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Abstract

Sub-seasonal forecasting (SSF) is the prediction of key cli-
mate variables such as temperature and precipitation on the
2-week to 2-month time horizon. Skillful SSF would have
substantial societal value in areas such as agricultural produc-
tivity, hydrology and water resource management, and emer-
gency planning for extreme events such as droughts and wild-
fires. Despite its societal importance, SSF has stayed a chal-
lenging problem compared to both short-term weather fore-
casting and long-term seasonal forecasting. Recent studies
have shown the potential of machine learning (ML) mod-
els to advance SSF. In this paper, for the first time, we per-
form a fine-grained comparison of a suite of modern ML
models with start-of-the-art physics-based dynamical mod-
els from the Subseasonal Experiment (SubX) project for SSF
in the western contiguous United States. Additionally, we ex-
plore mechanisms to enhance the ML models by using fore-
casts from dynamical models. Empirical results illustrate that,
on average, ML models outperform dynamical models while
the ML models tend to generate forecasts with conservative
magnitude compared to the SubX models. Further, we illus-
trate that ML models make forecasting errors under extreme
weather conditions, e.g., cold waves due to the polar vor-
tex, highlighting the need for separate models for extreme
events. Finally, we show that suitably incorporating dynami-
cal model forecasts as inputs to ML models can substantially
improve the forecasting performance of the ML models. The
SSF dataset constructed for the work and code for the ML
models are released along with the paper for the benefit of
the artificial intelligence community.

1 Introduction
Over the past decade, good quality short-term (few days)
weather forecasts as well long-term (beyond few months)
seasonal forecasts have both become routinely available.
These forecasts are largely based on dynamical models that
solve partial differential equations (PDEs) derived from the
laws of physics. In contrast, skillful sub-seasonal forecasts
(SSF), i.e., the prediction of key climate variables such as
temperature and precipitation on 2-week to 2-month time
scales, are arguably not yet available. Skillful SSF has im-
mense societal value as discussed in two recent reports
from the National Academy of Sciences (NAS) (National
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Research Council 2010; National Academies of Sciences
2016). In particular, high-quality SSF in the western con-
tiguous United States would allow for better water resource
management and emergency planning for extreme events
such as droughts and wildfires (White et al. 2017). Currently,
sub-seasonal forecasts based on dynamical models are avail-
able weekly through the Subseasonal Experiment (SubX)
project (Pegion et al. 2019), but the full utility of these for
operational forecasting still remains to be determined.

SSF is challenging for a variety of reasons. First, high-
quality SSF has proven difficult to accomplish compared to
both short-term weather forecasting and long-term seasonal
forecasting (Vitart, Robertson, and Anderson 2012). Due to
the chaotic nature of atmosphere, weather events can not
be accurately predicted beyond two weeks using dynamical
models (Lorenz 1963). From a physical point of view, the
predictability on sub-seasonal time scales depends on cor-
rectly modeling the atmosphere, ocean, and land, including
their interactions and couplings as well as the memory ef-
fects of land and ocean. In addition to these physical com-
plexities, SSF poses unconventional time series prediction
problems. Given a training set {x1:t, y1:t}, where y denotes
the target response variable, e.g., land temperature, and x
denotes suitable covariates, temporal models typically focus
on predicting yt+1 or maybe yt+1:t+τs for a small τs (a few
days or less). Instead, SSF is about predicting yt+T :t+T+τl
for large T � τs, e.g., weather prediction one month ahead
(T = 31 days). The long temporal range relative to the
weather predictability time, along with the nonlinear dynam-
ics and complex interactions, makes SSF challenging.

For climate forecasting, one standard baseline for com-
paring forecasts is the so-called climatology (Trewin et al.
2007), i.e. the 30-year average temperature/precipitation for
each calendar day at each geographic location. Despite its
simplicity, climatology provides a competitive benchmark
for SSF. For instance, in the last Forecast Rodeo (NIDIS
2019), a SSF competition sponsored by the U.S. Bureau
of Reclamation and the NOAA/National Integrated Drought
Information System (USBR and NOAA 2019), about half of
the submitted forecasts could not beat climatology. Thus, for
any more advanced SSF models, the first order of business
is to do better than climatology. Recently, progress has been
made in developing ML models (Hwang et al. 2019; He et al.
2021; Weyn et al. 2021; Srinivasan et al. 2021) which have
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shown great promise for outperforming climatology.
In this paper, we consider two new directions for SSF:

first, comparing and contrasting ML models for SSF with an
arguably stronger baseline provided by physics-based dy-
namical models; and second, exploring enhancing the ML
models by using forecasts from such dynamical models.
For the comparison, earlier literature has done such com-
parisons with certain statistical approaches and has illus-
trated dynamical models to have better forecasting ability
(Barnston et al. 2012). Instead, we do the comparison with
a suite of modern ML methods, including non-parametric
AutoKNN (Hwang et al. 2019), multitask Lasso (Tibshi-
rani 1996; Jalali, Ravikumar, and Sanghavi 2013), gradient
boosted trees (Friedman 2001; Chen and Guestrin 2016),
and deep encoder-decoder networks (He et al. 2021), and
illustrate that on average ML models outperform dynamical
models on SSF. With considerably more details, our empir-
ical analysis demonstrates key properties of ML-based vs.
dynamical model-based predictions. In particular, most ML
models generate conservative forecasts with small values,
whereas dynamical models are more aggressive, generating
forecasts with large scale. So when dynamical models are
wrong, they can be wrong by a large amount; on the flip side,
when dynamical models are correct, they can be more accu-
rate than ML models. Further, we illustrate that ML models
make most of their bad predictions during extreme events,
e.g., unusual cold waves in North America, for which there
is not enough training data. These results suggest that a sep-
arate ML model for extreme events will potentially help im-
prove aggregate performance. The second direction is us-
ing physics-based dynamical model forecasts as covariates
in the ML models. We show that using dynamical model
forecasts as inputs improves the ML model forecasts, and
the improvements are statistically significant. In addition to
the extensive new results on SSF, we release all the data and
code to replicate and hopefully extend our work1. We want
to enable a new application area for artificial intelligence re-
search, focusing on a challenging and societally important
scientific problem in the context of climate forecasting.

2 Related Work
Dynamical models and S2S forecasting. Nowadays,
weather predictions rely heavily on ensemble forecasts from
physics-based dynamical models (Barnston et al. 2012). On
sub-seasonal to seasonal (S2S) time scales, forecasts have
shown limited predictive skill compared to the climatology
(Vitart 2004, 2014; Weigel et al. 2008). However, success-
ful S2S predictions can be performed for certain regions and
seasons (Li and Robertson 2015; DelSole et al. 2017a), as
well as certain climate states (Mariotti et al. 2020). To un-
derstand the conditions that lead to enhance predictability
and to improve S2S forecasts, projects such as S2S (Vitart
et al. 2017) and SubX (Pegion et al. 2019) have been estab-
lished. These coordinated multi-model efforts act to fulfill
the growing needs of skillful SSF in real-world applications.

1The SSF dataset is publicly available at https://sites.google.
com/view/ssf-dataset. The source code can be found at https://
github.com/Sijie-umn/SSF-MIP.

ML on weather and S2S forecasting. Recently, increasing
efforts have been made to tackle complex problems in cli-
mate science using ML. Such applications aim to advance
weather forecast skill using deep learning methods (Liu et al.
2016; Ham, Kim, and Luo 2019; Dueben and Bauer 2018;
Scher and Messori 2019). Despite early studies that show
dynamical models outperform statistical models for ENSO
seasonal forecasts (Barnston et al. 2012), recent advances in
machine learning, especially the development of deep learn-
ing, are making the performance of ML models more com-
petitive with dynamical models for both weather (Grover,
Kapoor, and Horvitz 2015; Shi et al. 2017; Dueben and
Bauer 2018) and seasonal (Stevens et al. 2021) prediction.

In particular, ML models have started to be used to im-
prove forecast skills for predictions of temperature, precip-
itation, and other climate variables on sub-seasonal time
scales (Hwang et al. 2019; He et al. 2021; Weyn et al. 2021;
Srinivasan et al. 2021). Some successful ML approaches for
S2S forecasting include (Hwang et al. 2019) and (He et al.
2021), where both works show increased predictive skill for
ML models compared to climatic baselines, e.g., climatol-
ogy and damped persistence. Such advances from ML mod-
els are particularly relevant and valuable, as dynamical mod-
els have limited predictive skills at sub-seasonal time scales
(Uccellini and Jacobs 2018).

