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Abstract

The modeling and control of complex physical systems are
essential in real-world problems. We propose a novel frame-
work that is generally applicable to solving PDE-constrained
optimal control problems by introducing surrogate models for
PDE solution operators with special regularizers. The proce-
dure of the proposed framework is divided into two phases:
solution operator learning for PDE constraints (Phase 1) and
searching for optimal control (Phase 2). Once the surrogate
model is trained in Phase 1, the optimal control can be in-
ferred in Phase 2 without intensive computations. Our frame-
work can be applied to both data-driven and data-free cases.
We demonstrate the successful application of our method to
various optimal control problems for different control vari-
ables with diverse PDE constraints from the Poisson equation
to Burgers’ equation.

Introduction
The modeling of physical systems to support decision mak-
ing and solve the optimal control problem is a key problem
in many industrial, economical, and medical applications.
Such systems can be described mathematically through par-
tial differential equations (PDEs). In this regard, solving
PDE-constrained optimal control problems provides a con-
trol law for a complex system governed by PDEs. A PDE-
constrained optimal control problem has been successfully
used in many applications: shape optimization (Haslinger
and Mäkinen 2003; Sokolowski and Zolésio 1992), math-
ematical finance (Bouchouev and Isakov 1999; Egger and
Engl 2005), and flow control (Gunzburger 2002).

As computing power increases and optimization tech-
nologies significantly improve, many researchers have stud-
ied algorithms and computational methods that are accu-
rate, efficient, and applicable for complex physical systems.
In control theory, adjoint methods are some of the most
common approaches to handle this problem. Adjoint meth-
ods provide an efficient way to compute gradients that ap-
pear in optimization problems (Lions 1971; Pironneau 1974;
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Tröltzsch 2010), and its variants have been applied to many
different areas of science. However, adjoint-based iterative
schemes, such as shooting methods, suffer from computa-
tional costs because of their trial-and-error nature. In ad-
dition, iterative schemes are often sensitive to the initial
guesses to the solutions.

Deep learning methods have recently derived major tech-
niques for scientific computations, including PDEs or op-
timization problems (Raissi, Perdikaris, and Karniadakis
2019). In particular, solving a family of parametrized PDEs
requires networks to approximate a function-to-function
mapping or operator. In (Li et al. 2020a), (Li et al. 2020b),
(Lu, Jin, and Karniadakis 2019), (Zhu and Zabaras 2018),
and (Zhu et al. 2019), the authors utilized neural networks to
learn a mapping from the parameters (e.g. initial or bound-
ary) of a PDE to the corresponding solution. Such models
are used as a surrogate model to solve various problems such
as uncertainty quantification (Zhu and Zabaras 2018; Zhu
et al. 2019) and an inverse problem (Li et al. 2020a).

Recent studies have been conducted to solve PDE-
constrained optimal control problems through a deep learn-
ing approach. In (Holl, Koltun, and Thuerey 2020), the au-
thors proposed a predictor-corrector scheme for long-term
fluid dynamics control, combining neural networks with a
differentiable solver. In (Rabault et al. 2019), the authors ex-
perimentally showed that active flow control for vortex shed-
ding and a drag reduction can be achieved through model-
free reinforcement learning. Model-free methods are often
known to require numerous interactions with the environ-
ment to search for an optimal policy. A hand-designed re-
ward is necessary for each problem, which usually involves
deep prior knowledge of complex physical systems. In addi-
tion, this approach requires numerical solvers during every
iteration. These make such approaches inapplicable to real-
world problems.

We propose an alternative framework to solve PDE-
constrained optimal control problems. Our method is di-
vided into two phases: solution operator learning for PDE
constraints (Phase 1) and searching for optimal control
(Phase 2). During Phase 1, a neural network with a recon-
struction structure is trained to approximate the PDE solu-
tions. The optimal control problem can then be solved using
the trained network with a reconstruction regularizer during
Phase 2. The proposed method has the following four main
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contributions compared to the existing approaches in the lit-
erature:

Simple but effective regularizer We introduce a novel
regularizer to solve PDE-constrained optimal control prob-
lems effectively. We employ a reconstruction loss as a reg-
ularizer, which enables the control variable to converge cor-
rectly in Phase 2.

