in NSGs, we should i) model
the dynamics of the environment to perform state transition
within the search tree; ii) predict the win rate (value) of a
state to replace the expensive Monte Carlo rollout at a new
state; and iii) leverage prior knowledge to guide exploration
and narrow down the decision to high-probability actions.
To achieve these purposes, we design three modules:

Dynamics network. In NSGs, the next state of a player
depends heavily on what action is taken, because the ac-
tion directly forms part of the state. Concretely, when the

2We omit the superscripts for π and st because the formulate
applies to both the defender and the attacker.

3The attacker is caught if he and at least one of the resources
are in the same node at the same time or the time is up.

4647

Q

P

dyna_net

Q

P

Q

P

. . .

InferState

. . .

s0

Expansion

Selection

Backup

S’

S

a-

a0 a1 am-1

s

O O O

value_net

prior_net

Q

P

S’

r(s’)

Sz

V(Sz)

Sz

Figure 1: MCTS with the DNNs in NSGZero. Expansion: When the search tree reaches a new state sz , the prior network
are invoked to predict prior policies for the resources, and the predicted polices are stored in P (i, s, a). Meanwhile, the value
network is applied to predict the state value V (sz), which is used to update Q(i, s, a) in the backup phase. Selection: For each
resource i, a hypothetical action ai is selected by comparing a score which is a weighted sum of Q(i, s, a) and P (i, s, a), and
the weight is a function of O(i, s, a). The dynamics network is used to predict the opponent’s action a−. With the hypothetical
state s, the hypothetical actions for the m resources a = ⟨a0, . . . , am−1⟩ and the predicted action for the opponent a−, the next
hypothetical state s′ can be inferred because the environment of NSGs is deterministic.

defender is in sdeft = ⟨sattt , ldeft ⟩ and takes action adeft =
⟨v0t+1, . . . , v

m−1
t+1 ⟩ (the movement of each resource), we can

substitute ldeft with adeft for constructing the next state
sdeft+1 = ⟨sattt+1, a

def
t ⟩. The only unknown part in sdeft+1 is

sattt+1 = ⟨sattt , vattt+1⟩, more specifically vattt+1 (sattt is already
known). Therefore, the dynamics network is designed to be
a mapping from sdeft to vattt+1, to model the behavior of the
opponent. Considering that legal actions change with states,
we adopt a structure similiar to DRRN (He et al. 2016)
which learns representations for state and legal actions sepa-
rately and outputs a likelihood by comparing the inner prod-
uct of the representations. Formally, dyna net(s,A−(s)) =
SoftMax(f(s)⊙g(A−(s))), whereA−(s) are the legal ac-
tions of the opponent at state s, f and g are feature extractors
for state and action respectively, ⊙ denotes inner product.

Value network. This module is designed for substitut-
ing the inefficient Monte Carlo rollout when estimating the
value of a new state. Given a state, value net : S → R is
able to predict the expected future return, which is equiva-
lent to the expected end-game reward in NSGs.

Prior network. This module is used to incorporate prior
knowledge into the selection phase of MCTS. Specifically,
the prior network takes state s and legal actions Ai(s) (for
resource i) as input and outputs a distribution over the ac-
tions, indicating the preferences for selecting each available
action. Unlike the dynamics network and the value network
that are shared among resources, the prior network is held
by each resource individually. For each resource, the struc-
ture of its prior network is the same as that of the dynamics
network, because these two types of DNNs are both used to
predict the behavior of an agent in graphs. In practice, we
apply parameter sharing among the prior networks, to trans-
fer knowledge between the resources and accelerate train-
ing (Gupta, Egorov, and Kochenderfer 2017).

Equipped with the three DNNs, NSGZero has the ability
to simulate the future and plan based on the simulated state.

At a decision point, NSGZero performs multiple simulations
and generates policies based on the simulation results.

