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Abstract

3D object detection from point clouds data has become an
indispensable part in autonomous driving. Previous works
for processing point clouds lie in either projection or vox-
elization. However, projection-based methods suffer from in-
formation loss while voxelization-based methods bring huge
computation. In this paper, we propose to encode point cloud-
s into structured color image representation (SCIR) and uti-
lize 2D CNN to fulfill the 3D detection task. Specifically, we
use the structured color image encoding module to convert
the irregular 3D point clouds into a squared 2D tensor image,
where each point corresponds to a spatial point in the 3D s-
pace. Furthermore, in order to fit for the Euclidean structure,
we apply feature normalization to parameterize the 2D ten-
sor image onto a regular dense color image. Then, we con-
duct repeated multi-scale fusion with different levels so as
to augment the initial features and learn scale-aware feature
representations for box prediction. Extensive experiments on
KITTI benchmark, Waymo Open Dataset and more challeng-
ing nuScenes dataset show that our proposed method yields
decent results and demonstrate the effectiveness of such rep-
resentations for point clouds.

Introduction

The ability of perception and understanding in 3D environ-
ment is vital in autonomous driving (Geiger, Lenz, and Ur-
tasun 2012) and virtual/augmented reality (VR/AR) scenar-
ios (Park, Lepetit, and Woo 2008). In the domain of 3D
sensing, 3D object detection is crucial and indispensable. In
the last decades, with the advanced 3D sensing technology,
the point clouds from LiDAR scanner have become a main-
stream due to the rich spatial information and geometric fea-
tures. However, the sparsity, irregularity and non-Euclidean
structure of point clouds make it a tricky problem to ap-
ply the conventional deep convolutional neural networks (C-
NNs) to 3D object detection.

Current methods for processing point clouds can be di-
vided into three streams, i.e., projection-based approach-
es, voxelization-based approaches and PointNet-based ap-
proaches. Projection-based approaches (Simon et al. 2019;
Chen et al. 2017; Yang, Liang, and Urtasun 2018; Ku et al.
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Figure 1: Comparison of different representations for point
clouds. (a) Projection-based method: project point clouds to
bird view or front view and combine RGB image to generate
3D box by 2D CNN, (b) Voxelization-based method: divide
point clouds into equally spaced 3D voxels but use 3D CNN
to generate 3D box, (c) our method: encode point clouds
into structured color image and adopt 2D CNN to generate
3D box.

2018; Liang et al. 2018; Yang, Luo, and Urtasun 2018; Pre-
mebida et al. 2014) project point clouds into front view or
birds eye view and employ 2D CNN to directly predict 3D
bounding box. However, projection alone will lose the spa-
tial information greatly and cannot represent geometry in-
formation of point clouds inevitably, so this type of method
often combines semantic information from RGB images to
compensate for the information loss, as shown in Fig. 1(a).
Compared to projection-based approaches, voxelization-
based approaches (Zhou and Tuzel 2018; Yan, Mao, and Li
2018; Lang et al. 2019; Shi et al. 2020a) divide 3D point
clouds into regular spaced voxels and apply 3D CNN (Li
2017; He et al. 2020a) to generate feature maps for 3D de-



tection, as shown in Fig. 1(b). However, even though the
later sparse convolution and submanifold sparse convolu-
tion (Graham, Engelcke, and Van Der Maaten 2018; Shi
et al. 2020b) are applied, the problem of the huge amoun-
t of calculation (Liu et al. 2019) caused by the 3D CNN
still has not been well solved. Powered by the remarkable
feature extractor PointNet (Qi et al. 2017a,b), some work-
s (Qi et al. 2018; Wang and Jia 2019; Shi, Wang, and Li
2019; Yang et al. 2019, 2020) try to predict 3D box from
raw point clouds directly. But these methods achieve bet-
ter performances with the uncontrolled receptive fields and
non-compact neighborhood relations.

In order to apply the well-developed 2D CNN and avoid
the irreversible lossy conversion, we consider a differen-
t paradigm that convert the 3D point clouds into regular 2D
structured color image representation without aligning other
data format (see Fig. 1(c)). Studies (Bommes, Zimmer, and
Kobbelt 2009; Campen, Bommes, and Kobbelt 2015; Lyon
et al. 2019) in computer graphics domain have looked into
using geometry image representation and grid parameteri-
zation for the classification and semantic segmentation of
point clouds. However, little studies have devoted to using
structured image representation for 3D object detection task
from point clouds. Our work demonstrates the feasibility of
using structured image representation for accurate 3D object
detection.