Application to various PDE-constrained control prob-
lems We propose a non-problem-specific methodology for
PDE-constrained optimal control problems. Our method is
applied to problems with various types of PDEs: elliptic
(Poisson, Stokes), hyperbolic (wave), non-linear parabolic
(Burgers’) equations. In addition, the control variable can be
any type, such as the initial condition, the boundary condi-
tion, and a parameter in the governing equation.

Computational efficiency Our surrogate model approx-
imates a PDE solution with sufficiently high accuracy to
search optimal controls while taking significantly less time
for inference. Unlike the adjoint-based iterative methods,
which require a heavy computation by PDE solvers for ev-
ery iteration, our framework is useful when computation re-
sources are limited, or a fast inference is required.

Flexibility Our framework does not depend on the pres-
ence or absence of data. In the case that the full data pairs
of control-to-state are available, the surrogate model for the
PDE solution operator can be trained by a supervised loss
during Phase 1. Meanwhile, if the physical systems are de-
scribed in the form of PDEs, the residual norm of the PDE
can be used to train the surrogate model without simulation
data.

Related Work
Deep learning and PDEs There are two mainstream deep
learning approaches to approximate solutions to the PDEs,
i.e., using neural networks directly to parametrize the so-
lution to the PDE and learning operators from the parame-
ters of the PDEs to their solutions. A physics-informed neu-
ral network (PINN) was introduced in (Raissi, Perdikaris,
and Karniadakis 2019), which learns the neural network pa-
rameters to minimize the PDE residuals in the least-squares
sense. In (Nabian and Meidani 2018), (Son et al. 2021), and
(Weinan and Yu 2018), the authors suggested using a modi-
fied residual of the PDEs, and in (Han, Jentzen, and Weinan
2018) and (Sirignano and Spiliopoulos 2018), the authors
showed the possibility of solving high-dimensional PDEs.
In (Hwang et al. 2020), (Jo et al. 2020), and (Sirignano and
Spiliopoulos 2018), the authors prove a theorem on the ap-
proximation power of the neural network for an analytic so-
lution to the PDEs. Next, we introduce another approach,
operator learning, which is more closely related to our re-
search.

Operator learning Operator learning using neural net-
works has been studied to approximate a PDE solution op-
erator, which is nonlinear and complex in general. A univer-
sal approximation theorem for the operator was introduced
in (Chen and Chen 1993). Based on these results, in (Lu,

Jin, and Karniadakis 2019), the authors developed a neural
network called DeepONet. In addition, mesh-based meth-
ods using convolutional neural networks (CNN) have been
studied in many papers (Bhatnagar et al. 2019; Guo, Li, and
Iorio 2016; Khoo, Lu, and Ying 2017; Zhu and Zabaras
2018). These studies used labeled data to train the opera-
tor networks. In (Bhatnagar et al. 2019) and (Guo, Li, and
Iorio 2016), the authors used a CNN as a surrogate model
of a computational fluid dynamics (CFD) solver. The au-
thors showed that the surrogate models have a greater ben-
efit in terms of speed than a CFD solver. In (Khoo, Lu, and
Ying 2017) and (Zhu and Zabaras 2018), the authors de-
veloped the surrogate model for uncertainty quantification
problems. Furthermore, the authors of (Zhu et al. 2019) pro-
posed physics-constrained surrogate loss, which can be cal-
culated without labeled data. Li et al. proposed a resolution-
invariant neural operator using a graph neural network (Li
et al. 2020b) and the fast Fourier transform (Li et al. 2020a).

