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Abstract

Accurate protein contact map prediction (PCMP) is essential
for precise protein structure estimation and further biological
studies. Recent works achieve significant performance on this
task with high quality multiple sequence alignment (MSA).
However, the PCMP accuracy drops dramatically while only
poor MSA (e.g., absolute MSA count less than 10) is avail-
able. Therefore, in this paper, we propose the Contact-Distil
to improve the low homologous PCMP accuracy through
knowledge distillation on a self-supervised model. Particu-
larly, two pre-trained transformers are exploited to learn the
high quality and low quality MSA representation in parallel
for the teacher and student model correspondingly. Besides,
the co-evolution information is further extracted from pure
sequence through a pretrained ESM-1b model, which pro-
vides auxiliary knowledge to improve student performance.
Extensive experiments show Contact-Distil outperforms pre-
vious state-of-the-arts by large margins on CAMEO-L dataset
for low homologous PCMP, i.e., around 13.3% and 9.5%
improvements against Alphafold2 and MSA Transformer re-
spectively when MSA count less than 10.

Introduction

Protein structure estimation shows the great importance
of drug design, vaccine development and other biologi-
cal function studies. The problem of obtaining highly ac-
curate 3D protein folding remains challenging. Nowadays,
there are two major routes to obtain the structure predic-
tion which are experimental method and computer-aid al-
gorithm. For instance, in experimental approaches, (Noble,
Endicott, and Johnson 2004; Wuthrich 1989; Wang et al.
2015) utilize X-ray crystallography, nuclear magnetic res-
onance (NMR), and cryo-electron microscopy (cryo-EM) to
solve this issue. However, those biology practical methods
are either time consummation or labor-intensive. Tremen-
dous economic cost further limits the development of those
approaches especially for cryo-EM. Therefore, to get rid of
those limitations, computer-aid approach (Mandell and Ko-
rtemme 2009) is attracted by researchers’ attention. Take ad-
vantage of deep learning algorithm development, (Li and
Yu 2016; Wang et al. 2016; Zhou and Troyanskaya 2014)
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Figure 1: Contact-Distil for low homologous PCMP. The
model is trained in a self-supervised manner. The teacher
branch accepts rich MSA and student branch takes down-
sampled poor MSA as the input. Each branch adopts a pre-
tained representation learning model to provide co-evolution
features. Knowledge distillation loss aims to align the poor
features from the student to the teacher rich ones. Besides,
the student branch exploits pseudo knowledge from large-
scale pretrained ESM-1b to compensate for the extremely
low homologous proteins with poor MSAs.

resolve protein structure by exploiting finely designed neu-
ral networks. Nevertheless, the accurate protein contact map
prediction (PCMP) is the key to massive improvement of
the folding accuracy in (Kéllberg et al. 2014). Particularly,
PCMP represents whether contact or not for any two-residue
pair in the 3D protein folding space. In (Tegge et al. 2009),
NNcon is proposed to resolve PCMP by 2D-recursive neural
networks. To further improve PCMP performance, (Wang
et al. 2017) proposes a very deep residual model to achieve
the protein contact map which exploits multiple 2D residual
convolution layers to learn from 1D sequential features.
Recently, MSA transformer (Rao et al. 2021) extracts the
embedding features from representation learning as the aux-
iliary features to improve the downstream PCMP accuracy.



But it simply utilizes embedding knowledge from the trans-
former as an input to optimize deep residual networks re-
gardless of jointly optimizing bert with PCMP improve-
ment. Alphafold2 (Jumper et al. 2021) achieves state-of-
the-art performance and largely improves the accuracy of
supervised protein structure prediction and PCMP. How-
ever, all those approaches require highly rich multiple se-
quence alignment(MSA) as additional features i.e. , input
sequences with MSA count > 500 for their model. Nev-
ertheless, low homologous proteins usually have poor MSA
features whose MSA count < 10 and cannot provide enough
rich features to predict accurate PCMP. Hence, the current
state-of-the-art methods are failed to cope with those pro-
teins with low quality MSA e.g. , merely 50% accuracy for
Alphafold2 and low homologous PCMP still remains chal-
lenging.