Neural MCTS with Decentralized Execution
Previous neural MCTS approaches, such as MuZero, focus
on controlling a single agent, while in NSGs where the de-
fender controls several resources, we need to enable neural
MCTS with decentralized execution so that it can scale to the
scenario with many resources. In this part, we introduce how
to realize decentralized execution in NSGZero. At each deci-
sion point, neural MCTS iterates N simulations and outputs
policies for resources based on the simulation results. We be-
gin by discussing the simulation process. Then we introduce
how to generate policies based on the simulation results.

Simulation Process. During the simulation process, for
each resource i and for each edge (s, a) in the search tree
Ψ, a set of statistics {Q(i, s, a), O(i, s, a), P (i, s, a)} are
stored, representing the state-action value, visit counts and
prior policy respectively. Among the three types of statis-
tics, P (i, s, a) is calculated only once, at the step where the
search tree reaches a new state. Q(i, s, a) and O(i, s, a) are
continuously updated throughout the overall simulation pro-
cess. As in Fig. 1, each simulation consists of three phases:
selection, expansion and backup:
• Selection: In the selection phase, the search starts from the

current hypothetical state s0 and finishes when the simu-
lation reaches a leaf node of the tree. To traverse within
the search tree, NSGZero iteratively performs the selec-
tion operation. Assuming that it takes z steps for NSGZero
to reach a leaf node (in a simulation), for each hypotheti-
cal step k = 1, . . . , z, each resource i takes a hypothetical
action aki according to the search policy:

ak
i = argmax

ai

[
CPUCT·

√∑
bi
O(i, sk−1, bi)

1 +O(i, sk−1, ai)
·P (i, sk−1, ai)

+Q(i, sk−1, ai)
]

(1)

4648

where O(i, sk−1, ai) records the number of times resource
i takes action ai at hypothetical state sk−1, Q(i, sk−1, ai)
is the estimated value for action ai at hypothetical state
sk−1, P (i, sk−1, ai) is the prior probability of taking ai
at hypothetical state sk−1 which is calculated when the
simulation first encounters hypothetical state sk−1. Here,
we use polynomial upper confidence trees (PUCT) (Rosin
2011; Silver et al. 2018), an adaptation of the standard
MCTS, to combine value estimates with prior probabili-
ties. A constant CPUCT is used to control the trade-off
between Q(i, sk−1, ai) and P (i, sk−1, ai), i.e., exploita-
tion and exploration. After selecting hypothetical actions
ak = ⟨ak0 , . . . , akm−1⟩ for all resources, NSGZero predicts
the behavior ak− of the opponent by invoking the dynamics
network. With the hypothetical state sk−1, the hypotheti-
cal actions for the m resources ak and the predicted action
for the opponent ak−, we can infer the next hypothetical
state sk and perform the next search process from sk.

• Expansion: The expansion phase starts when the transi-
tion (sk−1,ak, ak−) → sk leads to a state sz which is
not in the search tree. In the expansion phase, NSGZero
predicts the prior policy for each resource using the prior
network and stores the probabilities in P (i, sk, ai) corre-
spondingly. In the meantime, since the search process has
reached a node (state) which has never been visited be-
fore, NSGZero predicts the expected value V (sz) for the
new state by calling the value network. The predicted state
value is used to update Q(i, s, a) along the trajectory from
the root node to the parent of the leaf node.

• Backup: At the end of a simulation, the statistics, i.e.,
Q(i, sk−1, aki) and O(i, sk−1, aki), along the trajectory
from the root node s0 to the node sz−1 are updated. For
k = z, . . . , 1, we estimate the cumulative discounted re-
turn Rk by bootstrapping from V (sz). Formally, Rk =∑z−k−1

τ=0 γτ · r(sk+τ ,ak+1+τ , ak+1+τ
−) + γz−k · V (sz),

where r(sk+τ ,ak+1+τ , ak+1+τ
−) is the immediate reward

for the transition (sk−1,ak, ak−) → sk, V (sz) is the pre-
dicted state value for the hypothetical state sz , and γ is the
discount factor. The estimated value Q(i, sk−1, aki) and
the visit counts O(i, sk−1, aki) are updated as follows,

Q
(
i, sk−1, aki

)
← O(i,sk−1,ak

i)·Q(i,s
k−1,ak

i)+Rk

O(i,sk−1,ak
i)+1

O
(
i, sk−1, aki

)
← O

(
i, sk−1, aki

)
+ 1

(2)

An overview about how to perform search in a simulation is
presented in Algo. 1.