In this paper, we propose the structured color image rep-
resentation based 3D object detection network from point
clouds (SCIR-Net), which is capable of transforming the
disorganized 3D point clouds into completely structured 2D
color image representation and utilize 2D CNN to generate
the category and bounding boxes information of the object.
Specifically, the whole SCIR-Net is composed of structured
color image encoding module, which aims to transform the
global feature into structured color image, followed by the
enforced detection network. Consuming the global feature
from the feature extractor and the raw point clouds as input,
the structured color image encoding module encodes the 3D
points as the 2D tensor image through series of MLPs and
then the feature normalization module is designed to gener-
ate the final regular color image representation. Such rep-
resentation is differentiable and lossless which means the
raw point clouds can be processed directly without carrying
much computation burden. For regressing the final bound-
ing box on these 2D dense color image, we design the en-
forced detection network with repeated multi-scale fusion
scheme. Experiments on KITTI detection benchmark, Way-
mo Open Dataset and more challenging nuScenes dataset
demonstrates that our proposed method can achieve com-
parable results with the state-of-the-art approaches, which
validate the feasibility of such representation.

The main contributions of our work can be summarized
as follows:

e We propose SCIR-Net, a new 3D object detection net-
work which contains a new point clouds encoding
method and enforced detection network.

e We design a new point clouds representation method that
encodes the irregular point clouds in 3D space into 2D

4487

structured color image representation.

e We design the enforced detection network which aug-
ment the initial features with repeated multi-scale fusion
scheme at different levels, further improving the 3D lo-
calization accuracy.

Our proposed SCIR-Net achieves comparable results
with the state-of-the-art methods on the KITTI 3D detec-
tion dataset, Waymo Open Dataset and more challenging
nuScenes dataset.

Related Work

3D Object Detection with Multiple Sensors. There are
several methods utilizing semantic information from RGB
images and spatial information from point clouds for 3D ob-
ject detection. Considering the properties of 2D CNN, many
methods project the 3D points into different 2D views in or-
der to align with RGB images. Among them, MV3D (Chen
et al. 2017) projects point clouds into LIDAR bird view and
LIDAR front view and fuses 3D proposals from bird view
with RGB images to predict the final bounding box in the
RPN network. AVOD (Ku et al. 2018) extends the fusion
method by performing multimodal feature fusion on high
resolution feature maps. The latest SRDL (He et al. 2020b)
generates candidate boxes from stereo images and use edge
convolution and MLP to process point clouds in parallel to
improve the initial performance in F-pointnet (Qi et al. 2018)
and IPOD (Yang et al. 2018). MMF (Liang et al. 2019) joint-
ly reasons about 2D and 3D object detection, ground estima-
tion and depth completion by utilizing depth maps, LIDAR
point clouds and RGB images.

3D Object Detection with LiDAR Only. Dealing with
3D object detection, there are several streams of methods
which use point clouds only. The first one is voxelization-
based methods. VoxelNet (Zhou and Tuzel 2018) divides
3D point clouds into equally spaced 3D voxels and gener-
ated unified feature representation through 3D CNN after
the newly designed VFE layer. In order to accelerate the cal-
culation speed, SECOND (Yan, Mao, and Li 2018) applies
sparse convolution layers and angle loss regression to im-
prove the orientation estimation performance. SA-SSD (He
et al. 2020a) also uses 3D CNN in the divided non-empty
voxels and proposes an auxiliary network to exploit point-
wise supervisions. Part A2 (Shi et al. 2020b) applies sub-
manifold sparse convolution to estimates intra-object part
locations and conducts the proposed Rol-aware point cloud
pooling operation.