Therefore, in this paper, we propose a framework with
knowledge distillation to tackle this issue by exploiting
teacher and student modules to learn the high and low ho-
mologous MSA features separately as shown in Fig. 1. More
specifically, we utilize a MSA transformer as the feature ex-
tractor to provide pseudo homologous features for down-
stream PCMP task which is pretrained on 26 million MSAs
in (Rao et al. 2021). Two successive contact predictors are
followed behind MSA transformers to predict the PCMP
outputs in teacher and student modules respectively. There-
fore, we jointly optimize the downstream PCMP task and
upstreaming representation learning models, which aims to
improve the final PCMP accuracy. A self-supervised man-
ner is adopted in the training phase. Particularly, the teacher
module accepts high homologous MSAs as the input and
student module is fed with low homologous ones which
are downsampled from rich MSAs. A knowledge distilla-
tion loss is adopted between the teacher module and student
module to teach the low homologous features towards the
high homologous ones and minimize the domain gap be-
tween two kinds of MSAs. It is worth to mention that an-
other large-scale dataset pretrained ESM-1b model (Rives
et al. 2021) is exploited to provide fake homologous knowl-
edge to improve extremely low homologous PCMPs i.e. ,
proteins with MSA count = 1. Different from MSA trans-
former, ESM-1b is trained on a more larger dataset and
takes pure sequence as input rather than MSA input in (Rao
etal. 2021). Therefore, for proteins with extremely low qual-
ity MSAs, it can produce pseudo co-evolution knowledge
which can compensate for the input poor MSA to boost the
performance.

Through extensive comparison experiments on two public
available datasets trRosetta (Yang et al. 2020) and CAMEO-
L, our Contact-Distil achieves state-of-the-art performance
on low homologous PCMPs which surpasses previous best
methods Alphafold2 and MSA transformer with a large mar-
gin i.e. , ~ 10%. Benefit from pseudo co-evolution knowl-
edge of ESM-1b, we achieve 9.9% and 37.4% improvement
against MSA transformer and Alphafold2 respectively on
extremely low homologous proteins whose MSA count is
equal to 1. Moreover, finely detailed ablation studies are
conducted to examine each proposed component is neces-
sary.
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In summary, our main contributions can be concluded into
3 foldings.

* We propose Contact-Distil to solve the low homologous
protein contact map prediction (PCMP) which consists
of a teacher module and a student module. Each module
contains one pretrained MSA transformer to provide co-
evolution features and is jointly optimized with contact
predictor towards PCMP accuracy improvement.

* To compensate for the extremely low homologous MSA,
we import prior knowledge from a pretrained ESM-1b
model which is optimized on 0.25 billion proteins for
representation learning. To evaluate the performance of
proposed approach we further release a new low homolo-
gous protein dataset CAMEO-L which is the first dataset
for low homologous PCMP evaluation.

* Extensive experiments demonstrate the superiority of
proposed Contact-Distil which achieves 13.3% im-
provement against previous state-of-the-art model Al-
phafold2 (Jumper et al. 2021) and 9.5% gains against
MSA transformer (Rao et al. 2021) on low homologous
proteins in CAMEO-L dataset.

Related Works
MSA for Protein Structure Prediction

Given a target protein sequence, multiple sequence align-
ment (MSA) is a batch of sequences which are homol-
ogous with the target sequence and obtained by search-
ing on the protein cluster database such as Uniref90 and
Uniref50 (Consortium 2010). Exploiting MSA to boost the
protein structure prediction is commonly used in recent re-
searches (Li and Yu 2016; Wang et al. 2017; Wang and et al.
2021b,a; Rao et al. 2019) and achieves significant accuracy
improvement.

Therefore, the quality of MSA plays an essential role for
protein structure estimation. For instance, rich MSAs with
count > 2000 usually perform well and poor MSAs with
count < 10 cannot achieve satisfactory results. The pro-
file and PSSM are two kinds of most frequently used fea-
tures to quantize the MSA which converts a batch of se-
quences (i.e. , MSA) to a statistical matrix with the fixed
shape L x 20 where L indicates the sequence length and 20
means the number of amino acid categories. (Zahiri et al.
2013) is firstly to introduce PSSM from MSA to improve
the protein structure prediction performance. Profile can be
calculated by Eq. 1 where F; is a vector with length 20 to
represent the frequency of each amino acid occurrence at
residue i.