Generating the Policies. At each decision point st, NS-
GZero first initializes the search tree with st as the unique
node and all former statistics being cleared. Then it repeat-
edly performs N simulations, gradually growing the search
tree and tracking the statistics. Note that st denotes a real
state, as contrast to sk which is the k-th hypothetical state. A
simulation starts by performing the selection operation from
st and it takes st as the 0-th hypothetical state (s0 ← st).
After the N simulations, NSGZero generates a policy for
each resource by querying the visit frequency of legal ac-

Algorithm 1: NGSZero-Ψ.SEARCH
Input: A hypothetical state s.

1 if s is an ending state then
2 return the ending-game reward r(s);
3 else if s is not in the search tree Ψ then
4 Add s to the search tree Ψ;
5 for resources i = 0, . . . ,m− 1 do
6 Ψ.P (i, s)←Ψ.prior net(s,Ai(s));
7 end
8 return the predicted reward Ψ.value net(s);
9 else

10 for resources i = 0, . . . ,m− 1 do
11 Select hypothetical action ai (Eq. 1);
12 end
13 a− ∼ Ψ.dyna net(s,A−(s)) \\ the opponent;
14 s′ ← InferState(s, a, a−), a = ⟨a0, . . . , am−1⟩;
15 r(s′)← Ψ.search(s′);
16 for resources i = 0, . . . ,m− 1 do
17 Update Ψ.Q(i, s, ai) and Ψ.O(i, s, ai);
18 end
19 return the searched reward r(s′).
20 end

Algorithm 2: NGSZero-EXECUTION
Input: The current state st, the search tree Ψ.

1 Ψ.clear() \\ clear statistics stored in the search tree;
2 for N simulations do
3 Ψ.search(st) \\ perform lookahead search;
4 end
5 for resources i = 0, . . . ,m− 1 do
6 πi(st, ai) ∝ O(i,st,ai)

1/T∑
bi

O(i,st,bi)1/T
; ai,t ∼ πi(st);

7 end
Output: Joint action at = ⟨a0,t, . . . , am−1,t⟩.

tions, with a temperature parameter T to control the random-
ness of the distribution. Formally, the policy for resource i

is πi(st, ai) ∝ O(i,st,ai)
1/T∑

bi
O(i,st,bi)1/T

. Each resource i samples its

action ai,t from πi(st) respectively. The pseudo-code of the
overall execution process is in Algo. 2.

Training in NSGZero
All parameters of the DNNs in NSGZero are trained jointly
to match corresponding targets collected by repeatedly play-
ing NSGs. For brevity, we use Ψp, Ψv , Ψd to denote the
prior network, the value network and the dynamics network
respectively. Our first objective is to minimize the error be-
tween the prior policies predicted by Ψp and the improved
policies π(s) = ⟨π0(s), . . . , πm−1(s)⟩ searched by NS-
GZero. To share experiences between resources and simplify
the networks to optimize, we propose to let all resources
share the parameters of their prior networks. As in Algo. 2
(lines 5-7), NSGZero generates a policy πi(s) and samples
an action ai for each resource i. Therefore, we update Ψp