PDE-constrained control problem The most common
approach in control theory is adjoint-based methods which
give an efficient way to compute the gradient of forward
maps with respect to the parameters (Borrvall and Peters-
son 2003; Christofides and Chow 2002; Lions 1971; Mc-
Namara et al. 2004; Pironneau 1974; Tröltzsch 2010). Sev-
eral studies have suggested learning-based methods for con-
trol problems, such as (de Avila Belbute-Peres et al. 2018),
(Hafner et al. 2019), and (Watter et al. 2015). Regarding con-
trol problems associated with PDEs, the authors in (Holl,
Koltun, and Thuerey 2020) used a differentiable PDE solver
to plan optimal trajectories and control fluid dynamics. They
experimentally showed that their model enables long-term
control with a fast inference time. Flow control problems,
including vortex shedding and a drag reduction, were solved
using reinforcement learning (Rabault et al. 2019) or Koop-
man operator theory (Morton et al. 2018). One of the most
interesting PDE-constrained optimization problems is an in-
verse problem, specifying unknown parameters in PDE sys-
tems given the observed data. There have recently been
attempts to solve the problem by penalizing the parame-
ter space or using a probabilistic approach (Jo et al. 2020;
Liang, Lin, and Koltun 2019; Ma et al. 2019; Pilozzi et al.
2018; Ren, Padilla, and Malof 2020). In particular, the ap-
proach in (Ren, Padilla, and Malof 2020) is similar to our
study in that it learns the forward map first, but does not
target the PDE problems. The authors in (Li et al. 2020a)
showed that the PDE solution operator approximated by
neural networks can be used in a Bayesian inverse problem.

Methodology
In this paper, we aim to solve PDE-constrained control prob-
lems. Let M be a reflexive Banach space and U and V be
Banach spaces. Formally, a PDE-constrained optimization
problem can be written as follows:

min
u∈U,m∈M

J(u,m) subject to F (u,m) = 0 (1)

where J : U ×M → R is an objective function of interest,
and F : U × M → V is a system of PDEs, which gov-
erns the physics of the problem, possibly including initial
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and boundary conditions. Each space is a space of functions
defined in a certain spatial or time domain. Here, u is called
a state or PDE solution, and m is a control input. In the
presence of control constraints, the problem is restricted to a
set of admissible controls by Mad ⊂ M , which is often as-
sumed to be closed and convex. We remark that the control
input can be configured in various forms, such as the values
of a source term in a governing equation, or of the initial or
boundary conditions. Our goal is to propose a general neu-
ral network based framework that is applicable to any type
of PDEs and control inputs.

The optimal control of the Poisson equation can be con-
sidered a motivating example, a problem of specifying an
unknown heat source to achieve a desired temperature pro-
file. In this case, the control input m indicates the values of
the source term in the governing equation. The correspond-
ing optimization problem is as follows:

min
u∈H1

0 (Ω),m∈L2(Ω)

1

2

∫
Ω

(u− ud)
2 dx+

α

2

∫
Ω

m2 dx (2)

subject to the Poisson equation with zero Dirichlet boundary
conditions {

−∆u−m = 0 in Ω

u = 0 on ∂Ω
(3)

where Ω is the domain of interest, the state u : Ω → R
is the unknown temperature, ud : Ω → R is the given de-
sired temperature, α is a penalty parameter, and m : Ω → R
is the control function. Note that the penalty term should
be distinguished from the regularization, which will be dis-
cussed in Section . For practical purpose, m is often re-
stricted to Mad, in which additional inequality constraints
ma(x) ≤ m(x) ≤ mb(x) are imposed. It is well-known that
this problem is well-posed and has a unique solution (Hinze
et al. 2008; Tröltzsch 2010).

We remark from the above example that the PDE solution
u can be thought as a function of m with implicit relations
F (u,m) = 0. In many cases, handling such complex, pos-
sibly nonlinear PDE constraints becomes the main difficulty
when solving optimal control problems. One possible ap-
proach is to use surrogate models for PDE systems, approx-
imating the explicit control-to-state mapping. For a concise
notation, we denote the explicit solution expression by u(m)
and consider the reduced optimization problem

min
m∈Mad

J̃(m) (4)

with the reduced objective function J̃(m) := J(u(m),m).
This enables us to convert the constrained optimization
problem into an unconstrained problem. We can then apply
gradient-based optimization algorithms to obtain a locally
optimal solution.