F;
> Fi
Hence, profile can be regarded as normalization of fre-
quency map which is counted from MSA. In this paper, we
utilize profile to extract homologous knowledge from MSA.

profile; =

(D

Low Homologous Protein Structure Prediction

Recently, Alphafold (AlQuraishi 2019) and Al-
phafold2 (Jumper et al. 2021) largely improve the folding
accuracy of protein structures. However, those approaches



still require rich MSA features to provide co-evolution
knowledge. (Guo and et al. 2020) firstly proposes a self-
supervised approach to predict an enhanced PSSM from low
quality PSSM to improve the protein secondary structure
prediction. (Wang and et al. 2021b) further introduces
knowledge distillation and contrastive learning to jointly
optimize the enhanced network and secondary structure
predictor. Prior knowledge from ESM-1b is firstly utilized
in (Wang and et al. 2021a) and aggregated with original
low quality MSA to further boost the low homologous
secondary structure accuracy. However, those approaches
only focus on protein secondary structure regardless of more
essential structures such as protein distance and contract
maps. MSA transformer is proposed in (Rao et al. 2021)
to learn the co-evolution knowledge through representation
learning on MSAs by row and column attention which
achieves relatively good quality contact maps. Nevertheless,
MSA transformer fails on the extremely low quality MSAs
i.e. , MSA count equal to 1 which cannot obtain satis-
factory performance. Besides, for supervised PCMP part,
MSA transformer only utilizes embedding features from
pretrained BERT as the input for downstream PCMP task
without jointly optimize the transformer towards PCMP
performance improvement.

Method
Contact Distillation

To tackle the low homologous PCMP issue, we present
Contact-Distil which consists of a teacher module and a stu-
dent module as shown in green and blue part respectively
of Fig. 2. The teacher module aims to learn high quality
features from high homologous MSA with corresponding
high quality transformer and profile embedding features.
The knowledge distillation loss is applied at the tail of two
branches by utilizing high quality prediction of teacher mod-
ule to teach student module which learns from downsam-
pled poor MSA. In inference phase, student module will be
only exploited to predict contact maps from real natural poor
MSA:s.

More specifically, the teacher module accepts rich MSA
as input and utilizes a pretrained MSA transformer (Rao
et al. 2021) which is optimized on 26 million MSAs to pro-
vide co-evolution knowledge. A profile net is exploited to
transform the input profile to profile embedding features
which can suppress the redundant residue column feature
and amplify the essential features adaptively as shown in
yellow part of Fig. 2 where T means the transform function
as shown in Eq. 2. And N is a predicted vector by profile net
as shown in yellow part of Fig. 2.

1 — profileN
- 2
= @

As shown in the blue part in Fig. 2, the student module
takes same architecture with teacher module except intro-
ducing pseudo co-evolution knowledge from ESM-1b model
as auxiliary information to compensate for the poor MSA
especially for the extremely low quality cases i.e. , MSA
count=1. ESM-1b (Rives et al. 2021) is a large-scale dataset

Prof.embedding =
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pretrained BERT which utilizes 0.25 billiton proteins for the
training. In practice, we extract pseudo profile from ESM-1b
to represent the pseudo co-evolution knowledge to help the
latter PCMP predictor. Similar with teacher module, a pro-
file net is adopted to transform the pseudo profile to pseudo
profile embedding feature which will be concatenated with
transformer features from downsampled poor MSAs for fi-
nal contact map prediction.

The contact predictor is utilized to predict the final contact
map in both two modules whose architecture is shown as the
blue part of Fig. 2. Particularly, the transformer embedding
with shape L x 768 is first reduced into a L x 128 features
by a 1-D convolution layer which will be inner concatenated
with profile embedding to form a L x 148 feature as shown
with green and yellow arrows in the blue part of Fig. 2. Then
the fused feature will outer concatenate with itself to form
L? %296 feature maps for the input of Resnet32 as illustrated
with green arrows of blue part in Fig. 2.

Pseudo Profile Generation

Pseudo profile is generated from ESM-1b (Rives et al. 2021)
to provide auxiliary knowledge for compensation of poor
MSAs towards PCMP performance improvement. We uti-
lize the same approach with (Wang and et al. 2021a) to pro-
duce pseudo profile which will mask the each residue in the
protein sequence and exploit remain tokens to predict the
categories of masked reside. Here the prediction vector with
length 20 after softmax layer can be regarded as one column
of the pseudo profile for the masked residue position. There-
fore, for a protein with length L, by masking each residue
and predicting its soft label (i.e. ,the prediction vector with
length 20), we can obtain a probability matrix with shape
20 x L to represent the pseudo profile and boost PCMP per-
formance with contact predictor.

