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Abstract

Learning human driving behaviors is an efficient approach
for self-driving vehicles. Traditional Imitation Learning
(IL) methods assume that the expert demonstrations follow
Markov Decision Processes (MDPs). However, in reality, this
assumption does not always hold true. Spurious correlation
may exist through the paths of historical variables because
of the existence of unobserved confounders. Accounting for
the latent causal relationships from unobserved variables to
outcomes, this paper proposes Sequential Causal Imitation
Learning (SeqCIL) for imitating driver behaviors. We de-
velop a sequential causal template that generalizes the de-
fault MDP settings to one with Unobserved Confounders
(MDPUC-HD). Then we develop a sufficient graphical crite-
rion to determine when ignoring causality leads to poor per-
formances in MDPUC-HD. Through the framework of Ad-
versarial Imitation Learning, we develop a procedure to im-
itate the expert policy by blocking π-backdoor paths at each
time step. Our methods are evaluated on a synthetic dataset
and a real-world highway driving dataset, both demonstrating
that the proposed procedure significantly outperforms non-
causal imitation learning methods.

Introduction
Imitation Learning (IL) presents a promising paradigm for
autonomous driving (Pomerleau 1988; Bojarski et al. 2016,
2017; Bansal, Krizhevsky, and Ogale 2018; Codevilla et al.
2019). There are two major types in IL: behavioral cloning
(BC) and inverse reinforcement learning (IRL). BC methods
directly learn an approximate conditional distribution from
any given state to the expert’s action. Instead, IRL learns the
implicit reward function, which is optimal to the expert be-
haviors; then using this learned reward function, RL meth-
ods are employed to obtain a policy. Inspired by Generative
Adversarial Networks (GANs) and IRL (Goodfellow et al.
2014; Gulrajani et al. 2017), the framework of Adversarial
Imitation Learning (AIL) is proposed (Ho and Ermon 2016;
Li, Song, and Ermon 2017; Fu, Luo, and Levine 2017). In
AIL, the policy is trained by producing expert-like state-
action pairs to fool the discriminator. While training, the
discriminator can provide a reward signal to help the policy
proceed to expert-like zones.
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However, IL methods rely on the assumption that all ex-
pert features are fully observed and recorded. When there
exist unobserved variables inside the expert’s demonstra-
tions, critical problems arise. Causal Inference (CI) ad-
dresses those issues by investigating the causal relationships
among observed and unobserved variables (Spirtes et al.
2000; Pearl 2009; Peters, Janzing, and Schölkopf 2017).
There has been some research focused on the combination
of IL and Causality. Causal Imitation Learning (CIL) was re-
cently proposed by (Zhang, Kumor, and Bareinboim 2020),
which focuses on learning a policy within the limit of non-
sequential one-stage settings. The authors of (Etesami and
Geiger 2020) study the causal transfer problem by assuming
that the relationships among variables are linear. The paper
(de Haan, Jayaraman, and Levine 2019) ignores unobserved
confounders and assumes the reward and the expert can be
easily accessible.

So far we found one paper (Kumor, Zhang, and Barein-
boim 2021) related to SeqCIL, and the major differences
between their research and ours are listed here. Their di-
agrams are within finite-stage settings, but we work in
the γ-discounted infinite horizon setting. Their experiments
are mainly based on synthetic datasets with simplified re-
ward functions. However, our experiments include a realis-
tic dataset whose actual reward function cannot even be ac-
cessed. Their method mainly focuses on behavioral cloning,
while we also show the internal connection between AIL and
SeqCIL.

Little research has been conducted for sequential imita-
tion learning when unobserved variables exist. To demon-
strate the issue of ignoring unobserved variables resulting in
an unacceptable policy, we begin with an introductory ex-
ample.

Example 1. Suppose a scenario when an imitator needs to
learn how to correctly accelerate At. St denotes the velocity
and locations of the ego vehicle and the surrounding vehi-
cles. In reality, there exist some unobserved variables inside
the expert demonstrations. Human drivers utilize the vehi-
cle light information U (L)

t , i.e., the tail light from the front
vehicle 1 and the turn signal from the left vehicle 2. How-
ever, U (L)

t is not properly recorded, which is common in
some real-world datasets, such as NGSIM (Alexiadis et al.
2004) or highD (Krajewski et al. 2018). When the demon-
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strator drove, the road can be slippery U (S,R)
t , which is un-

known to the imitator. The level of the expert driving skills
Uπ is ignored. Ht−1 encodes the history information, which
the imitator does not take into account. The imitator only
takes St as input, while the expert makes a decision based
on Uπ, Ht−1, St, U