In this study, we approximate the solution operators of
PDE constraints through neural networks (Phase 1) and
use them to search optimal controls for the given problems
(Phase 2) through gradient descent. The two phases are de-
scribed in detail in Section and Section , and summarized in
Figure 1. In Section , error estimates of the optimal controls
are discussed under certain assumptions. Further, in Section
, we suggest modified architectures that are particularly effi-
cient for time-dependent PDE constraints.

Figure 1: Overview of our autoencoder model. During Phase
1, the parameter θ is updated, and during Phase 2, the control
input m is updated.

Phase 1: Solution Operator Learning for PDE
Constraints
In the first step, a neural network is trained as a surrogate
model for the PDE solution operator. We discretize the spa-
tial domain into a uniform mesh to convert state u and con-
trol input m into image-like data. The surrogate model is
then trained as an image-to-image regression. We suggest
a variant autoencoder specialized for control problems. Our
baseline model consists of a single encoder Genc

θ for con-
trol input m and two decoders Gsol

θ , Grec
θ corresponding

to the state uθ(m) = (Gsol
θ ◦ Genc

θ )(m) and reconstruction
m̃θ(m) = (Grec

θ ◦Genc
θ )(m) where θ is the set of all network

parameters (Phase 1 in Figure 1). The reconstruction m̃θ(m)
plays an essential role in Phase 2. This will be described in
Section . Our method can be applied to the following two
scenarios, data-driven and data-free.

Data-driven scenario In the case that the full data pairs of
control-to-state are available, a supervised loss is a natural
choice:

Lsup =
1

N

N∑
i=1

L(uθ(mi), ui), (5)

where {(mi, ui)}i=1,...,N is the observed data, and L is
a measure of the difference between two vectors. In our
experiments, we used the L2-relative error for L, namely
L(u, ũ) := ∥u− ũ∥2 / ∥ũ∥2
Data-free scenario In most real-world scenarios, com-
plete data pairs of the control-to-state cannot be accessed be-
cause of expensive simulations. In these situations, one may
utilize prior knowledge about the system of interest, which
is often described in the form of PDEs. In that case, inspired
by (Zhu et al. 2019), the surrogate model can be trained by
minimizing the residual norm of the PDE:

Lres =
1

N

N∑
i=1

∥F (uθ(mi),mi)∥2 , (6)

where ∥·∥ is the norm in the Banach space V . Here, we sam-
pled the inputs {mi}i=1,...,N in a set of admissible controls
Mad. This loss function imposes the physical law of the PDE
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constraint F (u,m) = 0 to the surrogate model. For exam-
ple, in the case of the Poisson equation (3), the residual norm
of F (u,m) can be expressed as

∥F (u,m)∥ = ∥−∆u−m∥L2(Ω) + ∥u∥L2(∂Ω) . (7)

When calculating residual F (uθ(mi),mi) in Lres, the spa-
tial gradients can be approximated efficiently using a convo-
lutional layer with a fixed kernel which consists of the finite
difference coefficient, and the boundary condition can be en-
forced exactly (See Appendix C.1).

Combining Eq. (5) or Eq. (6) with the reconstruction loss,
Lrec = 1

N

∑N
i=1 L(m̃θ(mi),mi), we used the total loss as

Ltotal = Lsup + λ1Lrec or Lres + λ1Lrec where λ1 is a
hyperparameter.

Phase 2: Searching for Optimal Control
After the surrogate model is trained during Phase 1, the
learned parameter θ∗ is fixed. We cosider m as a learnable
parameter and denote the objective function as

Jobj(m) := J(uθ∗(m),m). (8)

Because the surrogate model is differentiable, the gradient
of the objective function with respect to the control input
can be directly calculated. Then, Jobj can be used as a loss
function. If only Jobj is minimized, one issue is that con-
trol input m may converge to local optima outside the train-
ing domain of the surrogate model. This causes performance
degradation of the surrogate model. To handle this situa-
tion, we employ the reconstruction loss as a regularizer, i.e.,
Jrec(m) := L(m̃θ∗(m),m). Jrec and Lrec in Phase 1 are
similar, but different in that θ is updated during Phase 1
while m is updated during Phase 2 with the fixed θ∗.