3 Sub-seasonal Climate Forecasting
Problem Statement. We focus on forecasting temperature
anomalies over days 15 - 28, i.e., predicting average temper-
atures anomalies 2 weeks ahead of time, over the western
contiguous U.S, which follows the Forecast Rodeo competi-
tion (USBR and NOAA 2019). The spatial region is bounded
by latitudes 25N-50N and longitudes 93W-125W at 1◦ by 1◦
spatial resolution with 508 grid points. The temporal range
of interest and temporal resolutions are determined by each
SubX model and its initialization frequency.
Ground Truth Dataset. The ground truth dataset is con-
structed from NOAA’s Climate Prediction Center (CPC)
Global Gridded Temperature dataset, which is commonly
applied for forecast verification by NOAA/CPC (Fan and
Van den Dool 2008). The CPC dataset provides daily max
and min 2m temperatures (tmp2m - air temperature at 2
meters above the surface) at 0.5 ◦ by 0.5 ◦ spatial resolu-
tion from Jan 1, 1979 to the present. To obtain the ground
truth temperature anomalies for weeks 3 &4, we preprocess
the data as follows: (1) daily 2m temperature at each grid
point is taken as the average of daily max and min tmp2m,
(2) all missing values are imputed by averaging the daily
tmp2m of its spatial/temporal neighbors, (3) the tmp2m at
0.5 ◦× 0.5◦ resolution are linearly interpolated to a 1 ◦× 1◦

grid, (4) the daily tmp2m anomalies are computed by sub-
tracting the climatology from the observed daily tmp2m, and
(5) the forecasting target at each date and grid point is the av-
erage of tmp2m anomalies at day 15 to 28. The climatology
used in step (4) is the smoothed long-term average of tmp2m
over 1990 - 2016 for each month-day combination and grid
point. Specifically, for a given grid point, we compute the
long-term average over 1990 - 2016, one for each month-
day combination. Then the 365 values are smoothed using
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moving average with a window size of 31 days.
Evaluation Metrics. Let y∗ ∈ Rn denotes the ground truth
observation and ŷ ∈ Rn be the corresponding predicted
value, we consider the following two evaluation metrics.

Anomaly Correlation Coefficient (ACC) is defined as
ACC = cov(y∗,ŷ)

σy∗σŷ
, where σŷ (σy∗ ) represents the standard

deviation of ŷ (y∗). cov(y∗, ŷ) is the covariance between
y∗ and ŷ. ACC is independent of the mean and variance of
each individual distribution of y∗ and ŷ and is equivalent
to cosine similarity, the evaluation metric used in Forecast
Rodeo, assuming ŷ and y∗ are zero-mean.

Relative R2 is defined as 1 −
∑n

i=1(y∗
i−ŷi)

2∑n
i=1(y∗

i−ȳtrain)2
, where

ȳtrain is the long-term average of tmp2m at each date and
grid point in the training set. Relative R2 is equivalent to
1−Relative MSE and represents the relative skill against the
best constant predictor, i.e., ȳtrain. A model which achieves
a positive relative R2 is, at least, able to predict the sign of
y∗ accurately and outperforms the climatology.

Denote the ground truth temperature anomalies as Y ∗ ∈
RT×G, where T is the number of dates and G is the number
of grid points. The spatial predictive skill for a given date t
can be evaluated on y∗t = Y ∗[t, :], the t-th row in Y ∗, where
y∗t ∈ RG is the ground truth for all grid points at date t with
the corresponding forecasts ŷt. The temporal predictive skill
for a grid point g can be evaluated on y∗g = Y ∗[:, g], the g-th
column in Y ∗, similar to time series prediction evaluation.

4 Subseasonal Experiment (SubX) Project
The Subseasonal Experiment (SubX) project provides sub-
seasonal forecasts from multiple global forecast models.
Data are publicly available through the International Re-
search Institute for Climate and Society (IRI) Data Library
at Columbia University. A detailed description of the SubX
project and the contributing models can be found in (Pegion
et al. 2019). The SubX project has two predictive periods:
hindcast and forecast. A hindcast period represents the time
when a dynamic model re-forecasts historical events, which
can help climate scientists develop and improve forecasting
models. In contrast, a forecast period has real-time predic-
tions generated from dynamic models. Specifically, hind-
casts occur from Jan 1999 to Dec 2015, while the real-time
forecast period starts from July 2017. We evaluate the pre-
dictive skills of the SubX models over their forecast periods.