(L)
t . The latent reward is evaluated based

on St, At, U
(S,R)
t . Fig. 1 depicts this situation and its graph-

ical representation.
Consider a numerical instance where variables At, St,

Rt, Ht−1, U
(L)
t , U

(S,R)
t , Uπ ∈ {0, 1}; their values are gen-

erated based on the functions: Uπ ← 0, St ← Ht−1 ⊕
U

(S,R)
t , U (L)

t ← St, the expert policy πE : At ← Uπ ⊕
Ht−1 ⊕ St ⊕ U

(L)
t , the implicit reward Rt ← ¬(At ⊕

U
(S,R)
t ⊕St); variablesHt−1, U

(S,R)
t are uniformly sampled

over {0, 1}; the operator ⊕ means exclusive-or. The perfor-
mance of the demonstrator is E[Rt] = 1, which is optimal.
However, when ignoring the unobserved variables, the im-
itator with π(at|st) is only able to achieve E[Rt|do(π)] =
0.5. This result shows that even though the imitator π(at|st)
can copy the demonstrator’s actions given some states, the
obtained policy is still not optimal.

St

At

Uπ

πE

Rt

U(S,R)
tU(L)

t

Ht−1

Demonstrator

Vehicle 2

Vehicle 1

Figure 1: Left: The imitator learns to accelerate like the
demonstrator under the same St, while the light information
U

(L)
t , the demonstrator level Uπ , and the slippery indicator

U
(S,R)
t are not recorded. Right: Graphical representation for

Example 1.

Motivated by this example, we try to explain this phe-
nomenon, and understand how to learn sequential behav-
iors when unobserved confounders cannot be ignored. We
address these issues by Sequential Causal Imitation Learn-
ing (SeqCIL) and the framework of Adversarial Imitation
Learning (AIL). Our major contributions are summarized as
follows:

• We formalize the problem of SeqCIL, and introduce a
causal template, MDPUC-HD, which generalizes MDPs
with fewer constraints.

• By leveraging causal relationships among observed and
unobserved variables, we provide a sufficient graphical
criterion to explain why a non-causal imitator fails, and
develop a procedure to learn a sequential causal imitator
by blocking π-backdoor paths at each step.

• With causal Markov property, we instantiate our SeqCIL

framework by GAIL, and show the internal connection
between these two techniques.

• We demonstrate the superiority of our proposed method
over non-causal baselines by conducting experiments on
a car-following dataset and a real-world highway dataset.

The rest of this paper is organized as follows: Section ex-
hibits the preliminaries and formally defines the problem of
SeqCIL. Section presents the proposed causal template for
human driving behaviors, i.e., MDPUC-HD. Based on this
template, Section explicates why unobserved variables can-
not be ignored, and provides the sequential causal imitator
to address such issues. We propose to solve SeqCIL through
the framework of AIL in Section , and experiments are con-
ducted in Section .

Sequential Causal Imitation Learning
Conventions: In this paper, capitalized letters represent ran-
dom variables, e.g. R and lowercase letters are their specific
values, e.g. r; the probability distribution of a random vari-
able is capital P (R), and p(r) is for the mass at valueR = r.
S denotes a set. DKL represents the Kullback–Leibler (KL)
divergence between two distributions. Without explicit re-
mark, all proofs are shown in the appendix of this paper.

Preliminaries on Imitation Learning
Imitation Learning: S represents the state space, and A
represents the action space. The expert state space SπE

and
the chosen imitator state space Sπ can be different1. The
policy space Π is the set of all stationary stochastic poli-
cies that take actions in A given states in Sπ , denoted by
{π : Sπ 7→ A}.
Occupancy measure: Under the policy π, the state-action
occupancy measure ρπ(s, a) : Sπ × A → R is defined
as ρπ(s, a) = ρ(s, a|do(π)) = ρ(s, a;π) = ρπ(s)π(a|s),
where ρπ(s) denotes the unnormalized discounted future
state distribution when following the policy π: ρπ(s) =∑∞
t=0 γ

tpπ(st = s).
Expert Regime: πE always refers to the expert policy.

PπE
(·) denotes the distribution for any feasible random vari-

able under the expert πE regime2. P (·) denotes the observa-
tional distribution (“demonstrations”). In this paper, demon-
strations are generated by the expert, so that PπE

(·) = P (·).
Imitator Regime: Pπ(·) denotes the distribution under

the imitator π regime. Generally, Pπ(·) ̸= P (·), except
the situations when some graphical conditions are satisfied.
(More details can be found in Appendix Sec. A)
Adversarial Imitation Learning (AIL): AIL learns a pol-
icy by matching occupancy measures between the expert
and the imitator, and its training procedure includes updat-
ing the discriminator and the policy simultaneously. Gen-

1Sπ is manually chosen. People usually choose Sπ the same as
SπE , but they can be different.