Its regularizing effect can be interpreted in perspective
of the variational autoencoder (VAE) (Kingma and Welling
2013). For this purpose, we consider the control input m and
latent variable z as random vectors with prior density p(z).
A graphical model p(m, z) = p(m|z)p(z) is given and in-
duces an inequality given by

− log p(m)

≤ −Eq(z|m) [log p(m|z)]
reconstruction

+KL (q(z|m)|p(z)) , (9)

where q(z|m) is an approximation of the posterior. p(m) can
be thought as the distribution of m sampled during Phase 1
training. In this regard, we expect that minimizing the upper
bound in Eq. (9) during Phase 2 keeps the likelihood p(m)
large enough, which implies that the updated control input
m keeps belonging to the training domain. In our experi-
ments, we use a plain autoencoder, which models q(z|m̃) as
a dirac distribution. In this case, the Kullback–Leibler diver-
gence (KL) term is a constant with respect to m and only
the reconstruction term remains in the upper bound, which
coincides with Jrec(m) when L is the L2-loss and p(m|z) is
modeled through a Gaussian distribution. It implies that the
role of the reconstruction regularizer in Phase 2 is to hold
the control input m in the region where the operator network

works well. The experiments in Section show that the regu-
larizer term greatly improves the performance of the optimal
control learning, especially in Figure 2.

Consequently, we set the following loss function to train
the control problem:

Jtotal(m) = Jobj(m) + λ2Jrec(m), (10)
where λ2 is a hyperparameter.

Theoretical Connection from Phase 1 to Phase 2
Under some mild assumptions regarding a function space of
neural network approximators, we derive the error estimates
of the optimal control during Phase 2 in terms of the error
that occurred during Phase 1. This provides the theoretical
connection between the two separate phases. Although the
following discussion is focused on our motivating example,
i.e., a tracking-type problem with the Poisson equation, it
can be adapted to other problems in a similar fashion.

In Eq. (3), we denote an exact solution operator by S,
which satisfies F (Sm,m) = 0, and an approximate solu-
tion operator by Sh. In addition, let m∗ be an exact opti-
mal solution, and m∗

h be the optimal solution inferred by our
method. One of the main assumptions necessary to present
our proposition is the Lipschitz continuity of the surrogate
model Sh. Such an assumption has been well addressed in
recent papers such as (Fazlyab et al. 2019) amd (Virmaux
and Scaman 2018). We then derive the following proposi-
tion:
Proposition 1. If Sh : M → U is Lipschitz continuous and
approximated with error ∥S − Sh∥2 < ϵ, then the L2 error
for optimal control is estimated as

∥m∗ −m∗
h∥2 < Cα−1(1 + α−1/2) ∥ud∥2 ϵ

for a constant C.
The observation ud and the penalty parameter α are the

prescribed values. Meanwhile, ∥S − Sh∥2, which is defined
by ∥S − Sh∥2 := supm∈L2(Ω), ∥m∥≤1 ∥(S − Sh)m∥2 , can
be thought of as a measurement of approximation and gen-
eralization of the operator learning. A sketch of proof is as
follows: First we define the discrete version of the given op-
timization problem, which attains an optimal solution m∗

h.
Then, by subtracting and modifying the first-order optimal-
ity condition for each problem, we can derive a proper upper
bound for the error ∥m∗ −m∗

h∥2. The detailed statements
are given in Appendix A.

The proposition provides the error estimates for the ap-
proximated optimal control input m∗

h obtained using our
method in Phase 2. If the surrogate model Sh is trained
to minimize the operator norm ∥S − Sh∥2 within the
given error tolerance ϵ, then the error for optimal control
∥m∗ −m∗

h∥2 can be estimated as in the proposition. This
provides the connection between the two separate phases.