Model Optimization and Loss Function

First, two MSA transformers will load the pretrain weights
in (Rao et al. 2021). The parameters of ESM-1b are fixed
to extract features to generate pseudo profile, while another
two pretrained MSA transformers in teacher and student
module will be jointly optimized with PCMP task in an end-
to-end manner by smaller learning rates. We first utilize the
samples with rich MSA to train the teacher module F; for
PCMP with cross-entropy (CE) loss. To train the student
module Fj, we fix the weights of whole teacher module and
extract the final probability maps from the contact predic-
tor of the teacher module to teach the student module by a
knowledge distillation loss £ as shown in Eq. 3 where KL
is Kullback-Leibler Divergence to distil the knowledge from
teacher to student. M}, is the high quality MSA whose down-
sampled version is denoted as M;. P, indicates the high
quality profile which can be counted from high quality MSA
My, while P, is the pseudo profile which can be generated
from sequence S by ESM-1b as shown in previous section.
The contact map ground truth is denoted as Y in Eq. 3. More
specific descriptions can be found in Algorithm. 1.

L =KL(F;(M;, Pp), Fs(Mp, Py))+ CE(Fs(M;, P,),Y) (3)
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Figure 2: The overview of proposed Contact-Distil framework. The teacher module is illustrated in green color which aims to
learn features from high quality MSA input. Once teacher module is well optimized, its knowledge can be transferred to student
module which accepts low quality MSA as input as shown in blue color. Specifically, a knowledge distillation loss is well
designed for the knowledge transfer from teacher module to student module. To compensate for the extremely poor MSA i.e.
, MSA count=1, the pseudo profile is extracted from a pure protein sequence input with a ESM-1b model which is pretrained
on 0.25 billion proteins for co-evolution learning. Moreover, a profile net is exploited to transform original profile to profile
embedding which can amplify the discriminative features and suppress poor ones. Given the profile and transformer embedings,
the contact predictor accepts those features and aims to predict the final protein contact map as shown in blue part.

Algorithm 1: Contact-Distil for PCMP

Input: Protein Sequence S; High-quality Profile P,;
Low-quality MSA M, High-quality MSA M,
Label Y;

Parameters : Student Module Fs; Teacher Module Fi;

/+* Training Phase x/
1 Teacher Module F, <277 pf, hy Y5
) M, QMEADownsample
3 P, LEMZ1Y et Pseudo Profile From S R
4 Fy(My, Py) <<% High MSA My, Pr;
s F.(M, Py) 5% Low MSA M, Py;
/* Minimize KD loss Eg. 3 on Fjs */
6 F, Mmze L g (Mg, Py), Fo(My, Pr), Y
/* Inference Phase %/
ESM—1b
7 P, «——— Get Pseudo Profile From S;

8 X(—FS(MZ,PE,);
9 Contact < Argmaz(X);
Output: Parameters of Fy, Fs

Experiment
Implementation Details

The Contact-Distil is implemented by Pytorch! and Ignite.
The source code and dataset are released 2. 4 Nvidia V100
GPU cards are utilized to optimize the model. The pre-
trained parameters are loaded from the released models® in
(Rives et al. 2021) and (Rao et al. 2021). In practice, due
to GPU memory limitation, we randomly select up to 2'4

"https://www.pytorch.org
Zhttps://github.com/qinwang-ai/Contact- Distil
*https://github.com/facebookresearch/esm
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tokens from high-MSA Mj, to train teacher. To train stu-
dent with teacher of the best performance, we select top 100
sequences in M) with max-hamming distance strategy to
forward teacher. The initial learning rates (LR) for MSA
transformer and contact predictor are 107° and 10™% re-
spectively, and a cosine learning rate schedule with 2-epoch
warming up steps. To evaluate Alphafold2 with low qual-
ity MSAs, we load pretrained weights from (Jumper et al.
2021) and turn off the MSA template search which only uti-
lizes the given poor MSA as input. The Alphafold2 PCMP
is extracted from its output PDB file by biopython®.