Thanks to the groundbreaking work PointNets (Qi et al.
2017a,b) in processing the irregular point clouds data, se-
ries of methods attempt to take raw point clouds as input
to make the 3D predictions. PointRCNN (Shi, Wang, and Li
2019) utilizes PointNet++ as point cloud encoder-decoder to
generate point-wise feature vector and proposes a two-stage
RPN network to predict bounding boxes. To further reduce
the large computation cost, 3DSSD (Yang et al. 2020) re-
moves FP layers and the refinement module and propose a
fusion sampling strategy in downsampling process to make
detection on less representative points feasible. Considering
the advantages of both point-based and voxel-based method-
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Figure 2: Illustration of the architecture of the proposed SCIR-Net. The whole network contains two sub-networks, (a) the struc-
tured color image encoding network to transform global feature into structured color image with series of feature embeddings
and feature normalization module, and (b) the enforced detection network with repeated multi-scale fusion to learn scale-aware

feature representations for classification and box prediction.

s, STD (Yang et al. 2019) proposes spherical anchors for ac-
curate proposal generation, then applies the newly designed
PointsPool to generate feature representations from sparse
to dense for reducing inference time.

Parameterization on irregular data representations. In
the field of digital geometry processing, parameterization is
a typical method of transforming irregularly represented da-
ta (such as point clouds) into regular representations. Since
the deformation from 3D surface to 2D plane inevitably oc-
curs, parameterization is very popular (Gu and Yau 2003).
Since the regional distortion of parameterization is closely
related to the singularity of parameterization, many meth-
ods usually describe parameterization as mixed integer pro-
gramming (Bommes, Zimmer, and Kobbelt 2009), where the
positions of the singular points are continuous. Once the pa-
rameterization is calculated, the model can be divided into
graphs to generate multi-graph geometric images (Campen,
Bommes, and Kobbelt 2015). These methods are theoretical-
ly reasonable and elegant, but due to the high computational
cost, they are impractical for curved surfaces with complex
geometric shapes and topologies.

Proposed Method

In this paper, we propose the structured color image rep-
resentation based 3D object detection network from point
clouds (SCIR-Net), which encodes irregular 3D point clouds
into structured 2D color image representation and apply 2D
CNN architecture to accomplish accurate 3D object detec-
tion task. As shown in Fig. 2, SCIR-Net consists of the struc-
tured color image encoding module and a enforced detection
network. The former aims to transform global feature in-
to structured color image with series of feature embeddings
and feature normalization module. Given the normalized 2D
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color image, the enforced detection network learns scale-
aware feature representations with repeated multi-scale fu-
sion for final classification and box prediction.

Feature Embedding Generation

Formally, considering a point cloud set with N points P =
{p1,...,pN}, wWhere each p; = (x;,y;,2;,7;) is a spatial
point with 3D coordinates and the reflected laser intensity r;.
Given a point cloud P, we propose to encode the Cartesian
coordinates of spatial points into a 2D image color channels
representation with depth, which denoted as F' € Rmxmx4
dubbed as (7, g, b; d), where d denotes the depth information
in each 2D color point.

Feature Extractor. There are many methods processing
point clouds to generate compact features (Qi et al. 2017b;
Wang et al. 2019; Kaul, Pears, and Manandhar 2019; He
et al. 2020b). In order to learn discriminative compact point-
wise features for describing the raw point clouds, we uti-
lize the combined edge convolution and MLPs in SRDL (He
et al. 2020b) as our backbone network as the residual atten-
tion learning mechanism can extract deeper geometric fea-
tures of different levels from the original irregular 3D point
clouds. Further ablation studies will validate this choice for
improving our performance.

Feature Embedding. Given the initial extracting feature
g € R from the input point clouds P, we first duplicate
the initial feature N times and arrange them in a row-wise
matrix G € RY*5. To obtain the 1st embedding, we con-
catenate G with the input Cartesian coordinates P, which
denotes as H; € RN*(S+4)_ Then, we apply a four-layer
MLPs to H; to generate the intermediate 2D embeddings
T;.

For the 2nd embeddings, we apply the operation in a sim-



ilar fashion. We concatenate T; with G to form Hs and
feed Hs into another four-layer MLPs to generate the nex-
t embeddings T'5. For the i-th embeddings, we repeat this
process in the same way.