2To illustrate the idea of “regime”, we take ρπ1(s) and ρπ2(s)
as an example. ρπ1(s) is under policy π1 regime. ρπ2(s) is under
policy π2 regime. We distinguish different regimes, because dif-
ferent policies generally lead to different state distributions, i.e.,
ρπ1(s) ̸= ρπ2(s). (More details are in Appendix Sec. A.)
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erative Adversarial Imitation Learning (GAIL) (Ho and Er-
mon 2016) minimizes the Jensen-Shannon divergence be-
tween ρπ and ρπE

. However, when using it, non-smooth dis-
tance and mode collapse issues commonly occur (Gulrajani
et al. 2017; Li, Song, and Ermon 2017). To address such
issues, InfoGAIL (Li, Song, and Ermon 2017) proposes uti-
lizing the Wasserstein distance (Arjovsky, Chintala, and Bot-
tou 2017), i.e., minπmaxD EπE

[D(s, a)]− Eπ [D(s, a)]−
λH(π), where π denotes the policy, D is the discriminator,
and H(π) is the γ-discounted causal entropy of the policy
π, defined as H(π) ≜ Eπ[− log π(a | scausal)] (Bloem and
Bambos 2014).

Preliminaries on Causality
Structural Causal Models (SCMs) (Pearl 2009; Spirtes
et al. 2000) A Structural Causal Model M is denoted as a
tuple (U ,V ,F , P (U)), where U denotes a set of exoge-
nous variables; V denotes a set of endogenous variables; F
is a set of structural functions, and each fi is mapping from
Ui and its parents to Vi, Vi ← fVi(ParentVi , UVi); P (U)
denotes the joint distribution which generates the values of
U .
Intervention and do(·) operator: Intervention answers the
question ”what if I do X?” (Bareinboim et al. 2020). do(·)
operator defines this action in a probabilistic way w.r.t. any
random variable in V . Specifically, do(X = x) intervenes
all values of X to x, by replacing the original functions fX .
Graph Notations: In this paper, G represents a directed
acyclic graph (DAG). GX represents the subgraph gained
from G by removing all edges coming out of X , and GX
is gained from G by removing all edges coming into X .
π-backdoor paths at step t: We generalize the single-stage
π-backdoor criterion (Zhang, Kumor, and Bareinboim 2020)
to a sequential setting. Given a causal diagram G and a policy
space Π, and the paths At → Rt, St → Rt exist inside
G, a set St,causal is said to satisfy the π-backdoor criterion
with respect to ⟨G,Π⟩ if and only if π(·|st,causal) ∈ Π and
(Rt ⊥⊥ At|St,causal)GAt

, which is called the π-backdoor
admissible set at step t with respect to ⟨G,Π⟩.

Problem Formulation
Human drivers make sequential decisions with varying tem-
poral duration. It is impossible to imitate a good policy re-
stricted to single-stage decision-making. There should usu-
ally be a reward after each time step, e.g., whether collided
or driving off-road or not. First, we formally define the prob-
lem of Sequential Causal Imitation Learning (SeqCIL) in
general: given a causal diagram G and a policy space Π,
by choosing a set Scausal w.r.t. ⟨G,Π⟩, the sequential causal
imitator is able to learn a stationary policy π (a | scausal),
whose performance matches the performance of the expert:

E

[∑
t

γtRt | do(π)

]
︸ ︷︷ ︸
expected discounted return of π

= E

[∑
t

γtRt

]
︸ ︷︷ ︸

expected discounted return of πE

(1)

where the l.h.s. characterizes the performance measure un-
der the imitator π regime, and the r.h.s. denotes the perfor-

mance of the observational distribution (“demonstrations”)
generated by πE .

Causal Template for Human Driving
Behaviors

In this paper, we propose a causal template: Markov De-
cision Processes with Unobserved Confounders for Human
Driving (MDPUC-HD), depicted in Fig. 2.