Network Architecture

The student module contains several components including
two pretrained transformers, a profile net and a contact pre-
dictor which are shown in Fig. 2. Only MSA transformer
is optimized in the training phase while ESM-1b is only
utilized to generate pseudo profile. Two transformers take
the same network design as (Rives et al. 2021; Rao et al.
2021) and load pretrained weights from them. The profile
net adopts a BiLSTM (Wang, Zhang, and Wang 2017) to
predict transform parameter /N in Eq. 2 to refine the origi-
nal profile by a residue-wise transformation whose architec-
ture is shown in yellow part of Fig. 2. In contact predictor,
a ID-CNN layer is utilized in contact predictor to reduce
the channel size of transformer embedding from 768 to 128
which can be concatenated with profile embedding to form
148-channel features. As same in (Rives et al. 2021), outer
concatenation is performed to obtain 2D features with shape
L? x 296. Finally, a ResNet32 is applied to predict the fi-
nal PCMP output as shown in the blue part of Fig. 2. The

*https://biopython.org



contact predictor of teacher module has the same architec-
ture with student one while teacher module only contains
MSA transformer and contact predictor without profile net
and ESM-1b.

Dataset

Two public-available datasets are utilized to examine the
performance of Contact-Distil with other approaches.

trRosetta It s first proposed in (Yang et al. 2020) for pro-
tein structure prediction evaluation which consists of 15051
proteins. In (Rao et al. 2021), MSA transformer also utilizes
this dataset to evaluate the supervised PCMP performance.
Therefore, for a fair comparison, we exploit this dataset to
conduct the comparison experiments as well. We extract the
contact map ground truth from its PDB files on its website
3. We randomly divide the 15051 proteins into training set
and validation set according to the ratio 8:2 respectively.
Uniref90 (Consortium 2010) cluster with date July 2019 is
utilized for MSA searching. We randomly downsample the
searched MSAs to form the low homologous validation set.
The training set is utilized to optimize the proposed Contact-
Distil. Once the model is well optimized, we will evaluate
PCMP performance on the low homologous validation set.

CAMEO-L We randomly downsample proteins of previ-
ous half-year in 2021 on CAMEO dataset (Haas et al. 2013)
to construct CAMEO-L for the evaluation of low quality
contact map prediction. To the best of our knowledge, this
is the first public-available dataset to evaluate low homolo-
gous PCMP. It contains 339 proteins and each of them has
no more than 10 homologous sequences which are randomly
selected from its original MSA. Particularly, the distribu-
tion of MSA count is uniform and it contains 52 proteins
with extremely low quality MSA i.e. , count=1. The orig-
inal MSAs of those proteins are obtained by searching on
Uniref90 (Consortium 2010) cluster with date July 2019.

Method MSA.C Num Top L/2 TopL/5 Top L

AF2 0.192 0213  0.140
MSAT <1 304 0.205 0.270  0.161
Ours 0546 0.683 0.414
AF2 0.388 0400  0.330
MSAT <3 922 0.344  0.441 0.263
Ours 0.630 0.754  0.488
AF2 0.608  0.618  0.558
MSAT <10 3011 0.543 0.663 0416
Ours 0.718 0.828  0.571

Table 1: The comparison with previous best methods at var-
ious MSA count partitions on trRosetta dataset. By the com-
parison, Contact-Distil significantly surpasses previous best
methods on different metrics for low homologous PCMP es-
pecially for extremely low quality MSAs whose sequence
count is less equal than 1.

>https://yanglab.nankai.edu.cn/trRosetta/benchmark/
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Result

Extensive experiments are conducted to evaluate the perfor-
mance of proposed Contact-Distil which consists of compar-
ison experiments and ablation studies.

Comparison Experiment The comparison experiment is
implemented to compare Contact-Distil with previous state-
of-the-art methods such as MSA transformer (Rao et al.
2021) and Alphafold2 (Jumper et al. 2021) for low ho-
mologous PCMP on two public-available datasets: tRosetta
and CAMEO-L. Tab. 1 illustrates the comparison between
Contact-Distil with MSA transformer and Alphafold2 for
each MSA count partition e.g. ,< 1, < 3, < 10 on validation
set of trRosetta. “Top-L/x’ indicates metric filtering which
only counts on reside pairs within distance ratio L/x. ‘AF2’
is Alphafold2 (Jumper et al. 2021) and ‘MSA.T” is MSA
transformer (Rao et al. 2021). The proposed Contact-Distil
shows superiority against previous state-of-the-art methods
MSA transformer and Alphafold2 in each partition as shown
in Tab. 1. The evaluation result of CAMEO-L dataset shows
the same facts in Tab. 2 It demonstrates a great importance
of exploiting knowledge distillation to transfer high quality
knowledge from teacher module to help the student module
to predict accurate PCMP with low homologous proteins.
Especially, for the extremely low homologous proteins i.e.
, MSA count=1 in CAMEO-L dataset, Contact—Distil sur-
passes the previous best approaches MSA transformer and
Alphafold2 by 9.9% and 37.4% respectively which exactly
proves the effectiveness of co-evolution knowledge compen-
sation from pseudo profile with a pretained ESM-1b model.
As same in (Wang and et al. 2021b), we further demon-
strate the comparison with Meff score partitions and the re-
sults on the validation set of trRosetta are show in Tab. 3.
On CAMEO-L dataset, the same evidence can be found in
Tab. 4, Contact-Distil achieves the highest PCMP accuracy
among each partition on two datasets regardless of MSA
tranformer and Alphafold2, which shows the superior per-
formance of proposed Contact-Distil against state-of-the-art
methods.