Application to Time-dependent PDEs
We explain how our model can be extended and applied
to time-dependent PDEs. We consider the time-dependent
PDEs, in which the system can be written as

∂

∂t
u(t, ·) = F (u(t, ·),m(t, ·)) (11)
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Figure 2: Control results according to different λ2. First two
columns are the results from data-free setting. The remain-
ing columns are the results from data-driven setting. The last
row shows the analytic optimal m∗ and u∗.

for t ∈ [0, T ]. We discretize the time-dependent PDE as fol-
lows:

ut+∆t = F(ut,mt) (12)

where ut(·) := u(t, ·) ∈ U and mt(·) := m(t, ·) ∈ M ,
in which t = 0,∆t, ..., (n − 1)∆t with T = n∆t. Re-
cently, the authors of (Lusch, Kutz, and Brunton 2018) em-
ployed a deep learning approach to discover representations
of Koopman eigenfunctions from data. One of the key ideas
in (Lusch, Kutz, and Brunton 2018) is that the time evolu-
tion of the eigenfunctions proceeds on the latent space be-
tween encoder and decoder. Our method can be extended
for the time-dependent PDEs with inspiration from the idea
in (Lusch, Kutz, and Brunton 2018).

We use two autoencoders HΘ and GΘ for the state ut

and control input mt. The transition network TΘ predicts
the next time latent state vt+∆t from the latent state vt =
Henc(ut) under the influence of the latent variable gt =
Genc(mt). Therefore, the model propagates the state ut to
the next time state ut+∆t under the influence of the con-
trol input mt. The model can be used repeatedly n times to
generate a desired state uT from the given initial state u0

and the given control inputs m0, m∆t, ..., m(n−1)∆t. The
loss functions for Phases 1 and 2, and other details of the
extended model are given in Appendix B.

Experiment
In this section, we evaluate our method to handle a vari-
ety of PDE-constrained optimal control problems through
four different examples. We first target the source control
of the Poisson equation to illustrate the basic idea of our
methodology. Two cases for operator learning, data-driven
and data-free, will be considered to confirm the flexibility
of our method. Next, we study the boundary control of the
Stokes equation and the inverse design of the wave equa-
tion. Finally, the modified model architecture proposed in
Section will be verified using a nonlinear time-dependent
PDE, Burgers’ equation. For each experiment, we compare
our method with the adjoint-based iterative method that is
typically used for solving the optimal control problem ef-
fectively.

In this section, we focus on the results of optimal control
during Phase 2. For the results of Phase 1, we reported the
values of relative errors on test data in each experiment be-
low. The visual results of the trained solution operator dur-
ing Phase 1 are described in each subsection of Appendix C.
It shows that the surrogate models for the PDE solution op-
erator in each control problem are well approximated with
small relative errors, which is sufficient for use in Phase 2.
Data generation and other details are given in Appendix C.

Source control of the Poisson equation The Poisson
equation is an elliptic PDE, also referred to a steady state
heat equation. We consider the optimal control problem with
control objective function (2) subject to the Poisson equation
under the Dirichlet boundary condition, which is described
in equation (3). This is a fundamental PDE-constrained con-
trol problem. The problem aims to control the source term
m to make u(m) similar to ud with L2 penalization. During
our experiment, (x, y) ∈ Ω = [0, 1]× [0, 1], α = 10−6, and
ud = 1

2π2 sinπx sinπy. In this case, the analytic optimal
control m∗ and the corresponding state u∗ are given by

m∗ =
1

1 + 4απ4
sinπx sinπy, u∗ =

1

2π2
m∗. (13)

Figure 7 in Appendix C.1 shows the training results for
the solution operator during Phase 1. The solution opera-
tors are well approximated for both cases, data-driven (su-
pervised loss, Eq. (5)) and data-free (residual loss, Eq. (6)).
The relative errors for test data are 0.0016 and 0.0080, re-
spectively.