4649

by minimizing − 1
m

∑m−1
i=0 ai · log(Ψp(s,Ai(s))), here ai

is in one-hot form. Next, the value network Ψv needs to be
optimized to match discounted return. Let h be the length
(total time steps) of an episode and r be the end-game re-
ward, for 1 ≤ t ≤ h, the discounted return is γh−t · r.
The conventional optimization method for value function
is to minimize the mean squared error (MSE) (Mnih et al.
2015), i.e., minimizing (Ψv(s) − γh−t · r)2. However, in
NSGs, the target is bounded within the [0, 1] interval, so
we propose to convert the optimization of Ψv to a classi-
fication problem, i.e., optimize it by minimizing the binary
cross entropy (CE) loss, with γh−t ·r as soft label. Formally,
lv = −(γh−t ·r)·log(Ψv(s))−(1−γh−t ·r)·log(1−Ψv(s)).
The optimization of the dynamics network Ψd is similar to
that of Ψp, with the objective as −a− · log(Ψd(s,A−(s))),
and a− is a one-hot label, indicating the opponent’s action.
The overall loss is

Lp,v,d = − 1

B

B−1∑
b=0

1

hb

hb∑
t=1

[1

m

m−1∑
i=0

ai,t·log(Ψp(st,Ai(st))

+ (1− γhb−t · rb) · log(1−Ψv(st))

+ (γhb−t · rb) · log(Ψv(st))

+ a−,t · log(Ψd(st,A−(st)))
]

(3)

where B is the batch size, hb and rb denote the length and
the end-game reward of an episode b.

Implementation. Optimizing Lp,v,d with batch training
is non-trivial because the length of each episode varies. In
practice, for each episode b, we store the trajectories of the
defender and the attacker, then we can infer all the variables
required to calculate the loss for this episode, i.e., rb, hb,
and st. For a batch of episodes B, we pad all the trajectories
within the batch to the same length as the time horizon T
(pad with 0). Then we calculate the loss in a batch for the
B episodes by iterating over the time steps. For the padded
entries, they do not contribute to the overall loss, so the cal-
culated values for them should be filtered out. We generate
a mask with hb for each episode b, to indicate the padding
items, then use the mask to filter out the values of padded
items. Finally, the overall loss Lp,v,d is calculated by aver-
aging all valid entries within the batch.

Modeling the Attacker. Despite self-play MCTS having
been widely used in symmetric games (Silver et al. 2016), in
NSGs which are asymmetric, we need to model the defender
and the attacker differently. We apply high-level actions to
the attacker to achieve efficient training (Xue et al. 2021).
Specifically, the attacker makes decisions on which target to
be attacked, rather than deciding where to go in the next time
step. At the beginning of each episode, the attacker selects a
target and samples a path to the chosen target, then he moves
along this path at each step. We use Multi-Armed Bandit
(MAB), an algorithm to optimize the decision of multiple
actions, to estimate the value of each target according to the
latest J plays. Formally, the estimated value for a target is

Q(ζ) =
∑J

j=1 rj ·I[ζj=ζ]∑J
j=1 I[ζj=ζ]

, where ζ denotes the target, rj is the

player’s reward for the j-th episode, and I is the binary indi-
cator function. The MAB acts by selecting ζ with the largest

Figure 2: The worst-case defender reward. Error bars indi-
cate 95% confidence intervals over the 100 testing episodes.
The red dashed line indicates the performance of NSG-
NFSP after training 1 million episodes.

estimated value. There is an Averager (AVGer) that tracks
the historical behaviour of the MAB, by counting the num-
ber of times each target has been selected by the MAB. The
AVGer generates a categorical distribution according to the
counts and makes decision by sampling from the distribu-
tion. The attacker behaves as a mixture of the MAB and the
AVGer, with an anticipate parameter η indicating the proba-
bility of him following the MAB.

Experiments
We evaluated the performance of NSGZero on a variety of
NSGs with different scales. We use these experiments to an-
swer three questions. First, whether NSGZero is sufficiently
data efficient compared to state-of-the-art algorithms, i.e.,
whether the algorithms can achieve comparable or even bet-
ter performance when learning from fewer experiences. Sec-
ond, whether the algorithm has better scalability and is ap-
plicable to large-scale NSGs. Third, how components of NS-
GZero affect the performance and whether the DNNs are
trained as we expect. Experiments are conducted on a server
with a 20-core 2.10GHz Intel Xeon Gold 5218R CPU and
an NVIDIA RTX 3090 GPU.