In this paper, we focus on two SubX models, NCEP-
Climate Forecast System version 2 (CFSv2) (Saha et al.
2014) and NASA-Global Modeling and Assimilation
(GMAO) version 2 of the Goddard Earth Observing System
(GEOS) model (Reichle and Liu 2014). NCEP-CFSv2 is the
operational seasonal prediction model currently used by the
U.S. Climate Prediction Center. GMAO-GEOS is developed
to support NASA’s earth science research. Both models are
coupled atmosphere–ocean–land–sea ice models and have
the highest initialization frequency in the SubX project. Fur-
ther information on the two SubX models is presented in
the Appendix2. For each SubX model, there are four ensem-
ble members and daily forecasts for 45 days beyond each

2Appendix can be found at https://arxiv.org/abs/2006.07972

initialization date. The average of four ensemble members’
outputs are taken as the forecasts. The weeks 3 & 4 outlooks
are computed by averaging the forecasts 15 to 28 days be-
yond each initialization date and subtracting the correspond-
ing climatology computed from the model’s hindcast period.

5 Machine Learning-based SSF Modeling
Notation. Let Y ∈ RT×G denote the targeted weeks 3 &
4 temperature anomalies over T dates and G grid points.
yt is the t-th row in Y , denoting the temperature anomalies
over all grid points G at date t. X ∈ RT×p denotes the p-
dimension covariates for T dates. Xt ∈ Rp (the t-th row in
X) is the covariates at date t.
Machine Learning Models. We focus on state-of-the-art
machine learning models that have been shown to work ef-
fectively for SSF (He et al. 2021; Hwang et al. 2019).

AutoKNN (Hwang et al. 2019). An auto-regressive model
only uses features from historical temperature anomalies,
which are selected using a multitask k-nearest neighbor cri-
terion. For a given date t, the algorithm chooses the temper-
ature anomalies of 20 historical dates which have the high-
est similarity with the date t, and temperature anomalies of
29 days, 58 days, and 1 year prior to t as features. Specifi-
cally, the similarity between two dates t1 and t2 is defined
as sim(t1,t2) = 1

M

∑M−1
m=0 cos(yt1−l−m,yt2−l−m), where

cos(yt1−l−m,yt2−l−m) is the cosine similarity between the
temperature anomalies at l + m days before t1 and t2. Fol-
lowing the settings in (Hwang et al. 2019), we use M = 60
as the length of the considered historical sequences prior to
each date, with the lag l = 365. At each grid point, we fit
a weighted local linear regression model, where the weight
is one over the variance of the temperature anomalies at the
corresponding date.

Multitask Lasso (Tibshirani 1996; Jalali, Ravikumar, and
Sanghavi 2013). A multitask regularized linear regression
model. By assuming yt = XtΘ

∗ + ε, where ε ∈ RG is a
Gaussian noise and Θ∗ ∈ Rp×G is the coefficient matrix for
all locations, the parameter Θ∗ is estimated by

Θ̂ = argminΘ∈Rp×G

1

2T
‖Y −XΘ‖22 + λ‖Θ‖2,1 (1)

with ||Θ||2,1 =
∑
i(
∑
j Θ2

ij)
1/2 and a penalty parameter λ .

Gradient boosted trees (XGBoost) (Friedman 2001; Chen
and Guestrin 2016). A functional gradient boosting algo-
rithm, of which the weak learners are regression trees. The
algorithm combines multiple weak learners into one learner
in an iterative manner. At each iteration, a new weak learner
is created to correct the previous prediction and optimize the
loss function along with regularization. We build one XG-
Boost model for each location, and the hyper-parameters are
selected jointly based on the performance over all locations.