When using real-world driving datasets, it is inappropri-
ate to assume that expert covariates are fully observed. There
are lots of unobserved variables in demonstrations. Similar
to Example 1, the light information ULt is not appropriately
recorded in some real-world driving datasets. Uπ represents
the internal latent code, e.g., levels of driving skills and in-
consistent policies. Additionally, human drivers usually take
actions based on previous actions, suggesting a cause-effect
relationship betweenAt−1 andAt (de Haan, Jayaraman, and
Levine 2019; Codevilla et al. 2019). UAt denotes those un-
known actions which affect the environment dynamics, e.g.,
the actions from other vehicles. U (S,R)

t are the unobserved
variables that affect both the reward and the state. The ex-
pert policy πE(at|at−1, uπ, st, u

L
t ) is a conditional distribu-

tion which is unknown to the imitator. The implicit reward
Rt is decided by St, At, U

(S,R)
t . The observability of each

mentioned variable is summarized in Table 1.

Variables Expert Imitator

Uπ known unknown
ULt known unknown

U
(S,R)
t known unknown
UAt unknown unknown
Rt known unknown

Table 1: The observability of variables for the expert and the
imitator

Compared to an MDP, an MDPUC-HD is more general
and realistic to practical applications: (1) An MDPUC-HD
does not assume that the expert covariates are fully ob-
served, because of ULt and Uπ; (2) In an MDPUC-HD, Rt
can depend on variables not inside SπE

or A, i.e., U (S,R)
t ;

(3) The transition dynamics may not be successfully recov-
ered, because of the unobserved variables UAt and U (S,R)

t ;
(4) Following a MDPUC-HD, the dataset does not need to
satisfy the constraint At ⊥⊥ (St−1, At−1)|St. While follow-
ing MDPs, the dataset should meet this constraint. In sum-
mary, the proposed causal template is a generalized version
of MDPs, which imposes fewer constraints.

MDPUC-HDs are orthogonal and complementary to
POMDPs with different focuses (Zhang and Bareinboim
2021). MDPUC-HDs concentrate on the causal relation-
ships. It is possible that unobserved confounders still ex-
ist in POMDPs. In MDPUC-HDs, not all expert inputs are
observed, e.g., ULt . In POMDPs, the actual states are hid-
den, and all decisions are made according to the entire his-
tory, i.e., POMDPs are non-Markovian. However, the cru-

4585



St

At
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Rt−2
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t−2
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…

…
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t−2 U(A)

t−1 U(A)
t

U(L)
t−2 U(L)
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t
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Figure 2: Proposed causal template for SeqCIL. U (A) is unknown to both the expert and the imitator (Orange Border). Blue
shapes are variables known to the expert but not to the imitator. Squared node πE denotes an implicit conditional distribution
(Magenta). Directed arrows are solid, and bi-directed arrows are dashed.

cial Causal Markov property, as stated below, still holds in
MDPUC-HDs.

Causal Markov Property
Proposition 1 (Causal Markov Property3). Following the
causal diagram G in Fig. 2, the following statements hold:

1. Given the current state St and action At, the transition to
the next state St+1 is independent of the past history:

P (St+1|St, At, St−1, At−1, . . . , S0, A0)

=P (St+1|St, At)
(2)

2. Given the 2-step information tuple (St, At, St−1, At−1),
the reward Rt is independent of the past history:

P (Rt|St, At, St−1, At−1, . . . , S0, A0)

=P (Rt|St, At, St−1, At−1)
(3)

In general, Prop. 1 is valid for a series of graphs:

Proposition 2. Given the causal diagram G following Fig.
2, removing any bi-directed arrow or unobserved variable,
Causal Markov Property (Prop. 1) is still tenable.

Prop. 2 is intuitive: after removing any bi-directed arrow or
unobserved variable, the new graph still satisfies the original
(conditional) independence constraints.

Sequential Causal Imitator
With Prop. 1 and 2 defined above, in this section, we first
explain why the non-causal imitator fails, and then propose
a solution using the sequential causal imitator.

3All strict proofs are provided in Appendix.

Why Non-causal Imitator Fails
To analyze the failure reason for the non-causal imitator, we
begin with Example 2, which shares the similar driving set-
ting as Example 1.
Example 2. Consider an instance where demonstra-
tions follow Fig. 2. When the history information{
S,A,UA, U (L), U (S,R)

}
0:t−1

is summarized as Ht−1, the
right part in Fig. 1 encodes the similar causal relationships
among St, At, U

(L)
t , Rt as in Fig. 2.