Data Efficiency
To answer the first question, i.e., whether NSGZero has bet-
ter data efficiency compared to state-of-the-art learning ap-
proaches, we evaluate the performance of NSGZero on two
NSGs with synthetic graphs. For the first NSG, its graph is
a 7 × 7 grid, with vertical/horizontal edges appearing with
probability 0.5 and diagonal edges appearing with probabil-
ity 0.1. We initialize the location of the attacker at the center
of the grid and let resources of m = 4 be located uniformly
around the attacker. There are 10 target nodes distributed
randomly at the boundary of the grid. The time horizon is
set to be equal to the length of the grid, i.e., 7. For the sec-
ond NSG, it is generated similarly except that the graph is
a randomly sampled 15× 15 grid (vertical/horizontal edges
appear with probability 0.4 and diagonal edges appear with
probability 0.1) and the time horizon is 15. We find the best
response attacker by enumerating all attack paths and choos-
ing the path which leads to the lowest defender reward. The
worst-case defender reward is the defender’s payoff when
she plays against the best response attacker.

4650

Manhattan: m = 3 Manhattan: m = 6 Singapore: m = 4 Singapore: m = 8

NSGZero (Ours) 0.1670 ± 0.0231 0.3660 ± 0.0299 0.1810 ± 0.0239 0.4140± 0.0306
NSG-NFSP (Xue et al. 2021) 0.0390 ± 0.0120 − 0.0130 ± 0.0070 −
IGRS++ (Zhang et al. 2019) OOM OOM OOM OOM

Uniform Policy 0.0120 ± 0.0096 0.1020 ± 0.0188 0.0240 ±0.0095 0.2590 ± 0.0272

Table 1: Approximate worst-case defender rewards, averaged over 1000 test episodes. OOM stands for Out of Memory. The
“±” indicates 95% confidence intervals over the 1000 plays.

We train NSGZero for 100,000 episodes and plot the
worst-case defender reward. As in Fig. 2, the worst-case
defender reward has seen a stable increase as training pro-
ceeds and it can reach values at around 0.88 and 0.95
for the 7 × 7 grid and the 15 × 15 grid, respectively.
Considering that the worst-case defender reward is upper-
bounded by 1, NSGZero has found a near-optimal solution
for both NSGs. Comparisons are made with a state-of-the-
art learning method NSG-NFSP. We first train NSG-NFSP
for 100,000 episodes, but find that there is no obvious learn-
ing effect and the worst-case defender reward remains close
0. Therefore, we increase its training episodes by 10 times
to 1 million. Then NSG-NFSP reaches values of 0.54 and
0.48 for the two NSGs, still significantly lower than that of
NSGZero. The experiments show that NSGZero is signifi-
cantly more data efficient than NSG-NFSP, and it is able to
achieve better performance even when learning from fewer
experiences.

Scalability of NSGZero
To examine whether NSGZero is more scalable compared
to existing methods, we extract two real-world maps from
Manhattan and Singapore vis OSMnx (Boeing 2017) and
create two large-scale NSGs for each map. For the Manhat-
tan map, the first NSG has 3 resources and 7 targets. In the
second NSG, we increase the scale to 6 resources and 9 tar-
gets to evaluate the performance of NSGZero in an NSG
with many secure resources. For the Singapore map, the
setup is similar, with the first NSG having 4 resources and
10 targets and the second NSG having 8 resources and 14
targets. Time horizon T is set as 30 for all NSGs to ensure
that the policy space is sufficiently large. We manually set
the initial location of the attacker, the resources and the tar-
gets to make the NSGs more realistic (details are in the ap-
pendix). When performing evaluation, considering that we
cannot enumerate all attack paths as is done in small NSGs,
as a mitigation, we use all the shortest paths and a best re-
sponse DQN attacker to approximate the worst case. The
smallest defender reward for playing against the worst-case
approximators is reported.

