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Abstract
N-ary relational knowledge base (KBs) embedding aims to
map binary and beyond-binary facts into low-dimensional
vector space simultaneously. Existing approaches typically
decompose n-ary relational facts into subtuples, and they gen-
erally model n-ary relational KBs in Euclidean space. How-
ever, n-ary relational facts are semantically and structurally
intact; decomposition undermines the semantical and struc-
tural integrity. Moreover, compared to the binary relational
KBs, n-ary ones are characterized by more abundant and
complicated hierarchy structures, which could not be well
expressed in Euclidean space. To address the issues, we pro-
pose a gyro-polygon embedding framework to realize n-ary
fact integrity keeping and hierarchy capturing, termed Poly-
gonE. Specifically, n-ary relational facts are modeled as gyro-
polygons in the hyperbolic space, where we denote entities
in facts as vertexes of gyro-polygons and relations as entity
translocation operations. Importantly, we design a fact plau-
sibility measuring strategy based on the vertex-gyrocentroid
geodesic to optimize the relation-adjusted gyro-polygon. Ex-
perimental results demonstrate that PolygonE shows SOTA
performance on all benchmark datasets and generalizes well
on binary data. Finally, we also visualize the embedding to
help comprehend PolygonE’s awareness of hierarchies.

Introduction
N-ary relational KBs comprise both binary and beyond-
binary relational facts, among which binary relational facts
in the form of (h,r,t) have been extensively explored in the
past decade. In contrast, the beyond-binary ones are less
studied (Ji et al. 2021). The latest research finds that beyond-
binary relational facts contain abundant semantics and are
closer to human-intelligent compared to their traditional bi-
nary counterparts (Wang et al. 2017). For the excellent po-
tential that n-ary relational KBs showcase in NLP down-
stream tasks like textual entailment, question answering,
and natural language understanding (Hogan et al. 2021), re-
cently, lots of efforts (Rouces, de Melo, and Hose 2015;
Zhang et al. 2018; Liu, Yao, and Li 2021) are poured into
representing binary and beyond-binary facts simultaneously.
And Existing works have seen gratifying progress in embed-
ding n-ary relational KBs.
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However, the best-performing models (Guan et al. 2020;
Rosso, Yang, and Cudré-Mauroux 2020; Liu, Yao, and Li
2021) generally break down n-ary relational facts into sub-
tuples (triples, pairs, quintuples, etc.). Such decomposi-
tion leads to both structural and semantical information
loss (Rosso, Yang, and Cudré-Mauroux 2020). It makes
sense to keep an n-ary relational fact intact. Still, some mod-
els (Liu, Yao, and Li 2020) work for single-arity data only,
suffering from inflexibility.

Moreover, we note that n-ary relational KBs are charac-
terized by more abundant and complicated hierarchy struc-
tures with more entities involved in a single fact. Figure 1(a)
shows several Wikipedia-exampled n-ary relational facts
centered around the movie director James Cameron. We hi-
erarchize the involved entities, from H1 to H3, the number
of involved entities grows exponentially, which is in good
coherence with the superlinear length growth (Ungar 2009)
in a hyperbolic poincaré ball (as intuitively shown in Fig-
ure 1(b)). And it’s noted that the higher the arity, the more
pronounced the exponential characteristic. Existing works
generally overlook such hierarchical information, which, if
well captured, can benefit n-ary relational KB embeddings.

With the above consideration, we model n-ary relational
facts as gyro-polygons (i.e., polygons in hyperbolic space),
and propose a model termed as PolygonE where the poly-
gon structure ensures fact integrity by representing fact se-
mantic in the gyro-centroid, and it also ensures the model’s
applicability to arbitrary arity data. While hyperbolic space
guarantees hierarchy capturing. Primarily, we represent en-
tities in a fact as vertexes of a gyro-polygon and rela-
tions as entity translocations. Significantly, we optimize the
relation-adjusted gyro-polygon by minimizing the vertex-
gyrocentroid geodesic. Experimental results illustrate that
PolygonE achieves excellent results on WikiPeople, JF17K,
and FB-AUTO. And visualization of embeddings shows that
PolygonE captures the hierarchies within n-ary relational
KBs. To summarize, our contribution can be summarized as
follows:
• We propose PolygonE where we model n-ary relational

facts as gyro-polygons to ensure structural and semanti-
cal integrity, adjustability to arbitrary arity fact, and hier-
archy capturing. To our knowledge, gyro-polygon struc-
ture has not been studied in knowledge base embedding.