To verify the regularization effect of Jrec, we observe
the change in optimal control obtained during Phase 2 de-
pending on the regularizer coefficient λ2. As shown in Fig-
ure 2, with λ2 = 0, i.e., no regularizer, the obtained op-
timal control is irregular and fails to converge to the ana-
lytic optimal m∗. As λ2 increases, the optimal control be-
comes smoother and closer to m∗. This shows that the reg-
ularizer term greatly improves the performance of the opti-
mal control learning. It makes the control input m remain in
the training domain where the operator network works well.
In both cases, data-free and data-driven, the optimal control
m from our method is sufficiently close to analytic optimal
control m∗ when λ2 = 0.01. This phenomenon agrees with
our expectation of the regularization effect discussed in Sec-
tion .
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Figure 3: Illustration of the boundary control of the Stokes equation. (a) The control inputs m1 and m2 which corresond to the
Dirichlet boundary values on the circle. The solid lines indicate the optimal control obtained by our method, and the dashed
lines are the reconstructed control. (b), (c) The corresponding velocity fields u1 and u2 that minimize the drag energy.

Boundary control of the stationary Stokes equation
Consider the drag minimization problem of the two dimen-
sional stationary Stokes equation:

min
u,p,m

1

2

∫
Ω

∇u · ∇u dxdy +
α

2

∫
∂Ωcircle

m2 ds (14)

subject to {
−∆u+∇p = 0 in Ω

div u = 0 in Ω
(15)

with boundary conditions (BCs){
u = m on ∂Ωcircle

u = f on ∂Ωin,

{
u = 0 on ∂Ωwalls

p = 0 on ∂Ωout,
(16)

where Ω is a rectangular domain with a circular obstacle in-
side (Each component is described in detail in Figure 8 in
Appendix C.2.). u = [u1, u2] is the velocity, p is the pres-
sure, and m = [m1,m2] is the control input, which corre-
sponds to the Dirichlet BC on the circle. The inflow BC is
given as f(y) = y(10 − y)/25. This problem is interpreted
as minimizing the drag from the flow by actively controlling
the in/outflow on the circle boundary.

In Phase 1, the solution operator is well approximated
with the relative error 0.0042 for test data. For the results of
Phase 2, the left plot in Figure 3 describes the obtained opti-
mal control through our method. m1 and m2 are the x- and
y-components of the optimal control, respectively, which are
represented as functions of angle θ with respect to the center
of the Ωcircle. The right plot describes the corresponding ve-
locity fields [u1, u2] evaluated by the surrogate model. Fig-
ure 4 summarizes the comparison of the inference time for
optimal control (Phase 2) by varying the size of mesh when
our method and the adjoint method are used. The mesh size
in the x-axis means the maximum diameter of meshes used
in each method. We remark that the complexity of the ad-
joint method increases much faster than our method as the
mesh size increases. This is because the adjoint method re-
quires heavy computation to obtain the exact gradient value
of the objective function with respect to the control parame-
ter.

Inverse design of nonlinear wave equation Given a tar-
get function ud(x) the inverse design problem aims to find
the initial conditions that yield a solution u(T, x) = ud(x).
The optimization problem is given by

min
u,m

1

2

∫
Ω

(u(T, x)− ud(x))
2
dx (17)

Figure 4: Comparison of the required inference time for the
boundary control of the Stokes equation, using our method
and the adjoint method. The results are plotted in the log-log
scale. This shows that our method achieves better computa-
tional complexity than the adjoint method.

subject to the following nonlinear wave equation
∂2u
∂t2 − a2uxx + f(u) = 0 in [0, T ]× Ω

u(t, 0) = u(t, L) = 0 on [0, T ]× ∂Ω

u(0, x) = 0, ut(0, x) = m(x) in {t = 0} × Ω

(18)

where Ω = [0, L], and nonlinear source term f(u) = u+u3.
Here the initial condition m(x) corresponds to control input.
We choose L = 1, a = 1/3, and T = 5. If the wave equation
has a linear source term, the problem can be easily solved
backward in time (time-reversibility). In our problem, how-
ever, such an approach fails owing to time-irreversible prop-
erty caused by nonlinearity f(u). Our method uses the sur-
rogate model for direct mapping from initial to target state.