We make comparisons with two state-of-art-algorithms,
i.e., NSG-NFSP (Xue et al. 2021) and IGRS++ (Zhang et al.
2019), and a heuristic uniform policy. For the two learning-
based approaches, i.e., NSGZero and NSG-NFSP, we train
the model for 100,000 episodes. As shown in Table 1, our al-
gorithm significantly outperforms the baselines. IGRS++, as
an incremental strategy generation algorithm, requires that
all attack paths to be enumerable, otherwise it runs out of
memory due to lack of a terminal state. However, this re-

quirement is not satisfied in the created games. IGRS++ fails
to solve the games. For NSG-NFSP, when m is small, it can
learn a policy, but the performance is not satisfactory, just
comparable to uniform policy. We infer the reason is be-
cause of data inefficiency, i.e., NSG-NFSP is unable to learn
a good policy from just 100,000 episodes. When m of the
two maps is increased to 6 and 8, respectively, the training
of NSG-NFSP becomes infeasible due to the huge action
space. NSGZero performs well in all four NSGs, and it can
scale to NSGs with many security resources, which are un-
solvable by existing methods.

Ablation Study and Analysis
To investigate how each component affects NSGZero, we
evaluate the performance of NSGZero under different hyper-
parameters, which leads to different structures of search
trees or different policy generating strategies. We create an
NSG by randomly sampling a 7 × 7 grid, and the setup is
similar as before, i.e., vertical/horizontal edges appear with
probability 0.5 and diagonal edges appear with probability
0.1. There are m = 4 resources and 10 targets. The time
horizon is 7. For the attacker, he uses a fixed strategy: at the
beginning of each episode, he draws a target as a destination
and randomly samples a path to the chosen target. At each
step of the episode, the attacker moves according to the path.
We use NSGZero to model the defender.

Number of Simulations. NSGZero generates policies ac-
cording to the search tree, which starts from a single root
node and gradually expands by performing N simulations.
Therefore, we first examine how the number of simulations
N affects the performance of NSGZero. We set N to 5, 10,
15, and 20, respectively, and test the average win rate of the
defender throughout the training process. As in Fig. 3a, the
performance of NSGZero becomes better in general as N
increases. When N = 5, the performance is unsatisfactory
and the win rate increases from 0.47 to around 0.6. As we
increase the number of simulations, obvious learning effect
can be observed, with the win rate reaching around 0.9. We
also find that N = 15 is sufficient for good performance, af-
ter which increasing the number of simulations is no longer
beneficial.

Exploration Constant. NSGZero uses an exploration
constant CPUCT to control the extent of exploration when
performing searches. To study how this parameter affects the
performance, we set CPUCT ∈ {0.7, 0.5, 0.3, 0.1}. Fig. 3b
shows that a large CPUCT could hurt the performance since
it weights more on the prior knowledge and the exploration
term may overwhelm the value estimation. We can also find

4651

(a) Number of simulations (b) Exploration constant (c) Temperature parameter

Figure 3: Ablation studies for hyper-parameters in the execution process. The learning curves are for the NSGZero defender
which plays against a heuristic uniform attacker, averaged over 5 runs.

Figure 4: Ablation studies for the training process. The
learning curves are for the NSGZero defender which plays
against a heuristic uniform attacker, averaged over 5 runs.

Figure 5: The loss curves of the prior network, the value
network, and the dynamics network, averaged over 5 runs.

that a small CPUCT is sufficient to narrow down the selec-
tion to high-probability actions.