Encoder-FNN (He et al. 2021). A deep learning model de-
signed for SSF over the contiguous U.S. The model input is
a historical sequence of the features shared by all locations
and is fed into an LSTM encoder recurrently. The outputs
of each step in the sequence are combined and jointly sent
to the decoder, which is a two-layer fully-connected neural
network with ReLU activation. The outputs of the decoder
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are the predicted tmp2m anomalies over all grid points. Note
that, besides standard hyper-parameters like layer size, num-
ber of layers, and dropout rate, the length of the sequence is
also a hyper-parameter. The final forecast is the average of
20 independent runs.
Covariates for ML models. The feature set for the ML
models contains the following climate variables, of which
the detailed description and original sources are listed in the
Appendix. Spatially over the contiguous U.S., we consider
(1) 2m temperature (tmp2m), which is also the source data
for the ground truth dataset; (2) soil moisture (sm), which
influences temperature and precipitation through its impact
on surface fluxes of heat and moisture (Koster et al. 2011);
and (3) geopotential height (ght) at 10mb and 500mb, sea
level pressure (slp) and relative humidity (rhum) from the
reanalysis dataset, which capture variations in the north-
ern hemisphere polar vortex and persistent variations in the
large-scale atmospheric circulation. We also obtain sea sur-
face temperature (sst) over the Pacific Ocean, from latitudes
20S to 65N and longitudes 120E to 90W, and the Atlantic
Ocean, from latitudes 20S to 50N and longitudes 20W to
90W. Variations in sst have been linked to enhanced sub-
seasonal predictability over the U.S. (DelSole et al. 2017b).

In addition, we include nine climate indices that describe
the state of the climate system or are related to different
climate phenomena, such as El Niño/Southern Oscillation
(ENSO). Multivariate ENSO index (MEI.v2) and Niño in-
dices are included to monitor El Niño and La Niña events
(DelSole et al. 2017b; Stan et al. 2017). The amplitude and
phase of Madden-Julian Oscillation (MJO) are considered
since the MJO has dramatic impacts in the mid-latitudes and
is a strong contributor to various extreme events in the U.S.
(Waliser 2005). North Atlantic Oscillation (NAO) index is
considered since variations in the NAO drive changes in tem-
perature and precipitation over the U.S. and western Europe
(Stan et al. 2017). Sudden Stratospheric Warming (SSW) in-
dex is included to capture the variations in the strength of the
polar vortex, which are associated with extreme cold air out-
breaks in mid-latitude U.S. (Butler et al. 2015).
Data Preprocessing. For all ML models except AutoKNN,
we consider two types of climate variables, namely spa-
tiotemporal and temporal climate variables. For each spa-
tiotemporal variable, we flatten the values at all grid points
for each date and compute the top 10 principal components
(PCs) as features. For example, if Xsm ∈ RT×G denotes
the soil moisture for T dates in training set (1990-2016) and
all G spatial grid points over the contiguous U.S., we com-
pute the PC loadings using Xsm and extract the top 10 PCs
to get the feature matrix Xsm

pc ∈ RT×10. The extracted PCs
are then normalized by z-scoring for each month-day combi-
nation separately. The temporal variables and the PC-based
features of all spatiotemporal climate variables jointly form
the feature set for each date. For XGBoost and Lasso, the
covariates are the feature values two weeks lagging from the
forecasting period. For example, if the forecasting period is
Jan, 15 - Jan, 28 in 2019, the covariates are the features on
Jan 1, 2019. For Encoder FNN, the features of a historical
sequence are treated as the model input for each date. The
historical sequence is constructed similarly to the features

of Encoder FNN in (He et al. 2021) (Figure 7(a)). AutoKNN
takes only the historical tmp2m anomalies as its covariate.
Experimental Setup. Since the relationships between the
covariates and target variables vary at different times of the
year, test sets are created for each month from July 2017
to Jun 2020 and separate predictive models are trained ac-
cordingly. Since an individual ML model is built for each
month of the year, the best hyper-parameters of each type
of ML models are selected on a monthly basis. To do so, for
each month of the year, we construct five validation sets con-
taining data from the same month between 2012 and 2016,
and the corresponding training sets consist of 10 years of
data prior to each validation set. The best hyper-parameters
are determined by the average performance over the five
validations sets. We thus have 12 sets of the best hyper-
parameters corresponding to each month of the year. Once
the best hyper-parameters are selected, we use 28 years of
data prior to a given test set to train the corresponding ML
forecasting model.

Figure 1: The empirical cumulative distribution function
(cdf) of spatial relative R2 (top left) and spatial ACC (bot-
tom left) of all methods, and the corresponding quantile-
quantile (QQ) plot (right) between XGBoost and GMAO-
GEOS. XGBoost, Lasso and AutoKNN all have most spa-
tial relative R2 close to or above 0, while GMAO-GEOS
and Encoder-FNN have relative R2 much smaller than -1.
As for spatial ACC, despite the similarity of the cdf curves,
the ML models (yellow, green, and red) are in general below
the blue curve when the spatial ACCs are negative, indicat-
ing that the ML models are less likely to have extremely
negative predictive skills compared to the SubX model.