Variables At, St, Rt, U
(S,R)
t , U

(A)
t , U

(L)
t ∈ {0, 1}; their

values are generated by processes: Uπ ← 0, U (S,R)
t ∼

Bern(0.5), U (L)
t ← St, U

(A)
t ← St; at t = 0, S0 ←

U
(S,R)
0 . Later, when t ≥ 1, St is determined by the func-

tion: St ← U
(A)
t−1⊕St−1⊕At−1⊕U (S,R)

t . The reward Rt is
defined as Rt ← ¬(St ⊕ At ⊕ U (S,R)

t ). The implicit expert
policy πE is defined as:

At ←

{
S0 ⊕ U (L)

0 ⊕ Uπ, if t = 0

At−1 ⊕ St ⊕ U (L)
t ⊕ Uπ, otherwise

(4)

; the operator ⊕ means exclusive-or. Non-causal imitator
π(at|st), is only capable of achieving sub-optimal perfor-
mance.

When unobserved confounders exist, as Example 2
demonstrates, the non-causal imitator π(at|st) fails to re-
cover a good policy. The underlying reason is related to the
π-backdoor paths between Rt and At: (1) At ← St → Rt.
(2) At ← At−1 → St ↔ Rt, where St is a collider. When
St is conditioned, path (1) is blocked but the colliding path
(2) is open, so that some spurious correlation is learned. For-
mally, we prove a generalized theorem to analyze the crite-
rion when the non-causal imitator fails:
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Theorem 1 (Not Imitable in the Same C-Component).
Given a causal diagram G and a policy space Π, at time step
t, if πE and Rt are in the same C-Component of Rt’s ances-
tral graph, then there exist two models M1,M2, which have
the same distribution of observed variables, but there exists
no policy π ∈ Π such that P (Rt;M1) = P (Rt|do(π);M1)
and P (Rt;M2) = P (Rt|do(π);M2), i.e., P (Rt) is not im-
itable.

C-Component (Tian 2002) is a set of nodes that are con-
nected by bi-directed arrows. Here we use a fake node X as
an example. A directed path from a node X to Rt is a path
composed of directed edges (X → · · · → Rt). If there is a
directed path from a nodeX toRt orX = Rt, then this node
X is an ancestor of Rt. Rt’s ancestral graph is composed of
nodes that are ancestors of Rt. To illustrate the idea of the
same C-Components of Rt’s ancestral graph, take St as ex-
ample. St is connected with Rt by bi-directed arrows, and
there is a directed path from St to Rt.

In Example 1, πE and St are Rt’s ancestors because of
paths πE → At → Rt and St → Rt. The path πE ↔ St ↔
Rt makes πE and Rt in the same C-Components. There-
fore, πE and Rt are in the same C-Component of Rt’s an-
cestral graph, and the non-causal imitator π(at|st) fails. In-
tuitively, Thm. 1 also suggests that more variables should be
observed, so that less confounding effect exists. This result
can causally justify why more sensors are required to obtain
a better policy, when recording human driving demonstra-
tions (Jeyachandran 2020).

Sequential Causal Imitator
In this section, we circumvent the above issue by exploiting
topological graphical conditions.

Definition 1 (Sequential Causal Imitator). Given a causal
diagram G following Fig. 2 and a policy space Π,
π(at|st,causal) is called “sequential causal imitator” with re-
spect to ⟨G,Π⟩, if the set St,causal blocks all π-backdoor
paths between Rt and At, i.e., (Rt ⊥⊥ At|St,causal)GAt

.

Although there exist diverse sets that can block all π-
backdoor paths between Rt and At, we only consider the
minimal set4. Later, we will show that a larger set does not
necessarily lead to a better performance.

Below, two propositions show the warrant for the sequen-
tial causal imitator with a satisfactory performance in multi-
ple graphs.

Proposition 3. Given the causal diagram G following Fig.
2 and a policy space Π, the sequential causal imitator
π(at|st,causal) is guaranteed to match the performance of
the expert, pπ(rt) = p(rt), at time step t. (The strict proof
is in Appendix.)

Prop. 3 shows: without knowing the expert policy πE , the
sequential causal imitator π(at|st,causal) can still achieve
pπ(rt) = p(rt). Prop. 4 generalizes it to graphs with fewer
bi-directed arrows or unobserved variables.

4A set is considered to be minimal when there does not exist a
subset which can block all π-backdoor paths between Rt and At

w.r.t. ⟨G,Π⟩.

Proposition 4. Given the causal diagram G following Fig.
2, removing any bi-directed arrow or unobserved variable,
Prop. 3 is still tenable.

Consider Example 2 again, denote the set
{St, At−1, St−1} by the set St,causal, which blocks
all π-backdoor paths between Rt and At. The causal rela-
tionships among St, At−1, St−1 are depicted in Fig. 3. With
Prop. 3, the sequential causal imitator π(at|st,causal) is able
to obtain the optimal expert performance E[Rt|do(π)] = 1,
for t ≥ 1.