In Phase 1, the solution operator is well approximated
with the relative error 0.0065 for test data. For the results
of Phase 2, Table 1 summarizes the results of the optimal
control when using our method and the adjoint method. The
objective function values of the two methods are compara-
ble, but in terms of the computation time, our model signif-
icantly outperforms the adjoint method. This is because the
surrogate model can infer fast the solution at t = T for dif-
ferent control inputs, whereas the adjoint method needs to
compute the forward and backward computations for each
time step to reach the target time. In this regard, our method
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Figure 5: The external force and trajectories with the external force using Burgers’ equation. The three columns are (a) a
constant external force, (b) an optimal external force using the adjoint method, (c) an optimal external force using our method.
The first row shows the time-discretized optimal control inputs mt (t = 0,∆t, ..., (n− 1)∆t). The second row shows the time
evolution of Burgers’ equation with the external force in the first row.

can be applied robustly even when the target time becomes
longer.

Force control of Burgers’ equation We use the extended
model explained in Section for the control problem to Burg-
ers’ equation. It describes the interaction between the ef-
fects of nonlinear convection and diffusion. Burgers’ equa-
tion leads the shock wave phenomenon when the viscos-
ity parameter has a small value. With the Dirichlet bound-
ary condition, the 1D Burgers’ equation with external force
m(t, x) reads as

∂u
∂t = −u · ∂u

∂x + ν ∂2u
∂x2 +m(t, x) in [0, T ]× Ω

u(t, x) = 0 on [0, T ]× ∂Ω

u(0, x) = u0(x) in {t = 0} × Ω

(19)
where ν is a viscosity parameter, and u0(x) is an initial con-
dition. During the experiment, we consider the control prob-
lem minimizing

min
u,m

1

2

∫
Ω

|u(T, x)− ud(x)|2 dx

+
α

2

∫
Ω×[0,T ]

|m(t, x)|2 dxdt (20)

subject to Burgers’ equation (19), given a target ud(x). In
this case, we control an external force mt. We set α = 0.01,
Ω = [0, 1], T = 1, and ∆t = 0.1. Also, we set the viscosity
parameter ν = 0.01 to generate a shock wave.

The solution operator is well trained during Phase 2 with a
relative error 0.0020 for test data. Figure 5 and Table 2 show
the result of our method compared to the adjoint method for
optimal control (Phase 2). A time step size for the adjoint
method is chosen as ∆t = 0.01 since the method does not
converge when the time step size is set to the coarse grid
(∆t = 0.1) under our setting. In Figure 5, the trajectory in
the second and third columns are scattered with less force
than the constant external force in the first column. A quan-
titative comparison of our method to the adjoint method is
shown in Table 2. Our framework takes less time compared
to the adjoint method, while the objective function values are

Objective Time (s)
Ours 0.014 ± 0.005 0.210 ± 0.017
Adjoint 0.012 ± 0.005 473.909 ± 43.622

Table 1: Optimal control results of the wave equation, re-
peated for 50 samples.

Objective Time (s)
Ours 0.002 ± 0.002 7.714 ± 1.600
Adjoint 0.004 ± 0.003 12.965 ± 4.306

Table 2: Optimal control results of Burgers’ equation, re-
peated for 100 samples.

similar. Our surrogate model can mimic the time evolution
of Burgers’ equation in the coarse time grid. It makes our
method infer faster than the adjoint method for the control
optimization problem of time-dependent PDEs.

Conclusion
We presented a general framework for solving PDE-
constrained optimal control problems. We designed the sur-
rogate models for PDE solution operators with a reconstruc-
tion structure. It allowed our model to solve the optimal
control efficiently by adopting the reconstruction loss as a
regularizer. The experimental results demonstrated that the
proposed method has a significant gain in time complexity
compared to the adjoint method. Also, our framework can
be applied flexibly for both data-driven and data-free con-
trol problems.

Although our proposed method can achieve many ben-
efits, it cannot completely replace the existing numerical
methods. We believe that the two approaches can be comple-
mentary. The numerical method has an advantage in terms
of accuracy, and our method is computationally efficient.
In general, numerical methods slow down exponentially as
the number of dimensions increases. We believe that a deep
learning method can alleviate this issue.
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