Method MSA.C Num Top L/2 Top L/5 Top L

AF2 0.247  0.251 0.190
MSAT <1 52 0.593  0.696  0.465
Ours 0.691 0.773  0.564
AF2 0.363  0.382  0.309
MSAT <3 155 0.643 0.754  0.504
Ours 0.730 0.814 0.59%4
AF2 0514  0.532  0.461
MSA.T <10 396 0.645 0.768  0.499
Ours 0.737 0.837 0.594

Table 2: The comparison with previous best methods at var-
ious MSA count partitions on CAMEO-L dataset. Contact-
Distil achieves state-of-the-art performance on CAMEO-L
with all metricsi.e. , “Top L/2°, “Top L/5’ and ‘“Top L.

Ablation Study The ablation study is conducted on the
trRosetta validation set in Tab. 5 to demonstrate the each
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Figure 4: Comparison visualization of Contact-Distil with Alphafold2 and MSA Transformer. The previous two columns show
the detailed comparison between Contact-Distil with state-of-the-art methods where the horizontal axis indicates PCMP accu-
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the brighter the lower. We can clearly observe that most of the points are positioned to left side especially for the extremely
low quality cases, which exactly proves the performance superiority of Contact-Distil. The last column shows the accuracy
comparison between different methods with various MSA counts. Contact-Distil surpasses other two methods among different
MSA counts and is obviously more stable with various MSAs qualities.

component gains against the full model which is denoted as
‘Full’. ‘wo ESM’ indicates the ablation of ESM-1b mod-
ule which can provide the pseudo co-evolution knowledge
by generating pseudo profile to facilitate the student PCMP
with poor MSA input. The result in Tab. 5 shows the ac-
curacies of extremely low homologous proteins drop from
0.414 down to 0.243 for ‘wo ESM’ which exactly shows the
great importance of pseudo co-evolution knowledge com-
pensation for extremely low quality MSAs. Nevertheless, in
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Tab. 5, the full model shows the best performance compare
with all ablation models on all MSA count partitions, which
exactly illustrates the proposed component in Contact-Distil
is necessary and effectiveness.

Qualitative Visualization

More detailed visualization comparisons are shown in Fig. 3
to examine the performance improvement of Contact-Distil
against state-of-the-art methods such as Alphafold2 (Jumper



Method Meff.S Num Top L/2 Top L/5 Top L

Method MSA.C Num Top L/2 Top L/5 Top L

AF2 0419 0422  0.352 wo ESM 0.314  0.408 0.243
MSA.T <28 321 0364 0471  0.276 wo Distil <1 304 0.531 0.661 0.407
Ours 0.639 0.756  0.499 Full 0546 0.683 0.414
AF2 0.528  0.537 0471 wo ESM 0470  0.581 0.361
MSAT <4 963 0444 0562  0.337 wo Distil <3 922 0.626  0.750  0.488
Ours 0.671  0.787  0.526 Full 0.638 0.759  0.496
AF2 0.656  0.665  0.606

MSA.T <10 2701 0.581 0.708  0.445 Table 5: The ablation study on trRosetta validation set. As
Ours 0.739 0.845 0.589 shown in the table, ESM-1b plays an important role in the

Table 3: The comparison with previous methods at various
meff score partitions on trRosetta validation set and Contact-
Distil achieves the highest performance.

