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Abstract

Mixed communities of organisms are found in many envi-
ronments – from the human gut to marine ecosystems – and
can have profound impact on human health and the environ-
ment. Metagenomics studies the genomic material of such
communities through high-throughput sequencing that yields
DNA subsequences for subsequent analysis. A fundamental
problem in the standard workflow, called binning, is to dis-
cover clusters, of genomic subsequences, associated with the
unknown constituent organisms. Inherent noise in the subse-
quences, various biological constraints that need to be im-
posed on them and the skewed cluster size distribution exac-
erbate the difficulty of this unsupervised learning problem. In
this paper, we present a new formulation using a graph where
the nodes are subsequences and edges represent homophily
information. In addition, we model biological constraints pro-
viding heterophilous signal about nodes that cannot be clus-
tered together. We solve the binning problem by developing
new algorithms for (i) graph representation learning that pre-
serves both homophily relations and heterophily constraints
(ii) constraint-based graph clustering method that addresses
the problems of skewed cluster size distribution. Extensive
experiments, on real and synthetic datasets, demonstrate that
our approach, called RepBin, outperforms a wide variety of
competing methods. Our constraint-based graph representa-
tion learning and clustering methods, that may be useful in
other domains as well, advance the state-of-the-art in both
metagenomics binning and graph representation learning.

Introduction
The field of metagenomics has paved the way to study
entire microbial communities obtained from natural en-
vironments (Kaeberlein, Lewis, and Epstein 2002). Large
scale studies such as the Human Microbiome Project (Turn-
baugh et al. 2007) have leveraged metagenomics analy-
ses to gain valuable insights about the complex microbial
communities found in the human body, and study the rela-
tionships of these microbial communities with health con-
ditions and diseases such as pregnancy and preterm birth
(PTB), inflammatory bowel diseases (IBD), stressors affect-
ing prediabetes (Integrative et al. 2019), influence of diet on
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Figure 1: The pipeline of traditional metagenomic contigs
binning and our proposed method, RepBin.

metabolism (Pasolli et al. 2020; Asnicar et al. 2021) and dis-
ease association of microbial species found in the human
gut (Nayfach et al. 2019).

In a typical metagenomics workflow, genetic material
from a microbial community is collected and first sequenced
using high-throughput sequencing (HTS) platforms. The
output at this stage contains short sequences of DNA called
reads of all the constituent microorganisms. Note that since
the genetic material of all the microorganisms are mixed to
begin with, it is unknown which species each read belongs
to; further, it is possible that multiple species may contain
the same DNA sequence in their reads. A fundamental prob-
lem, for any subsequent downstream analysis, is to identify
the species involved in the input sample.

Popular metagenomics approaches assemble these short
reads into longer non-overlapping DNA sequences called
contigs using assembly graphs, where each vertex represents
a contig and each edge represents the homophily informa-
tion between two contigs (Nurk et al. 2017). Then, these as-
sembled contigs are clustered into specific bins correspond-
ing to the constituent genomes in the microbial communi-
ties (referred as metagenomic binning). Contigs connected
to each other in the assembly graph are more likely to belong
to the same species (Barnum et al. 2018). Additional biolog-
ical information can be used to incorporate constraints on
contigs that are likely to be in different bins. For instance,
single-copy marker genes are those that appear just once in
each species and so, if two contigs contain the same single-
copy marker gene, they are most likely to belong to different
species. Such constraints can provide heterophilous infor-
mation and could be utilized to improve binning.

Most metagenomics binning tools ignore the homophily
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information in assembly graphs and use the composition
and coverage information of contigs for binning (refer to
Figure 1a for a traditional pipeline for binning). Moreover,
these tools have to discard many short contigs and thus suffer
from low recall values because the composition and cover-
age features become unreliable for short contigs. To use the
assembly graph directly, an alternative approach would be to
obtain node embeddings (Cui et al. 2019) from the assem-
bly graph, and cluster them to find bins. However, existing
graph embedding techniques mainly utilize homophily in-
formation and do not model heterophilous relations.