Adversarial Imitation Learning
To obtain the sequential causal imitator, we propose to use
the framework of AIL. Allowing the agent to explore the
environment, AIL addresses the issue of “covariate shift”
(Ross, Gordon, and Bagnell 2011). Apart from that, AIL fa-
cilitates the developed SeqCIL to explicitly match the per-
formances of the expert and the imitator. To demonstrate
how to leverage AIL for SeqCIL, we will implement GAIL
below.
fr represents the implicit reward function, which takes

st, at, u
(S,R)
t as input. Although U (S,R)

t affects the true re-
ward Rt and the reward function fr is unknown, a sur-
rogate reward signal can still be studied from demonstra-
tions. With St,causal equal to {St, At−1, St−1}, Prop. 1 im-
pliesRt ⊥⊥ St−2, At−2, . . . , S0, A0|(St,causal, At). That is,
given (St,causal, At), the history (St−2, At−2, . . . , S0, A0)
does not tell any newer information related to the rewardRt.
This suggests that (St,causal, At) can be treated as a proxy
for the whole trajectory as the input to the discriminator (D).

We utilize the Wasserstein distance (Arjovsky, Chintala,
and Bottou 2017) for occupancy measure matching between
different regimes. When the discriminator cannot distin-
guish the causal state-action pairs coming from the imitator
π or the expert πE , the occupancy measure is matched, as
summarized in Prop. 5. The objective of the generator and
the discriminator is given by:

min
π

max
D

EπE
[D(scausal, a)]

− Eπ [D(scausal, a)]− λH(π)
(5)

where π denotes the policy of the sequential causal imita-
tor, D is the discriminator taking causal state-action pair
(scausal, a) as input. H(π) is the γ-discounted causal en-
tropy of the policy π. When updating the parameters of the
policy, r′t = D(st,causal, at) plays like a proxy reward sig-
nal.

Proposition 5. When the discriminator D cannot distin-
guish (scausal, a) generated from the sequential causal
imitator π or the expert πE , ρπ (scausal, a) matches
ρπE

(scausal, a), and π(a|scausal) matches pπE
(a|scausal).

The convergence of the discriminator indicates the perfor-
mance match, described in Eq. (1).

Under the imitator π regime, the relationship between
l.h.s. of Eq. (1) and the occupancy measure ρπ (scausal, a)
is given by:
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Figure 3: Left: The grey vehicles represent St−1. The imitator now has access to {St, At−1, St−1}. Right: Graphical represen-
tation for Example 2, where Ht−2 =

{
S,A,UA, U (L), U (S,R)

}
0:t−2

.

E

[∑
t

γtRt | do(π)

]
=

∑
scausal,a,u(S,R)

pπ(scausal, a, u
(S,R))fr(s, a, u

(S,R))

=
∑

scausal,a,u(S,R)

ρπ (scausal, a)︸ ︷︷ ︸
occupancy measure of π

pπ(u
(S,R)|scausal, a)

· fr(s, a, u(S,R))
(6)

With Eq. (6), we will prove Prop. 5 in Appendix.

Proximal Policy Optimization (PPO). PPO is a model-
free on-policy algorithm (Schulman et al. 2017). There are
two principal variants: PPO-penalty and PPO-clip. PPO-
penalty turns the trust-region constraint into a penalty
DKL,forward(πold∥πθ) to approximately restrict the size of the
update. Instead, PPO-clip clips the probability ratio directly
via:

LCLIP(θ) = E
a,s∼πold

[min (surrogate1, surrogate2)]

surrogate1 =
πθ(a | s)
πold(a | s)

Aπold(s, a)

surrogate2 = clip

(
πθ(a | s)
πold(a | s)

, 1− ϵ, 1 + ϵ

)
Aπold(s, a)

(7)
where ϵ is a hyper-parameter to control the clip value, πold
denotes the policy prior to the update, Aπold denotes the ad-
vantage function for the policy πold.

Suggested by (Hsu, Mendler-Dünner, and Hardt 2020),
to better keep the new policy near the old policy and avoid
common failure modes, our PPO objective is formulated as:

LPPO(θ) =LCLIP(θ)

− β1DKL,forward(πold∥πθ)
− β2DKL,reverse(πθ∥πold)

(8)

Algorithm 1: Finding π(a|scausal) by GAIL
Input: G, Π, Expert demonstrations τE , initial parameters θ0
for policy andψ0 for discriminator

1: for iteration i = 0, 1, 2, . . . do
2: Collect trajectories τi from current policy πθi
3: Update the discriminator Dψi based on Eq. (5) with

training data sampled from τE and τi
4: Train the policy parameters from θi to θi+1 by max-

imizing Eq. (8) with the causal entropy of the policy
using PPO

5: end for

where LCLIP(θ) is defined in Eq. (7) and DKL repre-
sents the KL divergence between two distributions, which is
asymmetric. We use two soft constraints because generally
DKL,forward(πold∥πθ) ̸= DKL,reverse(πθ∥πold).