Temperature Parameter. The number of simulations N
and the exploration constant CPUCT influence the simula-
tion process, while after the simulations, NSGZero generates
policies by counting the visit frequency and this procedure
is controlled by the temperature parameter. To investigate
the effect of the temperature parameter on NSGZero, we set
the temperature to 4, 1, 0.5 and 0.25 to introduce different
degrees of randomness when generating the policies. As in
Fig. 3c, high temperature causes a decrease in performance.
When the temperature equals to 4, the final win rate is about
0.75, significantly lower than the win rate of 0.9 at lower
temperatures. Meanwhile, low temperature can also lead to
a slight decrease in win rate, in which case NSGZero is too
confident of the generated policies and does not introduce

enough randomness.
Previous experiments investigated three factors affecting

the execution phase of NGSZero. Next, we examine those
factors that influence the training process. In NGSZero,
when training the value network, we convert its optimiza-
tion objective from Mean Square Error (MSE) loss to binary
cross entropy (CE) loss. To examine whether this change
is beneficial, we plot the learning curves for these two opti-
mization objectives respectively. As shown in Fig. 4, CE loss
significantly outperforms MSE loss throughout the training,
with a final win rate of 0.9 compared to a value of only about
0.75 for the MSE loss. We further investigate the effect of
the discount factor γ, which influences the optimization tar-
get of the value network (γh−t · r). We find that, in NSGs
where only end-game rewards are available, not applying
a discount to rewards can result in consistently better per-
formance. As in Fig. 4, γ = 1 outperforms γ = 0.95 for
both MSE loss and CE loss. The reason may be that the dis-
tribution of the target is easier to learn when the rewards
are not discounted. To examine whether the three DNNs of
NSGZero are trained to match their corresponding targets,
we plot the loss curves for them respectively. As shown in
Fig. 5, significant reduction in loss can be found in all the
DNNs, indicating that the parameters of the DNNs are opti-
mized properly.

Conclusion

In this paper, we introduce NSGZero as a learning method to
efficiently approach a non-exploitable policy in NSGs. We
design three DNNs, i.e., the dynamics network, the value
network and the prior network, to unlock the use to efficient
MCTS in NSGs. To improve scalability, we enable decen-
tralized control in neural MCTS, which makes NSGZero
applicable to NSGs with a large number of resources. To
optimize the parameters of the DNNs, we provide a learning
paradigm to achieve effective joint training in NSGZero. Ex-
periments are conducted on a variety of NSGs with different
graphs and scales. Empirical results show that, compared to
state-of-the-art algorithms, NSGZero is significantly more
data efficient and it is able to achieve much better perfor-
mance even when learning from fewer experiences. Further-
more, NSGZero can scale to large-scale NSGs which is un-
solvable by existing approaches.

4652

Acknowledgements
This research is partially supported by Singtel Cognitive and
Artificial Intelligence Lab for Enterprises (SCALE@NTU),
which is a collaboration between Singapore Telecommuni-
cations Limited (Singtel) and Nanyang Technological Uni-
versity (NTU) that is funded by the Singapore Government
through the Industry Alignment Fund – Industry Collabora-
tion Projects Grant.