In this paper, we propose a constraint-based graph rep-
resentation learning model, called Constraint-based Learn-
ing, which can capture the structural information of the
graph while respecting the prior constraints. The Constraint-
based Learning model is a contrastive graph learning frame-
work with diffusion convolutional operators as basic com-
ponents, and optimizes prior constraints through a penalty
term in the objective function. The learned representations
can be used for downstream tasks. For metaganomic contig
binning, we propose a GCN-based label annotation model,
called Constraint-based Binning, with constrained nodes as
initial labels. The combined model is called RepBin and is
illustrated in Figure 1b. Our contributions in this paper are:

• To the best of our knowledge, this is the first use of graph
representation learning in the important area of metage-
nomic contig binning.

• We design a novel constraint-based graph representa-
tion learning model, called Constraint-based Learning,
which can capture structural information of the graph
while respecting heterophilous constraints.

• We design a novel Constraint-based Binning strategy
which uses Graph Convolutional Networks to annotate
unknown contigs with labels, using constrained contigs
to obtain initial labels.

• We benchmark the performance of our method on con-
tigs binning, against state-of-the-art methods for metage-
nomics binning, graph representation learning and graph
clustering. Results show that RepBin significantly outper-
forms them on both simulated and real-world datasets.

• Both algorithms, Constraint-based Learning and Bin-
ning, are general-purpose graph representation learning
and clustering methods, and can be used in other do-
mains as well, where constraints need to be incorporated
in these tasks.

Related Work
Metagenomic Binning. Although contigs are assembled
from short reads using assembly graphs in metagenomic
samples, most existing binning tools ignore the homophily
information in assembly graphs. Instead, these binning tools
use the composition (normalised oligonucleotide, i.e., short
string of length k, frequencies) and coverage (average num-
ber of reads aligning to each position of the contig) infor-
mation to bin contigs, e.g., in MetaWatt (Strous et al. 2012),
CONCOCT (Alneberg and et al. 2014), and MaxBin2 (Wu
and et al. 2015). MetaBAT2 (Kang and et al. 2019) employs

a graph clustering approach, where the graph is constructed
by composition information of contigs. SolidBin (Wang
et al. 2019) uses semi-supervised spectral clustering that in-
corporates additional biological knowledge. VAMB (Nissen
and et al. 2021) uses deep variational autoencoders to inte-
grate both composition and coverage information and clus-
ters the resulting latent representation of contigs into bins.
BusyBee Web (Laczny et al. 2017) is a web-based applica-
tion which makes use of a bootstrapped supervised binning
approach to bin contigs. However, all these tools have to dis-
card short contigs (e.g., shorter than 1000bp) because the
composition and coverage features become unreliable for
short contigs, and thus suffer from low recall values. To re-
cover these short contigs, recently published bin-refinement
tools (Mallawaarachchi and et al. 2020a,b) have introduced
the use of assembly graphs from which contigs are derived.
Graph Representation Learning. Existing unsupervised
graph representation learning models are mainly grouped
into three categories, random walk-based (Grover and
Leskovec 2016; Perozzi, Al-Rfou, and Skiena 2014), ma-
trix factorization-based (Qiu et al. 2018; Liu et al. 2019),
and deep learning-based methods (Kipf and Welling 2016;
Veličković et al. 2019). Generative and contrastive models
are two typical frameworks for deep learning-based unsu-
pervised graph learning models. Generative learning mod-
els, like VGAE (Kipf and Welling 2016), capture the graph
structure by minimizing the error between the constructed
and original graph in an encoder-decoder architecture. Con-
trastive learning, such as DGI (Veličković et al. 2019), uti-
lizes discriminator to differentiate nodes from input graph
and negative samples. The node embeddings are optimized
via maximizing mutual information with graph summary.
Graph Clustering Graph clustering aims to use the graph
structure to group nodes in graph into several disjoint clus-
ters, like spectral clustering (Von Luxburg 2007). Many
deep graph clustering methods have been proposed (Bianchi,
Grattarola, and Alippi 2020; Tsitsulin et al. 2020). These
methods mainly use deep learning or GNN models to cap-
ture the graph structure and then use clustering algorithms
to cluster these learned features (Cao, Lu, and Xu 2016; Fan
et al. 2020; Zhang et al. 2019). Methods such as Constraint-
based spectral clustering (Wang, Qian, and Davidson 2014)
and Deep constrained clustering (Zhang, Basu, and David-
son 2019) are designed to integrate constraints in clustering.