To summarize, Algorithm 1 reveals the training procedure
of how to obtain a sequential causal imitator through GAIL.
The convergence of the discriminator can be interpreted as
the explicit signal that the performance is finally matched.
Similar to the previous research (Ho and Ermon 2016; Fu,
Luo, and Levine 2017), we implement the policy and the
discriminator with Neural Networks and use Monte-Carlo
methods to approximate expectations.

Experiments

We conduct experiments mainly on two classic driv-
ing datasets: a synthetic dataset simulating drivers’ car-
following behaviors and a real-world highway driving
dataset, Next Generation Simulation (NGSIM) (Alexiadis
et al. 2004). Our experiments seek to answer the following
questions: (1) Is the sequential causal imitator better than the
non-causal imitator? (2) Is the proposed method robust to
the real-world dataset, even without the ground truth reward
function? (3) Will more temporal information, e.g., 3-step
GAIL or recurrent policy, show a better result?

4588



Synthetic Car-Following Dataset

Car-following is one of the most common and frequent sce-
narios in reality. The primary mission of car-following is to
maintain safety, efficiency, and comfort by controlling the
longitudinal dynamics, i.e., accelerating or braking.
State. In this experiment, the properties of the leading ve-
hicle and ego vehicle are initialized randomly. At each time
step t, the state St is composed of the velocity of the ego
vehicle, the velocity of the leading vehicle, and the gap be-
tween them, which is the same as the observation of the In-
telligent Driver Model (IDM) (Treiber, Hennecke, and Hel-
bing 2000).
Action. The actionAt is the acceleration5 of the ego vehicle,
which is continuous.
Reward. To simulate the complex real-world driving tar-
get, we need to design the reward by meeting the demands
for safety, comfort, and efficiency. Safety is the major chal-
lenge. Therefore, we make use of time-to-collision (TTC),
which measures the risk of collision if the speed difference
of two vehicles is maintained (Hayward 1972). To quantify
the level of human comfort when driving, we use jerk, the
first derivative of acceleration (Bellem et al. 2018). For effi-
ciency, to avoid driving too slow, the vehicles need to main-
tain a proper time headway. Finally, the reward Rt is also
dependent on U (S,R)

t .

Unobserved Variables. U (A)
t denotes the acceleration of

the leading vehicle, which affects the state transition but
is unknown to both the expert and the imitator. U (L)

t rep-
resents the tail light indicator, when the leading vehicle
brakes U (L)

t := 1, otherwise 0. When the road is slippery,
U

(S,R)
t = 1, only the TTC (safety) part of the reward is con-

cerned, and the state st is also affected.
Expert demonstrations are generated by running PPO-clip

on the ground truth reward, which is similar to the settings
of GAIL (Ho and Ermon 2016). During imitation learning,
the environment reward is not provided anymore.
Performance Metrics: Similar to the settings in IL, we
compare the average cumulative reward directly.
Results: According to Table 2, causal 2-step GAIL is much
better than the well-established baselines.

Models Normalized Average Cumulative
Reward

Naive BC 0.281
Non-causal GAIL 0.196

Causal 2-step GAIL 0.892
3-step GAIL 0.592
LSTM GAIL 0.238

Table 2: Normalized average cumulative reward for the car-
following dataset. The result values are normalized so that
1.0 represents the performance of demonstrations.

5When the action is negative, it is the deceleration.

Real-world NGSIM Dataset
The public NGSIM data records the real-world human driv-
ing trajectories for US Highway 101, and Interstate 80 Free-
way (Alexiadis et al. 2004). Each dataset contains a total of
45 minutes of trajectories recorded per 0.1s, including pre-
cise information for location, speed, acceleration, surround-
ing vehicles. We focus on US Highway 101 here.