Putting it all together, we can express the feature embed-
ding procedure as:

Ty = o(Wi(Hy)) = o(W1 ([P, G])) (1
Tiy1 = c(Wi(Hit1)) = o(Wi([Ts, G)) 2

where i = 1, ..., n, [+, -] denotes channel-wise concatenation
between two feature matrices, W; is the weights of the two
MLPs and o is the sigmoid activation function to normalize
the embedded 2D points in the range of [0, 1]. We observe
that three times embeddings have led to satisfactory results.
We should note that each 2D points t; = (u;, v;) in T has
a one-to-one correspondence with the point cloud in P. To
prevent the embedded 2D points from being over-clustered,
we design a separation loss to extend the point distribution
by imposing penalties on the clustered points until they are
separated by the distance threshold D. Mathematically, the
separation loss for each point t; can be formulated as:

0

_ if di>D
Lre(t) = { —log(d; — D +1)

otherwise 3)
where d; = min||t; — tj||2 for t; € T\ {t;}. In our imple-
mentation we set the distance threshold D = ﬁ

For the feature embedding generation, we define the total
loss function as:

1 N
Lie =+ Zlfe(ti) )

By optimizing L., the feature embedding generation part
can encode the 3D points into the 2D tensor image square.
However, the embedded 2D points are not distributed on the
grid positions of the regular image lattice. In other words,
the embedded 2D lattice does not conform to the European
structure, which cannot be processed for the subsequent C-
NNs. Therefore, we design the feature normalization module
to produce the regular dense color image.

Feature Normalization Module

Consuming the irregular 2D embeddings T as input, the fea-
ture normalization module parameterizes the 2D tensor im-
age onto a regular dense color image F and the generated
regular dense image can be directly reshaped into a point
cloud Q € RM*4 'where M = m x m. As shown in Fig. 3,
we design two strategies in the normalization process, which
denoted as ball query normalization and bilinear interpola-
tion normalization.

Ball Query Normalization. In order to maintain the con-
sistency of the dimensions and reduce the loss of infor-
mation, we construct a uniform canonical 2D square V &
RM>2 in a unit grid domain. Each row of matrix V corre-
sponds to a certain 2D point v; within the m x m grid struc-
ture. For each v;, we search its nearest neighbour within a
fixed radius r to form a local ball with n points in T. Based
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Figure 3: The feature normalization module parameterizes
the 2D tensor image onto a regular dense color image using
ball query normalization(the upper) and bilinear interpola-
tion normalization(the bottom).

on the exact matching between P and T, we can deduce a
2D array Q:

ai=» 0;-pj, where ;= ®)

Jj=1

Then, we reshape the M x 4 array Q into a m X m X 4
regular dense color image. By increasing the resolution m
of the regular dense color image sufficiently, the final regular
dense color image is a lossless representation which includes
all points of the input point clouds.

Bilinear Interpolation Normalization. In order to fur-
ther realize an end-to-end optimization, we design an an-
nealing strategy to generate the regular dense color image in
a differentiable manner.

For each grid point v;, we select its K nearest neighbours
from T, denoted as {t;}~_,, and their corresponding 3D
points in P can be denoted as {p, }7_, . Then, we determine
series of weights using the distances between v; and its K
neighbours:

exp(—dix/|w])
S exp(—dij/|wl)

where d;;, = ||vi — tx||2, and w is a temperature coefficient.
The i-th entry of Q can be formulated as

K
ai =Y hir Pk
k=1

During annealing, we can approximate the nearest neighbor-
hood point and the distribution of weights gradually con-
verges to the Kronecker delta function when w approaches
0. This can be easily achieved by optimizing the parameter
term:

hip =

(6)

)

vl

Ln== ®)
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Figure 4: Examples of generated regular dense color images. The first row of each pair is the corresponding point cloud scene,
and the second row is the generated regular dense color image.

By averaging the results of the ball query and bilinear in-
terpolation normalization, we get the final regular dense col-
or image. Fig. 4 shows some generated visual regular dense
color image examples by our structured color image encod-
ing module after sufficient iterations. We can observe that
the regular dense color image can accurately represent the
original point clouds while maintaining satisfactory smooth-
ness.

Enforced Detection Network
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Figure 5: Architecture of the enforced detection network.
The feature maps of each level are fused by other features
at different scales and the whole network conducts repeated
multi-scale fusion to make the final prediction.