Preliminaries
Consider an assembly graph G = (V,E) from a metage-
nomic assembler, where each node v ∈ V represents a con-
tig and each edge e ∈ E denotes that two corresponding
contigs (nodes) are connected in the assembly graph. Let
M be the set of all pairwise heterophily constraints induced
by Single-copy marker genes which are conserved and ap-
pear only once in most of the bacterial genomes (Albertsen
et al. 2013). We use the tools FragGeneScan (Rho, Tang,
and Ye 2010) and HMMER (Eddy 2011) to identify contigs
containing each of the 107 single-copy marker genes. Then,
we generate pairwise constraints between contigs containing
each single-copy marker gene, e.g., there exists a constraint
m(u, v) between u and v if the same single-copy marker
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Figure 2: The framework of our proposed RepBin model.

gene appears in both u and v (which indicates that u and v
are not expected to be in the same species).

The task of binning metagenomic contigs is to cluster con-
tigs into bins that correspond to different species. Different
from other models that directly use k-mer composition and
contig coverage to bin contigs, we make use of the struc-
ture of assembly graph and label contigs based on the low-
dimensional features learned from the assembly graph. The
constraint-based representation of a contig from an assem-
bly graph can be defined as:

Definition. Given an assembly graph G = (V,E) and its
constraints M, the constraint-based embedding of a node
(contig) in the assembly graph is a d-dimensional feature
H ∈ R|V |×d, where d ≪ |V |, that considers both the topo-
logical structure of the assembly graph and the constraints
of M simultaneously.

Methodology
The proposed framework mainly contains two components,
Constraint-based Learning and Constraint-based Binning.
Figure 2 shows an overview of the entire RepBin model.

Part 1: Constraint-based Learning
In the Constraint-based Learning module, we aim to model
the homophily graph structure and heterophily constraints.
We first describe the contrastive graph learning framework
and graph diffusion convolution, then explain how to inte-
grate constraints to obtain the final node embedding matrix.

Contrastive graph learning framework. Here we in-
troduce a contrastive graph representation learning model
which tries to obtain representations for nodes that cap-
ture the global structure of the entire graph by maximiz-
ing the mutual information between node-level (local) and
graph-level (global) features. The overall framework of the
Constraint-based Learning is shown in the part 1 of Fig-
ure 2, which is similar to DGI. The proposed model mainly
contains graph encoder, negative graph sampling, readout
function, discriminator model, and constraints optimization.

The one-layer graph diffusion convolutional operator is
used in the Constraint-based Learning model as the graph
encoder module. We will explain diffusion convolution
module in the next subsection. By the diffusion convolution
operator in Equation 2, we can obtain the representations of
all nodes H = {h1,h2, ...,hn}.

The negative graph sampling generates negative graphs by
applying a corruption function (e.g., row-wise shuffling on
the original attribute matrix, same as the one used in the DGI
model) on the original assembly graph, (X̃, Ã) = C(X,A).
Both the original and negative graphs are typed into the
graph encoder model and generate latent node-level repre-
sentations H and H̃ respectively.

The readout function s = R(H) = 1
n

∑n
i=1 hi is a

function to obtain a global representation of the whole as-
sembly graph by aggregating all node-level representations.
The discriminator model D is introduced to discriminate the
true samples, i.e., (hi, s), from its negative counterparts, i.e.,
(h̃j, s), by maximizing the mutual information.

Finally, we use a standard binary cross-entropy (BCE)
loss between the samples from the joint (positive examples)
and the product of marginals (negative examples) to opti-
mize the mutual information (MI) between hi and s, same
as DGI and DMGI (Park et al. 2020).

Lg = − 1

2n
[

n∑
i=1

logD(hi, s) +

n∑
j=1

log(1−D(h̃j, s))] (1)

Graph diffusion convolution. The main characteristic of
the assembly graph which is different from arbitrary graphs
is the high homophily score (see Table 1). It indicates that
the majority of linked contigs belong to the same species.
Most message-passing neural networks (i.e., GCN) mainly
aggregate information from one-hop neighbors in each layer
and are limited in exploring higher-order neighborhoods, es-
pecially in graphs with high homophily. In contrast, diffu-
sion has been found to be superior in graphs with high ho-
mophily (Klicpera and et al. 2019a,b). So, in our model, we
use the Graph Diffusion Convolution (GDC) operator to cap-
ture the high-order structure of the graph.