6 Experimental Results
In this section, we compare the predictive skill of the four
ML models and the two SubX models on the forecast period
from 2017 to 2020. A comprehensive analysis is conducted
for the experimental results, which reveals possible direc-
tions for further improvement of the ML models for SSF.
Besides, we explore the potential of advancing SSF by com-
bining the ML models and the SubX forecasts.
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Figure 2: Temporal relative R2 (top) and temporal ACC (bottom) of GMAO-GEOS (leftmost column) and the ML models. For
both metrics, values closer to 1 (green) indicate more accurate predictions. Overall the SubX model achieves positive temporal
ACC for most spatial locations while performing poorly considering temporal relativeR2. Among all the ML models, XGBoost
and Encoder-FNN are the two best models, and substantially outperform the SubX models over most spatial locations.

Forecast Period Evaluation
We evaluate the results for GMAO-GEOS and NCEP-
CFSv2 separately since they have different forecast peri-
ods and temporal resolutions. Overall the results are con-
sistent for both of the SubX models, therefore we present
only the results regarding GMAO-GEOS in this section and
the results regarding NCEP-CFSv2 in the Appendix. We
first present the empirical cumulative distribution function
(cdf) of spatial relative R2 and spatial ACC for all meth-
ods over the forecast periods of GMAO-GEOS in Figure 1.
It is shown that ML models such as XGBoost, Lasso, and
AutoKNN are capable of generating forecasts with positive
or small negative relative R2, while the SubX model and
the Encoder-FNN model commonly stay in the negative rel-
ative R2 zone. On the other hand, considering the positive
side of the cdf plot, the SubX model and Encoder-FNN are
able to achieve relativeR2 close to 1 in some cases, whereas
the cdf of other ML models reach 1 when the relative R2

are comparatively small. The quantile-quantile (QQ) plot of
spatial relative R2 in Figure 1 shows that the relative R2

can be much smaller than -1, indicating the SubX models
can make predictions with a large deviation from the ground
truth. As for spatial ACC, despite the similarities in the cdf
across models, a closer inspection shows the cdf of the ML
models (yellow, green, and red curves) are generally below
the cdf of the SubX model (blue curve) between [-1, 0]. The
QQ plot of the spatial ACC between XGBoost and GMAO-
GEOS supports the observation, where all the points are be-
low the diagonal line when the spatial ACC of XGBoost is
between [-1, 0]. For the positive side of the spatial ACC for
XGBoost, most points are close to or slightly above the diag-
onal line. To summarize, at a given date, the SubX model is
more likely to have spatial ACC close to the extreme values
(-1 or +1), while ML models, such as XGBoost, are more
conservative and are able to avoid extreme negative ACC.

The temporal relative R2 and temporal ACC over the
western U.S. are illustrated in Figure 2. Similar to spatial
results, the SubX model achieves positive temporal ACC
for most spatial locations while performing poorly with
respect to temporal relative R2. Among all ML models,

XGBoost and Encoder-FNN are the best two considering
both temporal predictive skills, and substantially outperform
the SubX model for most spatial locations. Spatially, the
central area, including the states of North Dakota, South
Dakota, Montana, Wyoming, etc, are the areas where the
temperature fluctuations are more drastic compared to the
coastal states. Therefore, linear model like Lasso and non-
parametric model like AutoKNN tend to perform worse in
such regions, while more complicated nonlinear models like
XGBoost and Encoder-FNN perform relatively better. Addi-
tionally, the SubX model has negative temporal relative R2

and positive temporal ACC for the coastal area, which im-
plies it may predict incorrect magnitudes despite their rela-
tively accurate prediction of the temporal patterns.

Figure 3: The monthly average spatial ACC of XGBoost and
GMAO-GEOS and the mean of tmp2m anomalies over the
western U.S. during the forecast period. Most of the time,
XGBoost achieves competitive or even higher spatial ACC
compared to the SubX model. The only exception, that the
SubX model (same for NCEP-CFSv2) significantly outper-
form XGBoost, happens from Dec. 2018 to Feb. 2019 (high-
lighted in orange) when a cold wave affected the U.S. lead-
ing to extreme low average tmp2m anomalies.