After obtaining the structured dense color image with Eu-
clidean structure from the raw point clouds, we aim at pre-
dicting the box sizes, orientations, locations and categories
based on the 2D CNN detection network. To estimate more
refined proposals and learn more specific local features, we
propose to conduct repeated multi-scale fusion with differ-
ent levels such that each of the feature maps in different
scales receives information from other parallel scales over
and over, leading to rich multi-scale representations.

As shown in Fig. 5, the enforced detection network takes
the generated structured color image as input and transforms
into the backbone network to make the initial feature map-
s generation. Apart from the original scale at level-0 with
series of convolution blocks as SSD (Liu et al. 2016), we
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conduct three downsampling operations on the different fea-
ture maps from level-1 to level-3. For the feature maps at the
same level, they are serialized and processed by the 1 x 1 and
3 x 3 convolution blocks. At the same time, each feature
map from each level completes two sampling operations,
the first one is to down-sampling by % stride convolution to
the low-scale, and the second is to up-sampling to the high-
scale. The results of each up-sampling and down-sampling
are added to the feature map of the corresponding level. As
a result, the features for the parallel subnetworks of a later
layer consists of the feature information from the previous
previous layer, the higher scale and the lower one.

For the feature maps in these different levels, default box-
es of different scales are constructed. Then they are detected
and classified separately, and a number of default boxes that
initially meet the conditions are generated. Finally, we com-
bine the default boxes obtained from different feature maps,
and use the NMS with box merging and scoring (Shi and
Rajkumar 2020) to suppress some overlapping or incorrect
boxes to generate the final boxes set.

Experiments
Datasets and Evaluation Metrics

KITTI dataset. We first evaluate our method on the widely
used KITTI 3D object detection benchmark (Geiger, Lenz,
and Urtasun 2012). It includes 7481 training samples and
7518 test samples with three categories: car, pedestrian and
cyclist. For each category, results are evaluated based on
three levels of difficulty: easy, moderate and hard. Further-
more, we divide the training data into a training set (3712
images and point clouds) and a validation set (3769 images
and point clouds) at a ratio of about 1: 1. For evaluation, the
average precision (AP) metric is to compare with different
methods and the 3D IoU of car, cyclist, and pedestrian are
0.7, 0.5, and 0.5 respectively.

Waymo Open dataset. The Waymo Open Dataset (Sun
et al. 2020) is by far the largest public data set for au-
tonomous driving. There are a total of 1,000 sequences in
the dataset. The training set contains 798 sequences with ap-
proximately 158000 point cloud samples, and the validation



Modality Method 3Dcar 8Deyeist BEVear

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard
MV3D 71.09 62.35 55.12 - - - 86.02 76.90 68.49
F-Pointnet ~ 81.20 70.39 62.19 71.96 56.77 50.39 88.70 84.00 75.33
Projection ~ AVOD-FPN  81.94 71.88 66.38  64.00 52.18 46.61 88.53 83.79 77.90
MMF 86.81 76.75 68.41 - - - 89.49 87.47 79.10
Voxelnet 77.47 65.11 5773 61.22 48.36 4437 89.35 79.26 77.39
Voxel-based SECQND 83.13 73.66 66.20 70.51 53.85 46.90 88.07 79.37 77.95
PointPillars ~ 79.05 74.99 68.30  75.78 59.07 5292 88.35 86.10 79.83

3DSSD 88.36 79.57 74.55 - - - - - -
Ours SCIR-Net  87.53 80.62 76.00 76.32 60.89 5448 92.11 90.04 85.63

Table 1: Performance comparison on KITTI 3D object detection and bird’s eye view(BEV) for car and cyclists. The evaluation

metrics is the average precision (AP) on the official test set.

set contains 202 sequences with approximately 40000 point
cloud samples. Different from KITTI, which only provides
annotations in the camera’s FOV, Waymo Open Dataset pro-
vides annotations for objects throughout 360 degree. We
adopt the official released evaluation tools for evaluating,
where the mean average precision (mAP) and the mean av-
erage precision weighted by heading (mAPH) are used for
evaluation. The rotated IoU threshold is set as 0.7 for vehi-
cle detection.

nuScenes dataset. The nuScenes dataset (Caesar et al.
2020) is a recently released and more challenging dataset.
It contains 1000 scenes, each of which is 20 seconds long,
and is fully annotated with 3D bounding boxes of 23 cate-
gories and 8 attributes. The number of annotations and im-
ages are 7 times and 100 times that of the KITTI dataset,
respectively. It provides us with 1.4 million 3D objects in 10
different categories, as well as their properties and speeds.
There are about 40k points in each frame, and in order to
predict the speed and attributes, all previous methods com-
bine the key frames and the points in the last 0.5s frame
to get about 400000 points. The evaluation metric on this
dataset is called nuScences detection score (NDS), which is
a weighted sum between mean average precision (mAP), the
mean average errors of location (mATE), size (mASE), ori-
entation (mAOE)), attribute (mAAE) and velocity (mAVE).