One successful example of the graph diffusion is the per-
sonalized PageRank (PPR) (Page et al. 1999). Assuming
that one node i and its teleport vector xi, the adaptation
of the PPR for node i can be calculated by the recurrent
equation PPR(xi) = (1 − α)ÂPPR(xi) + αxi. Parameter
α ∈ (0, 1] denotes the probability of teleporting to another
state. We can obtain the transitions state for node i using
PPR(xi) = α(IN − (1 − α)Â)−1xi. Thus, the normalized
graph diffusion matrix for graph G can be formulated as:

TSij
=

Sij∑
i Sij

with S = α[IN − (1− α)T]−1 (2)

where T = D̂−1/2ÂD̂−1/2 is the symmetric transition
matrix (approximately the spectral graph convolutional op-
erator), Â is the adjacency matrix of the graph with self-
loops Â = A+ IN , IN is the unit matrix, and D̂ denotes
the diagonal degree matrix, i.e., D̂ii =

∑N
j=1 Âij . The cal-

culated diffusion matrix is dense and computationally inef-
ficient, we can optionally add a sparsity operator (truncating
small values less than ϵ: Sij(ϵ) = Sij if Sij ≥ ϵ else 0)
before the normalization.

We use graph diffusion convolution in the contrastive
learning model to capture the graph structure. We formulate
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the l+1-layer diffusion convolutional operator following the
layer-wise propagation rule as:

H = σ(TS ·XΘ) (3)

where σ(·) denotes a non-linear activation function (e.g.,
ReLU), Θ ∈ RN×d is a trainable transformation matrix, d
is the feature dimension, and X is the initial feature matrix.

Constraints optimization. In metagenomics, side infor-
mation is given in an implicit way of negative constraints,
which indicate pairwise contigs that belong to distinct
species, and not in an explicit way (such as known labels
for contigs). In our constraint-based learning model, we pe-
nalize the constrained nodes with respect to their similarity
as described below.

In the previous graph diffusion convolution operator,
we can obtain latent representations for each node H =
{h1,h2, ...,hn}. These learned features capture the struc-
tural information of the assembly graph and ignore the pair-
wise heterophily constraints M. Each pairwise constraint
m(i, j) ∈ M indicates that node i and j should belong to
two different species. We calculate the distance (hi,hj) be-
tween pairs of nodes i and j with a constraint m(i, j), and
the following objective function can be used to measure how
all pairwise constraints are respected:

Lc =
1

|M|
∑

m(i,j)∈M

exp−||hi−hj ||2 (4)

where ||.||2 =
√∑d

i=1 |.i|2 is the Euclidean Norm to cal-
culate the Euclidean distance, M is the set of heterophily
constraints, and d is the dimension of representations. The
exponential loss (Friedman et al. 2001) is used to penalize
the distance between pairwise constrained nodes.

Objective function. The constraint-based learning model
mainly contains three components contrastive graph learn-
ing framework, graph diffusion convolution, and constraints
optimization. It aims to model both the homophily infor-
mation of the graph structure and pairwise heterophily con-
straints. The objective function of constraint-based learning
model can be formulated as the combination of unsupervised
graph learning Lg and constraints optimization Lc:

L = Lg + λ · Lc (5)

where the parameter λ ∈ (0, 1) controls the importance of
the heterophily constraints loss.

Part 2: Constraint-based Binning
After obtaining node-level latent representations H from our
Constraint-based Learning model, we can directly employ
clustering algorithms (K-Means) on these features to obtain
final bins. However, two challenges remain to be addressed.
First, the number of constraints with respect to each contig
vary a lot (i,e., from 0 to dozens); Second, the numbers of
contigs in distinct bins/species in metagenomic samples are
imbalanced (i.e., varying from a couple to hundreds).