Method Meff.S Num Top L/2 TopL/5 Top L

AF2 0364 0385  0.304
MSAT <28 69 0.633  0.733  0.499
Ours 0.703 0.781  0.574
AF2 0.447 0465  0.395
MSAT <4 150 0.638  0.751 0.494
Ours 0.714 0.807 0.579
AF2 0.561 0.579  0.509
MSAT <10 337 0.658 0.784  0.510
Ours 0.750  0.852  0.604

Table 4: The comparison at various meff score partitions on
CAMEO-L dataset. Across all the subsets, our method out-
performs other methods.

et al. 2021) and MSA Transformer (Rao et al. 2021). From
the comparison in Fig. 3, we can observe that our prediction
is most similar with the ground truth regardless of previous
methods for low homologous PCMP, which indicates the
Contact-Distil significantly improves PCMP performance
through knowledge distillation and exploiting pseudo co-
evolution knowledge to boost PCMP performance with ex-
tremely low quality MSAs. Anther detailed comparisons are
shown in Fig. 4. The horizontal axis indicates other methods
and the vertical axis represents Contact-Distil. Each point
is a sample whose color means the MSA depth the deeper
the higher. From the comparison in Fig. 4, we can clearly
notice that most of points are positioned on the right side
which shows that Contact-Distil surpasses the other meth-
ods on PCMP performance for those proteins. Especially,
for the points with shallow color, almost all those samples
are positioned in the left part of the graph and exactly ex-
amined the effectiveness of knowledge distillation and in-
troducing pseudo profile to improve the extremely low ho-
mologous PCMP. The last column also proves the superior
performance of proposed Contact-Distil thought comparison
with other methods on different MSA counts.

Conclusion

In this paper, we propose a refinement approach for protein
contact map prediction with low homologous MSA which
consists of knowledge distillation and representation learn-
ing. Two pretrained MSA transformers are exploited in the
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whole framework. For instance, after removal of ESM-1b,
the PCMP accuracy drops from 0.414 down to 0.243 which
exactly proves the effectiveness of pseudo knowledge from
a large-scale dataset pretrained model.

teacher and student module to extract co-evolution features.
The teacher module aims to learn high quality features with
high homologous MSAs for PCMP while student module
only accepts low homologous MSAs as input. Therefore,
a well designed knowledge distillation loss is adopted to
transfer the knowledge from teacher module to student mod-
ule. Different from MSA transformer (Rao et al. 2021), our
method jointly optimizes the contact predictor with trans-
former part rather than only extracting embedings from a
fixed BERT. Here, the optimization of transformer is to-
wards PCMP performance improvement instead of merely
representation learning. Moreover, a large-scale dataset pre-
trained ESM-1b model is applied to provide pseudo co-
evolution knowledge to compensate for the extremely low
homologous proteini.e. , MSA count=1. To evaluate the
Contact-Distil performance, we further release a public-
available dataset CAMEO-L which is the first dataset for
low homologous PCMP evaluation. Through extensive com-
parison experiments, Contact-Distil achieves new state-of-
the-art performance among previous methods such as MSA
transformer and Alphafold2 for low homologous PCMPi.e. ,
~ 10% improvement for MSA count < 10. A detailed abla-
tion study further shows each component of Contact-Distil
is necessary. More comprehensive qualitative visualizations
further demonstrate the effectiveness of Contact-Distil. Fu-
ture work should focus on more precise tertiary structures
for low homologous proteins such as protein distance map.

Acknowledgements

This work was supported in part by NSFC-Youth 61902335,
by Key Area R&D Program of Guangdong Province with
grant No.2018B030338001, by the National Key R&D Pro-
gram of China with grant No.2018YFB 1800800, by Shen-
zhen Outstanding Talents Training Fund, by Guangdong
Research Project No.2017ZT07X152, by Guangdong Re-
gional Joint Fund-Key Projects 2019B1515120039, by the
NSFC 61931024&81922046, by zelixir biotechnology com-
pany Fund and CCF-Tencent Open Fund, by HPCP of ITSO
(CUHSKZ).



References

AlQuraishi, M. 2019. AlphaFold at CASP13. Bioinformat-
ics, 35(22): 4862-4865.

Consortium, U. 2010. The universal protein resource
(UniProt) in 2010. Nucleic acids research, 38(suppl_1):
D142-D148.

Guo, Y.; and et al. 2020. Bagging MSA Learning: Enhanc-
ing Low-Quality PSSM with Deep Learning for Accurate
Protein Structure Property Prediction. In International Con-
ference on Research in Computational Molecular Biology,
88—103. Springer.

Haas, J.; Roth, S.; Arnold, K.; Kiefer, F.; Schmidt, T.; Bor-
doli, L.; and Schwede, T. 2013. The Protein Model Portal—a
comprehensive resource for protein structure and model in-
formation. Database, 2013.

Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.;
Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zl’dek,
A.; Potapenko, A; et al. 2021. Highly accurate protein struc-
ture prediction with AlphaFold. Nature, 1-11.

Killberg, M.; Margaryan, G.; Wang, S.; Ma, J.; and Xu, J.
2014. RaptorX server: a resource for template-based protein
structure modeling. In Protein structure prediction, 17-27.
Springer.

Li, Z.; and Yu, Y. 2016. Protein secondary structure pre-
diction using cascaded convolutional and recurrent neural
networks. arXiv preprint arXiv:1604.07176.

Mandell, D. J.; and Kortemme, T. 2009. Computer-aided
design of functional protein interactions. Nature chemical
biology, 5(11): 797-807.

Noble, M. E.; Endicott, J. A.; and Johnson, L. N. 2004. Pro-
tein kinase inhibitors: insights into drug design from struc-
ture. Science, 303(5665): 1800-1805.

Rao, R.; Bhattacharya, N.; Thomas, N.; Duan, Y.; Chen, P.;
Canny, J.; Abbeel, P.; and Song, Y. 2019. Evaluating protein
transfer learning with TAPE. In Advances in Neural Infor-
mation Processing Systems, 9686-9698.

Rao, R.; Liu, J.; Verkuil, R.; Meier, J.; Canny, J. F.; Abbeel,
P; Sercu, T.; and Rives, A. 2021. Msa transformer. bioRxiv.
Rives, A.; Meier, J.; Sercu, T.; Goyal, S.; Lin, Z.; Liu, J.;
Guo, D.; Ott, M.; Zitnick, C. L.; Ma, J.; et al. 2021. Biologi-
cal structure and function emerge from scaling unsupervised
learning to 250 million protein sequences. Proceedings of
the National Academy of Sciences, 118(15).

Tegge, A. N.; Wang, Z.; Eickholt, J.; and Cheng, J. 2009.
NNcon: improved protein contact map prediction using
2D-recursive neural networks.  Nucleic acids research,
37(suppl_2): W515-W518.

Wang, J.; Zhang, J.; and Wang, X. 2017. Bilateral LSTM: A
two-dimensional long short-term memory model with mul-
tiply memory units for short-term cycle time forecasting in
re-entrant manufacturing systems. IEEE Transactions on In-
dustrial Informatics, 14(2): 748-758.

Wang, Q.; and et al. 2021a. Adaptive Residue-wise Profile
Fusion for Low Homologous Protein Secondary Structure

Prediction Using External Knowledge. In Proceedings of
the Thirtieth IJCAL

4627

Wang, Q.; and et al. 2021b. PSSM-Distil: Protein Sec-
ondary Structure Prediction (PSSP) on Low-Quality PSSM
by Knowledge Distillation with Contrastive Learning. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, 617-625.

Wang, R. Y.-R.; Kudryashev, M.; Li, X.; Egelman, E. H.;
Basler, M.; Cheng, Y.; Baker, D.; and DiMaio, F. 2015.
De novo protein structure determination from near-atomic-
resolution cryo-EM maps. Nature methods, 12(4): 335-338.

Wang, S.; Peng, J.; Ma, J.; and Xu, J. 2016. Protein sec-
ondary structure prediction using deep convolutional neural
fields. Scientific reports, 6(1): 1-11.

Wang, S.; Sun, S.; Li, Z.; Zhang, R.; and Xu, J. 2017. Ac-
curate de novo prediction of protein contact map by ultra-
deep learning model. PLoS computational biology, 13(1):
€1005324.

‘Wauthrich, K. 1989. Protein structure determination in solu-
tion by nuclear magnetic resonance spectroscopy. Science,
243(4887): 45-50.

Yang, J.; Anishchenko, L.; Park, H.; Peng, Z.; Ovchinnikov,
S.; and Baker, D. 2020. Improved protein structure predic-
tion using predicted interresidue orientations. Proceedings
of the National Academy of Sciences, 117(3): 1496-1503.

Zahiri, J.; Yaghoubi, O.; Mohammad-Noori, M.; Ebrahim-
pour, R.; and Masoudi-Nejad, A. 2013. PPlevo: Protein—
protein interaction prediction from PSSM based evolution-
ary information. Genomics, 102(4): 237-242.

Zhou, J.; and Troyanskaya, O. G. 2014. Deep super-
vised and convolutional generative stochastic network for
protein secondary structure prediction. arXiv preprint
arXiv:1403.1347.