Network Architecture. In our implementation, we em-
ploy SRDL (He et al. 2020b) as our feature extractor for the
raw input point clouds. The initial extracted global feature
for an input point cloud is a 512-dimensional feature vec-
tor, i.e., g € R?'2, In feature embedding, each embedding is
processed by MLP layers and we employ three times in to-
tal. The user-specified resolution m is set as 128. For the an-
nealing regularization term in bilinear interpolation normal-
ization, we initiated the learnable temperature coefficient as
w = 1076, Besides, the number of nearest neighbors select-
ed for each grid point is set as K = 5. In practice, we dis-
cover that the bilinear interpolation normalization module is
not sensitive to the value of K due to the effective annealing
process. For car(vehicles), the number of the point clouds NV
is set as 1024. For cyclist and pedestrians, NV is set as 512.
In the enforced detection network, we apply VGG16 (Si-
monyan and Zisserman 2014) as our backbone, replace fc6
and fc7 with convolutional layers and subsample parameters
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from fc6 and fc7. The IoU threshold of NMS is set to 0.6.
Training. The whole network is end-to-end optimized
with the Adam optimizer (Kingma and Ba 2014) on GTX
1080 GPU. The loss weights are a = 2, = 0.5, v = 1 and
& = 1.5. For KITTI dataset, the network is trained for 120
epoches with batchsize 16, learning rate 0.015. For Way-
mo Open dataset, the network is trained for 50 epoches with
batchsize 32, learning rate 0.01. For nuScenes dataset, the
network is trained for 60 epoches with batchsize 32.

Main Results
Method  Modality 3Dcar
Easy Moderate Hard
MV3D 71.29 62.68 56.56
Projection F-Pointnet ~ 83.76 70.92 63.65
AVOD-FPN 8441 74.44 68.65
F-ConvNet  89.02 78.80 77.09
Voxelnet 81.97 65.46 62.85
Voxel-based SECOND  87.43 76.48 69.10
SA-SSD 90.15 79.91 78.78
3DSSD 89.71 79.45 78.67
Ours SCIR-Net  92.47 85.07 82.74

Table 2: Performance comparison of 3D object detection and
bird’s eye view(BEV) detection on KITTI val set for car
class.

Results on KITTI Dataset. We evaluate our method on
the 3D detection and the bird’s eye view detection bench-
mark of the KITTI test server. As shown in Table 1, we
compare our results with state-of-the-art RGB+LIDAR and
LIDAR only methods for both tasks on car and cyclist. By
only taking the point clouds as input, our proposed approach
outperforms the most effective RGB+LIDAR methods MM-
F(Liang et al. 2019) for car category on three difficulty lev-
els. By applying 2D CNN, our SCIR-Net can also achieve
decent results with the Voxel-based methods, which utilize
3D CNN, especially on moderate and hard difficulties. Be-
sides, the AP comparison for 3D object detection of our
SCIR-Net on KITTI val set is presented in Table 2. Our pro-
posed SCIR-Net achieves the best performance on all diffi-



culty levels on the val set for car class.

Difficulty Method Overall 0-30m  30-50m
PointPillars 56.62 81.01 51.75

LEVEL_1 MVF 62.93 86.30 60.02
(3D mAP) PV-RCNN 70.30 91.92 69.21
SCIR-Net(ours)  75.63 92.55 72.42

LEVEL_2 PV-RCNN 65.36 91.58 65.13
(3D mAP) SCIR-Net(ours)  66.73 91.84 67.22
PointPillars 75.57 92.10 74.06

LEVEL_1 MVF 80.40 93.59 79.21
(BEV mAP) PV-RCNN 82.96 97.35 82.99
SCIR-Net(ours) 88.45 97.71 88.41

LEVEL_2 PV-RCNN 77.45 94.64 80.39
(BEV mAP) SCIR-Net(ours) 81.65 96.88 81.34

Table 3: Performance comparison on the Waymo Open
Dataset with 202 validation sequences for the vehicle de-
tection.

mAP mATE mASE mAOE NDS

PointPillars 29.5 0.54 0.29 0.45 449
3DSSD 42.6 0.39 0.29 0.44 56.4
SCIR-Net(ours) 52.35 0.32 0.23 0.41 58.7

Table 4: NDS comparison on nuScenes dataset.