To address the above challenges, we introduce a
constraints-based label annotation strategy (Constraint-
based Binning) instead of naive clustering algorithms which

Algorithm 1: The RepBin algorithm
Input: Assembly Graph G = (V,E), constraints M, num. of bins
k, initial parameters (e.g., λ and α);
Output: Bins Y ;
1: Model Construction:
2: Calculate graph diffusion convolution TS ;
3: Construct Constraint-based Learning model:
4: Corrupt negative graph C(X,A);
5: Learn postive and negative graphs H and H̃;
6: Capture global patterns by Readout function R;
7: Maximize the mutual info. by a discriminator D;
8: Obtain latent features H;
9: Initialize labels for constrained contigs Ym;

10: GCN-based label annotation to obtain final bins Y ;
11: Optimization:
12: Initialize Embeddings X with initial features;
13: Randomly sample negative graph by corruption C;
14: Optimize loss (5) via gradient descent;
15: Optimize loss (6) via gradient descent;
16: return Bins Y ;

over rely on the initial centroids. The Binning method com-
prises of two steps, initializing labels for constraints and
GCN-based label annotation (see Figure 2 part 2).

Initializing labels for constraints. Note that not all con-
tigs have pairwise constraints and contigs without any prior
constraints are usually more challenging to bin correctly. We
first run a clustering algorithm (K-Means in this work) on
the representations of nodes with at least one constraint to
obtain initial labels, Ym = {ym1 , ym2 , ..., ymk }. Ideally, the
number of bins K should be equal to the number of contigs
that contain the same single-copy marker gene. As there are
errors in both assemblies and alignments, we need a robust
estimate and so, we set K as the third quartile value of the
counts of contigs containing each of the marker genes.

GCN-based label annotation. After obtaining initial la-
bels for nodes with at least one constraint, we treat the bin-
ning as a semi-supervised label annotation task and con-
struct a two-layer graph diffusion convolutional operator to
annotate unlabelled contigs (i.e., nodes without any prior
constraints). Similar to the layer-wise propagation rule de-
fined in Equation 3, labels for all node are obtained simulta-
neously via Z = σ(TS ·HΘ

′
) = σ(TS · (σ(TS ·XΘ))Θ

′
).

We evaluate the cross-entropy error over all contigs with ini-
tial labels and use back propagation for optimization.

L = −
∑
l∈Ym

K∑
k=1

Ylk lnZlk (6)

where Ym is the set of constrained nodes with initialized
labels, K is the number of clusters. The pseudocode for Rep-
Bin is shown in Algorithm 1.

Experiments
Datasets. Three simulated and two real-world datasets are
used in our experiments. Their detailed statistics are given
in Table 1. Sim-5G, Sim-10G, and Sim-20G are simulated
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Datasets Nodes Edges M Bins H
Sim-5G 519 2,488 810 5 0.97

Sim-10G 920 4,210 2,448 10 0.96
Sim-20G 1,452 6,531 10,734 20 0.91

CAMI 5,814 23,257 21,362 19 0.89
Sharon 20,743 102,918 2,988 12 0.95

Table 1: Statistics of datasets. M is the number of con-
straints and H is the node-homophily of the assembly graph.

based on the species found in the simMC+ dataset (Wu
et al. 2014). Sharon is a preborn infant gut metagenome
dataset (Sharon, Morowitz, and et al. 2013), and the corre-
sponding NCBI accession number is SRA0522031. CAMI
is a publicly available dataset extracted from the first CAMI
challenge with low complexity of microbiomes (Sczyrba,
Hofmann, and et al. 2017)2. All the data sets are assembled
using metaSPAdes (Nurk et al. 2017).
Baselines. We compare RepBin with 4 unsupervised GNN
models, 4 graph clustering methods, and 8 binning tools.
GNNs: GraphSAGE (Hamilton, Ying, and Leskovec 2017),
GAT (Veličković et al. 2018), DGI (Veličković et al. 2019),
and VGAE (Kipf and Welling 2016). GCs: O2MAC (Fan
et al. 2020), AGC (Zhang et al. 2019), Constrainted
Spectral Clustering (CSC) (Wang, Qian, and Davidson
2014), and Deep Constrained Clustering (DCC) (Zhang,
Basu, and Davidson 2019). Binnings: MetaWatt (Strous
et al. 2012), CONCOCT (Alneberg and et al. 2014),
MaxBin2 (Wu and et al. 2015), BusyBeeWeb (Laczny et al.
2017), MetaBAT2 (Kang and et al. 2019), SolidBin (Wang
et al. 2019), VAMB (Nissen and et al. 2021), and Graph-
Bin (Mallawaarachchi and et al. 2020a).