Machine Learning and Extreme Weather Events
Given that SSF is a challenging problem, it is natural to in-
vestigate under which circumstance(s) the ML models fail to
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Figure 4: Spatial RMSE versus the standard deviation of
tmp2m anomalies (top) and the average tmp2m anomalies
(bottom) over the dates and regions. The high spatial RMSE
appears for samples having large standard deviation or ex-
treme negative average of tmp2m anomalies, which indi-
cates that the west-north-central region is hard to predict.

provide accurate forecasts. The average spatial ACC of XG-
Boost and GMAO-GEOS for each month during the forecast
periods are shown in Figure 3. For most months, XGBoost
is either competitive or achieves higher spatial ACC com-
pared to the SubX model. The exceptions occur in Decem-
ber 2018 and the first two months of 2019, when the Jan-
uary–February 2019 North American cold wave impacted
the United States. The cold wave brought the coldest temper-
atures in over 20 years to most locations (Wikipedia 2019),
and the temperature anomalies reached -15◦C and beyond in
the central U.S. Extreme weather events are hard to predict
since there is a lack of enough training data for such events.
However, the dynamical models are reasonably successful in
predicting the extreme cold temperatures, since they follow
the physics. For example, the cold wave followed a sudden
stratospheric warming event, which increases predictability
of these extreme events (Domeisen and Butler 2020).

The value of spatial ACC is not affected by the scale of
the response. Therefore, we also analyze the predictive per-
formance for the ML models regarding Root Mean Square
Error (RMSE). With y∗i and ŷi denoting the i-th element in
the ground truth y∗ and the forecasts ŷ respectively, RMSE

is defined as
√∑n

i=1(y∗
i−ŷi)2

n . We first separate all grid
points in the western U.S. into five climatically consistent
regions (Karl and Koss 1984), i.e., northwest, west, west-
north-central, southwest, and south. To represent the spatial
variance of tmp2m anomalies at each forecasting date and
each region, we approximately compute the standard devia-
tion (std) of tmp2m anomalies at each date and each region

as
√∑nr

i=1
y2i
nr

, where nr is the number of grid points for a
given region at one date. As shown in Figure 4, the RMSE
from ML models at a given date and region is strongly cor-
related to the std of tmp2m anomalies, which implies the
dates and regions with high variance are difficult to predict.

(a) Ground truth and forecasts on Mar. 12, 2018

(b) Ground truth and forecasts on Jan. 6, 2020

Figure 5: Comparison among the ground truth and forecasts
made by GMAO-GEOS and XGBoost at two dates. (a) On
March 12, 2018, both XGBoost and GMAO-GEOS success-
fully predict the spatial pattern of the ground truth (red in the
southwest and blue in the northeast). However, the predicted
values from XGBoost are much smaller than GMAO-GEOS
forecasts as XGBoost is more conservative on the scale. (b)
On Jan 6, 2020, the ground truth has positive tmp2m anoma-
lies (red) for most locations, while GMAO-GEOS mistak-
enly makes extreme negative forecasts (dark blue).

The bottom plots in Figure 4 illustrate the average of tmp2m
(with sign, unlike the std) for each date and region versus the
predictive RMSE, which further demonstrates that extreme
events are the samples with negative bias and large variance
during the forecast period. Results for other ML models are
included in the Appendix. Besides, the distribution of dif-
ferent regions in Figure 4 implies that the spatial variance
is, in general, lower for coastal regions, e.g. west region,
compared to inland regions like west-north-central region.
For instance, west-north-central region (including Montana,
Wyoming, North Dakota, South Dakota, and Nebraska) can
experience extremely cold winter temperatures when the po-
lar jet stream sinks down into the mid-latitudes and brings
the coldest polar air.

This analysis illustrates the difficulty of modeling extreme
weather events using a single ML model, not only because of
the inadequate samples, but also due to the intense tempera-
ture fluctuations. Therefore, it is necessary to utilize separate
modeling techniques for weather extremes or regions with
drastic fluctuations in tmp2m anomalies to achieve more ac-
curate forecasting. Ideally, if weather extremes can be de-
tected ahead of time, we can choose not to trust the ML
forecasts for a certain time period and turn to the forecasting
models specifically designed for extreme conditions.