To offer a realistic driving environment, we adapt a Julia-
based NGSIM simulator (Kuefler et al. 2017; Bhattacharyya
et al. 2018). In the beginning, the environment is reset ar-
bitrarily to choose a frame from NGSIM data. Inside this
chosen frame, the ego-vehicle is randomly selected among
all vehicles. Other traffic participants follow the replayed
trajectory safely with proper extra braking mechanisms to
avoid a potential collision with the ego vehicle.
State. At each time step t, the state St consists of the fol-
lowing types of features extracted from the NGSIM data: (1)
The features for the ego-vehicle, such as the width and the
length, local lane curvature, the distance to the left and the
right lane markers. (2) Temporal features, e.g., the time gap
and time-to-collision (TTC). (3) Information of surround-
ing vehicles. Specifically speaking, multiple LiDAR beams
are sent out by the ego vehicle and detect first struck ob-
jects with the information of the relative position and the
range rate. (4) The information for the vehicle ahead of the
fore vehicle. The simulator is done whenever the ego vehicle
collides, drives off-road, or drives backward.
Action. In this experiment, longitudinal and lateral motions
are based on the dynamics of a bicycle model. The actionAt
includes the acceleration and turn rate.
Performance Metrics: It is infeasible to directly compare
the cumulative reward because we do not know the ground
truth reward function when people drive. Additionally, there
are infinitely many reward functions to make the expert
demonstrations optimal, because the IRL problem is ill-
posed (Nguyen, Low, and Jaillet 2015). Therefore, trajecto-
ries are used as a proxy to check. To characterize the differ-
ence, we make use of Root Mean Squared Error (RMSE),
KL-divergence, and undesirable behaviors (Kuefler et al.
2017; Bhattacharyya et al. 2018).

RMSE. Suppose the imitator generates m trajectories.
Each predicted trajectory corresponds to one ground truth
trajectory. v is the variable of interest we want to compare.
v
(i)
π,t denotes the simulated value executing the policy π in

the ith trajectory at time step t. v(i)πE ,t denotes the true value
generated by the expert. RMSE(v)t is defined below:

RMSE(v)t =

√√√√ 1

m

m∑
i=1

(
v
(i)
πE ,t − v

(i)
π,t

)2

(9)

We extract RMSE for the global position, lane offset, and
speed over an entire time horizon up to 20 seconds.

KL divergence. KL divergence is to compare the dissimi-
larity for the predicted and actual actions distribution. A sat-
isfied policy should share a similar distribution with expert
demonstrations over the acceleration and turn rate.
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Figure 4: Metrics on undesired behaviors for each model. All expert values are not drawn because their values are zero.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0

50

100

Po
si

tio
n

(m
)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0

2

4

L
an

e
O

ff
se

t(
m

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time Horizon (s)

0

5

10

15

Sp
ee

d
(m

/s
)

Naive BC
Non-causal GAIL

Causal 2-step GAIL
3-step GAIL

LSTM GAIL

Figure 5: The root mean squared error calculated for each
variable v.s. time horizon. The sequential causal imitator
better captures how the expert drives.

Metrics on undesirable behaviors. Undesirable behav-
iors include off-road duration, collision rate, and hard brak-
ing rate, capturing the feasibility and reliability of the model.
The collision rate is the ratio of trajectories when the ego
vehicle collides with other vehicles. The hard brake rate cal-
culates the situations when the deceleration is higher than a
threshold. Off-road duration exhibits the average number of
time steps when the moving ego vehicle is outside the road.

Results: Fig. 5 shows the results of RMSE. For each
curve, the line corresponds to the mean value, and the shaded
area represents the variance. Causal 2-step GAIL performs
best among all models, while 3-step GAIL performs simi-
larly in terms of the RMSE of lane offset. Table 3 shows

Models Acceleration Turn rate
Naive BC 0.677 0.174

Non-causal GAIL 0.412 0.872
Causal 2-step GAIL 0.061 0.083

3-step GAIL 0.291 0.084
LSTM GAIL 0.088 0.313

Table 3: KL-divergence for actions between each model and
the expert.

the results of KL-divergence. Causal 2-step GAIL performs
best for both motions, although 3-step GAIL also performs
well for the turn rate. The results for undesired behaviors
are shown in Fig. 4, demonstrating that causal 2-step GAIL
is less likely to have undesired behaviors, and acts more like
human beings.

To summarize, the sequential causal imitator learned
through AIL performs the best with or without knowing the
ground truth reward function, and more temporal informa-
tion is not guaranteed to give us better results.

Conclusions
This paper exploited the qualitative knowledge for human
drivers and proposed a causal template, MDPUC-HD, to
model their driving behaviors. We explained why unob-
served variables cannot be ignored for sequential demon-
strations, and proposed a principled and general approach
to solving SeqCIL with GAIL, with the potential to apply in
other domains. The take-away message is: when unobserved
variables exist, sequential causal imitators can better capture
the expert behaviors than non-causal imitators.
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