Metrics and Experimental Settings. The entire proce-
dure is repeated five times to avoid any experimental biases.
Mean and standard deviation values of the binning eval-
uation metrics are reported. For the simulated and CAMI
datasets, we map the contigs to the reference genomes to ob-
tain the ground truth species. For the Sharon dataset, we map
the contigs to the annotated results3 to obtain the ground
truth species. We use the F1, ARI, and NMI as the evalua-
tion metrics for machine learning-based baselines to evalu-
ate the performance of Constrain-based Learning (referred
as RepBin-Learning). We use the Precision, Recall, and F1
scores to evaluate the performance of binning contigs. As
existing binning tools typically discard many short contigs
and thus cannot bin all contigs, ARI and NMI are not in-
cluded to avoid possible biases towards binned contigs. We
also report the number of bins identified by binning tools.

For RepBin, we use the adjacency matrix as the initial fea-
tures for nodes. The representation dimensions are all em-
pirically set to be 32. For all baseline methods, we optimize
their models with different parameters and report the best
performance scores. The RepBin model is freely available4.

1https://www.ncbi.nlm.nih.gov/sra/?term=SRA052203
2https://data.cami-challenge.org/participate
3https://ggkbase.berkeley.edu/carrol/organisms
4https://github.com/xuehansheng/RepBin

Benchmarking against Machine Learning Models
Table 2 shows that Both RepBin-Learnig and RepBin
significantly outperform machine learning-based baselines,
which achieve the highest scores on all metrics and all
three datasets. For Sim-20G, the metric scores obtained by
RepBin-Learning are 91.8% for F1, 84.8% for ARI, and
92.1% for NMI respectively which is significantly higher
than the highest scores achieved by GNNs (79.8% for F1,
65.4% for ARI, and 83.6% for NMI). Both GNNs and
RepBin-Learning run K-Means algorithm to cluster nodes
after obtaining representations for nodes. The gap between
GNNs and RepBin-Learning demonstrates the superiority of
our model in learning structure of graph and integrating prior
constraints. Because of the label imbalance, graph cluster-
ing (GCs) methods also achieve lower metric scores than
RepBin. The results of two constraint-based clustering algo-
rithms are also inferior to RepBin, because these methods
cannot capture structural information of the graph well.

Benchmarking against Metagenomic Binning Tools
Table 3 shows the results obtained by RepBin and stand-
alone baselines on all five datasets. We also compare RepBin
with refined binning results of baselines with GraphBin on
Sim-20G and CAMI datasets.

Table 3 shows that RepBin significantly outperforms
baselines including GraphBin refinements. RepBin achieves
the highest Recall and F1 score on all simulated and real-
world datasets. Take Sim-20G for example, the highest Re-
call and F1 score achieved among all baselines is SolidBin,
85.04% and 90.41%, which is much lower than the scores
achieved by RepBin (96.98% for Recall and 97.15% for
F1). The Precision score achieved by RepBin is 97.31%,
which is slightly lower than VAMB (99.35%) and signifi-
cantly higher than other baselines. In the publicly-available
CAMI dataset, RepBin also achieves the highest Recall and
F1 score (92.84% and 87.41%) against other baselines (the
second highest score achieved by BusyBeeWeb, (53.15% for
Recall and 63.05 % for F1). The significant improvement
achieved by RepBin on the F1 score indicates that RepBin
can tackle the label imbalance problem well and accurately
bin as many contigs as possible. Moreover, Table 3 shows
that RepBin also achieves better performance against the re-
fined binning results of baselines+GraphBin. GraphBin is
not a stand-alone binning tool. We have to first run one exist-
ing binning tool (e.g., MetaWatt) to derive the initial binning
results and then run GraphBin to improve the initial binning
results. Although GraphBin improves the binning results on
all stand-alone baselines, the final evaluation matrices are
still inferior to RepBin.