Enhancing ML Models with SubX Forecasts
To demonstrate the strengths and limitations of the SubX
and the ML model forecasts, we present forecasts of two
days as anecdotal evidence in Figure 5. The first example
(Figure 5(a)) shows that, on Mar. 12, 2018, both GMAO-
GEOS and XGBoost have successfully reproduced the spa-
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(a) Temporal ACC

(b) Temporal relative R2

Figure 6: The temporal ACC and relative R2 of XGBoost
and Lasso with and without GMAO forecasts as features.
Including GMAO forecasts in the feature set evidently im-
proves the forecasting performance, especially for the cen-
tral U.S. (top right corner, marked by blue frames).

tial pattern of the ground truth. As a result, GMAO-GEOS
and XGBoost obtain good spatial ACC. However, the pre-
dicted scale from GMAO-GEOS is much larger than XG-
Boost and is closer to the scale of the ground truth. The sec-
ond example is the forecasting results on Jan 6, 2020, when
the SubX forecasts fail badly. As shown in Figure 5(b), while
the ground truth is that all the locations over the western
U.S. have positive tmp2m anomalies with the largest val-
ues around 8◦C, GMAO-GEOS predicts all negative tmp2m
anomalies with the lowest values close to−8◦C. Meanwhile,
XGBoost partially predicts the correct spatial pattern but
with conservative values in the range of [−1.5◦C, 1.5◦C],
which are much smaller than the magnitudes of the ground
truth. These two examples demonstrate that the SubX mod-
els have a certain advantage in matching the amplitude of
the tmp2m anomalies, while the ML models are more con-
servative and provide predicted values with smaller ampli-
tude. On the flip side, in situations where the SubX models
do not predict the spatial pattern correctly, the forecasts can
be wrong by a large amount.

Acknowledging the advantages of both types of models,

we explore a suitable combination of the ML models and the
SubX forecasts. More specifically, we investigate whether
including SubX forecasts in the feature set of the ML models
can enhance the predictive skill of the ML models. Since the
hindcast periods of the SubX models are ∼10 years shorter
than the temporal range of the training data for the ML mod-
els, and the temporal resolution of SubX models is also rel-
atively lower, incorporating the SubX forecasts significantly
reduces the sample size. To fairly compare the performance,
we first train a ML model using the samples that are avail-
able during the hindcast periods and then compare it with the
ML model that uses SubX forecasts as features, this guaran-
tees both models are trained with exactly the same sample
size. For Multitask Lasso, features are originally shared for
all locations. To incorporate SubX forecasts, we build one
Lasso model for each location but the hyper-parameter is
jointly selected based on the performance for all locations.

Temporal results using XGBoost and Lasso, with and
without the inclusion of SubX forecasts in the feature set are
shown in Figure 6. The detailed spatial results are reported
in the Appendix. Overall adding either GMAO-GEOS fore-
casts in the feature set leads to a significant enhancement of
predictive skills. As shown in Figure 6, the combination of
the ML models and the SubX forecasts effectively converts
some negative temporal ACC to positive and strengthens the
forecasts originally achieving positive temporal ACC. The
improvement is particularly outstanding for the west-north-
central region, a region considered hard to predict. Regard-
ing temporal relative R2, both ML models obtain some im-
provements in the areas originally characterized by negative
values. Especially for Lasso, it picks the central area where
GMAO-GEOS performs well and obtains positive temporal
relative R2. These results highlight the potential to further
increase the predictive skill of the ML models by incorpo-
rating SubX forecasts. We anticipate that more hindcast data
from SubX models would lead to notable improvements in
the predictive performance of the ML models.

7 Discussion & Conclusions
In this paper, sub-seasonal climate forecasting, an impor-
tant but challenging scientific problem, is introduced to the
artificial intelligence community. We perform a rigorous
evaluation and comparison between state-of-the-art machine
learning models and two dynamical models from the SubX
project, i.e., GMAO-GEOS and NCEP-CFSv2, for SSF in
the western contiguous U.S. Experimental results demon-
strate that, on average, the ML models can outperform the
SubX models. However, the ML model forecasts usually
are relatively conservative compared to the SubX forecasts
which, when correctly made, match the scale of the ground
truth better. Acknowledging the strengths of both ML and
dynamical models, we obtain significant improvements in
predictive performance by including the SubX forecasts as
a new feature of ML models, which illustrates the potential
in generating skillful SSF by combining such two types of
models. Further, we show that ML models make most of the
bad forecasts during weather extremes, e.g., unusual cold
waves, and suggest ways of further improving the ML mod-
els by modeling extreme events separately.
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