Results on Waymo Open dataset. We evaluate our
SCIR-Net on both LEVEL_1 and LEVEL_2 objects for 3D
and BEV mAP. As shown in Table 3, our method outper-
forms previous methods with remarkable margins on al-
I ranges of both LEVEL_1 and LEVEL_2. Specifically, with
the commonly used LEVEL_1 objects detection, our method
achieves new performance with 75.63% and 88.45% on 3D
and BEV mAP evaluation metric. The whole experimental
results on the large-scale Waymo Open dataset further val-
idate that our proposed structured dense color images are
able to effectively encode more accurate information for im-
proving the 3D detection performance and demonstrate the
generalization ability of our proposed network.

Results on nuScenes dataset. We show the comparison
of our SCIR-Net with state-of-the-arts on mAP and NDS in
Table 4. Our method acquires better performance compared
to others by a large margin. Not only on mAP, it also outper-
forms those methods on AP of each class. The results show
that our model can handle different objects even for huge
scenes and large scale differences.

Ablation Studies

As shown in Table 5, we illustrate the importance of dif-
ferent components of our network by removing each part
and keeping all the others unchanged. Table 6 details how
each proposed module influences the accuracy and efficien-
cy of our SCIR-Net. The results are evaluated with AP for
car class.

(a) To extract the initial global feature, we experiment
with different extractor for processing the raw point cloud-
s. SRDL (He et al. 2020b) performs best which indicates
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fe fn EDN Easy Moderate Hard
- - — 85.64 81.59 77.48
x v v 87.77 83.32 79.25
v X v 88.46 83.71 80.69
v oV X 89.63 83.55 81.32
v oV v 92.47 85.07 82.74

Table 5: Performance of removing different part of our net-
work. x denotes removing and v* denotes retaining. EDN is
the enforced detection network.

3DAP.or (%)
Easy Moderate = Hard
Pointnet++  83.45 72.36 70.02
FE DGCNN  86.27 77.54 76.29
SAWNet  90.13 81.65 79.44
SRDL 92.47 85.07 82.74
1 82.57 76.29 7343
No 2 88.91 80.74 78.19
’ 3 92.47 85.07 82.74
4 89.63 83.22 80.32
0 77.54 70.82 68.56
1 84.65 76.62 72.34
level 2 90.38 82.92 79.52
3 92.47 85.07 82.74

Table 6: Performance of proposed method with different de-
sign choice on KITTI val set. 'FE’, ’No.” and ’level’ stand-
s for feature extractor, number of feature embeddings and
number of levels in enforced detection network.

the local and global feature extractors to capture richer deep
features from point clouds are most suitable for our module.

(b) In feature embedding, we conduct three times embed-
dings to generate the 2D tensor image by successively in-
creasing the number of embeddings. Finally, we find that in
our model, three times is the number which can achieve the
highest accuracy.

(c) In enforced detection network, we start from level-
0 and increase the down-sampled level one by one to the
previous level. Final implementation demonstrates that three
levels have been able to fuse enough feature information to
generate accurate detection boxes.

Conclusion

In this paper, we have proposed a new framework SCIR-Net
to perform accurate 3D object detection from point clouds.
We introduce a novel encoding method to convert the irreg-
ular 3D point clouds into structured 2D dense color image.
This newly proposed point representation makes it feasible
to apply 2D CNNss to fulfill the final box prediction. In the
enforced detection network, a repeated multi-scale fusion
scheme with different levels is designed to learn scale-aware
features to boost the performance of our model. All of above
delicate designs enable our SCIR-Net to show decent accu-
racy on the public KITTI dataset, Waymo Open dataset and
more challenging nuScenes dataset.
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