Visualization. To better understand the binning results,
we use python-iGraph package to visualize the Sim-10G as-
sembly graph with ground truth and binning results from
distinct stand-alone binning tools (see Figure 3). Different
colors denote distinct species and grey nodes indicate the
nodes that are not identified or are discarded. Black edges
represent homophily edges in the assembly graph and grey
edges are heterophily constraints. RepBin achieves the most
consistent labels with respect to the ground truth while other
baselines suffering from missing or incorrect labels.
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Methods Sim-5G Sim-10G Sim-20G
F1 ARI NMI F1 ARI NMI F1 ARI NMI

GNNs

GSAGE 88.0±0.6 72.9±0.9 81.6±0.8 76.6±0.2 59.3±0.7 75.9±0.6 77.4±0.6 61.5±1.8 81.5±0.3
GAT 94.5±1.6 86.9±1.7 87.7±0.7 73.7±0.5 54.0±2.6 74.3±0.4 79.8±1.0 65.4±1.3 83.6±0.7
DGI 79.9±3.4 54.6±6.8 68.2±3.3 68.1±1.9 39.3±2.4 61.8±2.4 63.9±2.5 40.1±2.3 65.8±2.5

VGAE 85.7±1.4 70.1±2.6 80.1±3.2 71.4±1.9 46.0±2.6 68.9±1.1 72.2±1.7 54.8±2.1 75.9±1.2
RepBin-Learning 99.8±0.0 99.4±0.0 99.2±0.0 97.1±0.8 95.4±1.3 96.3±0.8 91.8±0.5 84.8±0.6 92.1±0.2

GCs

O2MAC 74.9±3.5 63.6±2.1 72.5±3.1 65.8±1.4 53.5±2.1 69.1±1.7 61.0±3.4 52.0±2.7 71.1±1.8
AGC 80.9±0.4 92.7±0.8 90.4±0.5 78.3±0.3 87.9±0.3 89.6±0.7 67.0±0.2 75.9±1.1 82.0±0.5
CSC 96.7±0.0 87.9±0.0 91.5±0.0 90.9±1.3 77.9±4.2 85.1±1.7 83.0±1.4 63.2±4.3 83.1±1.1
DCC 90.9±0.0 94.0±1.0 88.6±1.1 92.1±2.9 83.3±3.0 77.3±2.3 82.1±1.9 65.3±2.8 75.1±3.3

RepBin 99.7±0.1 99.0±0.2 98.5±0.0 99.4±0.0 99.1±0.1 98.8±0.3 97.2±0.6 94.3±0.8 95.7±0.6

Table 2: The results of RepBin and machine leaning-based baselines on three simulated datasets for contigs binning (%).

Figure 3: Visualization of the Sim-10G assembly graph with ground truth and different binning results.

Ablation Study
Effects of Constraints in Learning and Binning. To study
the effectiveness of incorporating constraints of our model,
we conduct an ablation study by examining variants of
RepBin. RepBin without constraint-based learning repre-
sents RepBin discards the information of constraints in the
Learning part and only captures the structure of the as-
sembly graph. RepBin without constraint-based binning de-
notes RepBin without constraint-based binning part (refer
to the Constraint-based Learning model) and uses K-Means
algorithm to obtain final binning results. Figure 4 shows
that modelling constraints in RepBin improves metage-
nomic binning. For CAMI, the F1 values achieved by
RepBin, RepBin without constraint-based learning, RepBin
without constraint-based binning are 87.41%, 82.10%, and
77.84% respectively, which demonstrate the effectiveness of
constraint-based learning and binning.

Besides, we also use t-SNE (van der Maaten and Hinton
2008) to visualize the latent embeddings of RepBin. Fig-
ure 5 shows the 2D-visualization of the embeddings from
the CAMI dataset, where nodes with distinct colors repre-
sent different species. Visually, RepBin-Learning with Con-
straint gives the best separation between different clusters

Figure 4: Results of RepBin and its variants on Sim-20G and
CAMI datasets.

comparing with RepBin-Learning without Constraint.