References
Boeing, G. 2017. OSMnx: New methods for acquiring,
constructing, analyzing, and visualizing complex street net-
works. Computers, Environment and Urban Systems, 65:
126–139.
Bosansky, B.; Kiekintveld, C.; Lisy, V.; and Pechoucek,
M. 2014. An exact double-oracle algorithm for zero-sum
extensive-form games with imperfect information. Journal
of Artificial Intelligence Research, 51: 829–866.
Coulom, R. 2007. Efficient selectivity and backup operators
in Monte-Carlo tree search. In International Conference on
Computers and Games, 72–83. Springer.
Ecoffet, A.; Huizinga, J.; Lehman, J.; Stanley, K. O.; and
Clune, J. 2021. First return, then explore. Nature,
590(7847): 580–586.
Fang, F.; Stone, P.; and Tambe, M. 2015. When security
games go green: Designing defender strategies to prevent
poaching and illegal fishing. In IJCAI, 2589–2595.
Gupta, J. K.; Egorov, M.; and Kochenderfer, M. 2017. Coop-
erative multi-agent control using deep reinforcement learn-
ing. In AAMAS, 66–83. Springer.
He, J.; Chen, J.; He, X.; Gao, J.; Li, L.; Deng, L.; and Osten-
dorf, M. 2016. Deep reinforcement learning with a natural
language action space. In ACL, 1621–1630.
Heinrich, J.; and Silver, D. 2016. Deep reinforcement learn-
ing from self-play in imperfect-information games. arXiv
preprint arXiv:1603.01121.
Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Barekatain, M.;
Schmitt, S.; and Silver, D. 2021. Learning and planning in
complex action spaces. In ICML, 4476–4486.
Jain, M.; Korzhyk, D.; Vaněk, O.; Conitzer, V.; Pěchouček,
M.; and Tambe, M. 2011. A double oracle algorithm for
zero-sum security games on graphs. In AAMAS, 327–334.
Kamra, N.; Gupta, U.; Fang, F.; Liu, Y.; and Tambe, M.
2018. Policy learning for continuous space security games
using neural networks. In AAAI, 1103–1112.
Li, S.; Zhang, Y.; Wang, X.; Xue, W.; and An, B. 2021. CFR-
MIX: Solving imperfect information extensive-form games
with combinatorial action space. In IJCAI, 3663–3669.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533.
Moravčı́k, M.; Schmid, M.; Burch, N.; Lisỳ, V.; Morrill, D.;
Bard, N.; Davis, T.; Waugh, K.; Johanson, M.; and Bowling,

M. 2017. Deepstack: Expert-level artificial intelligence in
heads-up no-limit poker. Science, 356(6337): 508–513.
Okamoto, S.; Hazon, N.; and Sycara, K. P. 2012. Solving
non-zero sum multiagent network flow security games with
attack costs. In AAMAS, 879–888.
Oliehoek, F. A.; Spaan, M. T.; and Vlassis, N. 2008. Op-
timal and approximate Q-value functions for decentralized
POMDPs. JAIR, 32: 289–353.
Rosin, C. D. 2011. Multi-armed bandits with episode con-
text. Annals of Mathematics and Artificial Intelligence,
61(3): 203–230.
Schrittwieser, J.; Antonoglou, I.; Hubert, T.; Simonyan, K.;
Sifre, L.; Schmitt, S.; Guez, A.; Lockhart, E.; Hassabis, D.;
Graepel, T.; et al. 2020. Mastering Atari, Go, chess and
shogi by planning with a learned model. Nature, 588(7839):
604–609.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of Go with deep neural networks and tree search. Na-
ture, 529(7587): 484–489.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; et al. 2018. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science,
362(6419): 1140–1144.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. Nature, 550(7676): 354–359.
Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds,
T.; Georgiev, P.; et al. 2019. Grandmaster level in Star-
Craft II using multi-agent reinforcement learning. Nature,
575(7782): 350–354.
Wang, K.; Perrault, A.; Mate, A.; and Tambe, M. 2020. Scal-
able game-focused learning of adversary models: Data-to-
decisions in network security games. In AAMAS, 1449–
1457.
Wang, Y.; Shi, Z. R.; Yu, L.; Wu, Y.; Singh, R.; Joppa, L.;
and Fang, F. 2019. Deep reinforcement learning for green
security games with real-time information. In AAAI, 1401–
1408.
Wang, Z.; Yin, Y.; and An, B. 2016. Computing optimal
monitoring strategy for detecting terrorist plots. In AAAI,
637–643.
Xue, W.; Zhang, Y.; Li, S.; Wang, X.; An, B.; and Yeo, C. K.
2021. Solving large-scale extensive-form network security
games via neural fictitious self-play. In IJCAI, 3713–3720.
Zhang, Y.; An, B.; Tran-Thanh, L.; Wang, Z.; Gan, J.; and
Jennings, N. R. 2017. Optimal escape interdiction on trans-
portation networks. In IJCAI, 3936–3944.
Zhang, Y.; Guo, Q.; An, B.; Tran-Thanh, L.; and Jennings,
N. R. 2019. Optimal interdiction of urban criminals with the
aid of real-time information. In AAAI, 1262–1269.

4653