Parameters Analysis. The parameter α, varying from
0.001 to 0.1, is used in diffusion to control the probabil-
ity of teleporting to another state. The parameter λ, vary-
ing from 0.1 to 0.9, is used to balance the importance be-
tween the graph and constraints in the loss function of the
Constraint-based Learning model. The parameter d, vary-
ing in {16, 32, 64, 128}, represents the dimension of the
RepBin-Learning. Figure 6 shows that the performance of
RepBin is not sensitive to the changes in above parameters.
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Datasets MetaWatt CON MaxBin2 BusyBee MetaBAT2 SolidBin VAMB RepBinCOCT Web

Sim-5G

Precision 100.00 91.60 91.13 86.57 100.00 90.00 100.00±0.00 99.69±0.10
Recall 24.59 40.50 46.69 49.79 6.61 46.49 33.92±0.90 99.69±0.10

F1 39.47 56.16 61.75 63.22 12.40 61.31 50.66±1.02 99.69±0.10
Pred. bins 12 7 5 4 34 5 6 5

Sim-10G

Precision 99.29 86.99 89.43 84.47 100.00 91.58 99.93±0.15 99.20±0.00
Recall 26.13 39.72 40.30 45.53 6.39 41.70 33.80±0.20 99.55±0.08

F1 41.38 54.54 55.56 59.17 12.01 57.30 50.51±0.23 99.37±0.04
Pred. bins 20 12 10 6 56 10 11 10

Sim-20G

Precision 96.85 84.02 88.25 77.39 96.77 96.51 99.35±0.10 97.31±0.31
Recall 32.01 42.27 41.69 44.51 7.73 85.04 36.88±0.60 96.98±0.69

F1 48.12 56.24 56.63 56.52 14.32 90.41 53.79±0.64 97.15±0.61
Pred. bins 33 22 21 12 88 20 22 20

CAMI

Precision 86.29 92.83 85.33 77.47 95.41 80.65 98.82±0.41 83.67±0.93
Recall 37.12 43.65 39.69 53.15 1.51 44.86 31.90±0.92 92.84±0.78

F1 51.91 59.38 54.18 63.05 2.97 57.66 48.23±1.06 87.41±0.60
Pred. bins 65 30 22 16 101 20 21 17

Sharon

Precision 79.08 74.03 82.33 68.68 76.89 70.04 97.41±0.21 73.60±0.72
Recall 18.91 24.58 25.74 43.82 1.72 25.82 30.23±2.51 76.59±0.79

F1 30.52 36.91 40.37 53.50 3.36 37.73 46.10±3.01 74.97±0.16
Pred. bins 39 48 16 5 34 9 9 11

Stand-alone Binning Tools + GraphBin

Sim-20G

Precision 98.02 92.96 96.77 90.27 96.77 96.51 98.15±0.04 97.31±0.31
Recall 68.71 81.86 83.96 91.84 7.73 85.04 86.35±2.21 96.98±0.69

F1 80.79 87.06 89.91 91.05 14.32 90.41 91.86±1.25 97.15±0.61
Pred. bins 33 22 21 12 88 20 22 20

CAMI

Precision 91.88 96.44 89.18 85.16 92.44 86.86 95.05±0.26 83.67±0.93
Recall 60.12 79.43 76.82 88.17 36.77 82.15 78.94±1.47 92.84±0.78

F1 72.68 87.11 82.54 86.85 52.60 84.44 86.24±0.91 87.41±0.60
Pred. bins 65 30 22 16 101 20 21 17

Table 3: The experimental metrics of RepBin and baselines on five datasets for binning contigs (%).

Figure 5: Visualization of representations on CAMI.

Training & Running Analysis. Figure 7 (a) and (b) show
the process of optimizing Equation 3 and the changes of
evaluation metrics in the Constraint-based Binning model of
the RepBin. Figure 7 (c) shows the running time of RepBin
against other baselines on Sim-20G. RepBin is the second
fastest binning tool and only slightly slower than SolidBin.

Conclusion
To learn both the graph structure and prior heterophily in-
formation (represented as pairwise constraints), we propose
a constraint-based graph representation learning model,
Constraint-based Learning. It is a contrastive graph learning
framework that uses a diffusion graph convolutional opera-
tor to model graph structure and respects prior constraints by

Figure 6: Parameters analysis of the RepBin model.

Figure 7: The training loss and running time of RepBin.

adding a penalty with respect to constrained nodes. We also
propose a Constraint-based Binning model which groups
constrained nodes using k-means algorithm and then use a
semi-supervised GCN model to annotate unlabeled nodes,
which is robust to imbalance in the node constraints and the
bin sizes. The proposed RepBin is implemented to solve the
real-world task of metagenomic binning. Extensive experi-
ments demonstrate the superiority of RepBin in binning.
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