• We design a fact plausibility scoring strategy based on
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(a) N-ary Relational Facts Instances (b) A hyperbolic poincaré ball

Figure 1: (a) are some Wikipedia-exampled n-ary relational facts centered around the film director James Cameron. To hierar-
chize the involved entities, H1 are the top-level entity James Cameron, H2 lists some representative works of James Cameron
(Fact 1), H3 are entities denoting the starring (Fact2) or awarding (Fact3 and Fact4) information of the films in H2. From
H1 to H3, the number of involved entities grows exponentially, which is in good coherence with the superlinear growth in a
poincaré ball (as shown in (b)). And the higher the arity, the more pronounced the exponential characteristic. Inspired by this,
we leverage hyperbolic poincaré ball to capture the exponential feature within n-ary KBs.

the vertex-gyrocentroid geodesic to evaluate whether an
entity is compatible with the whole fact, which is lever-
aged to optimize the relation-adjusted gyro-polygons.

• Extensive experiments show that our PolygonE realizes
excellent performance. Comparison with binary models
demonstrates its generalizability, and visualization shows
PolygonE’s awareness of hierarchy.

Related Work
Binary Relational Knowledge Base Embedding Cate-
gorized by scoring function, binary KB embedding meth-
ods mainly fall into 3 families. Translational models (Bor-
des et al. 2013; Wang et al. 2014; Lin et al. 2015) typi-
cally map entities onto a latent vector space via translation
operations, and calculate fact validity via specific distance
metrics. Deep models like ConvE (Dettmers et al. 2018),
R-GCN (Schlichtkrull et al. 2018), CompGCN (Vashishth
et al. 2020) demonstrate excellent expressiveness, but suf-
fer from relatively high complexity brought by the tremen-
dous parameters. Typical bilinear models (Nickel, Tresp,
and Kriegel 2011; Yang et al. 2015; Trouillon et al. 2016)
treat entity as vector and relation as matrix. Zhang et al.
(2019); Nguyen et al. (2020) represent entities as quater-
nions, while Balazevic, Allen, and Hospedales (2019b) in-
troduce tucker decomposition, Kazemi and Poole (2018) in-
troduce inverse relation embedding in SimplE. In hyper-
bolic space, Murp (Balazevic, Allen, and Hospedales 2019a)
largely surpass its Euclidean counterparts, ATTH (Chami
et al. 2020) explores logic patterns, Wang et al. (2021b);
Chen et al. (2021) utilize hyperbolic neural networks. These
hyperbolic models are based on strong binary scoring func-
tions, incapacitates them from representing n-ary facts.

N-ary Relational Knowledge Base Embedding Pioneer-
ing works like m-TransH (Wen et al. 2016) and RAE (Zhang

et al. 2018) directly extend TransH (Lin et al. 2015) from
binary to n-ary case, inheriting the weak expressiveness of
TransH. Multilinear model HypE (Fatemi et al. 2020) em-
beds entities with positional convolutional filters and evalu-
ates facts with multilinear product. While GETD (Liu, Yao,
and Li 2020) intakes tensor ring decomposition to tucker,
but it works on single-arity fact only. S2S (Di, Yao, and
Chen 2021) then extends it to mixed arity facts. Deep mod-
els NaLP (Guan et al. 2019) treats N-ary relational facts
as role-entity pairs and measures facts relying on FCNs,
tNalp+ (Guan et al. 2021) further considers type informa-
tion. NeuInfer (Guan et al. 2020) and HINGE (Rosso, Yang,
and Cudré-Mauroux 2020) tear apart n-ary facts into a pri-
mary triple and several entity-role pairs, of which the com-
patibility is modeled by CNN network. StarE (Galkin et al.
2020) mainly focuses on triples. These best-performing deep
models bring drastic performance boast, but they generally
introduce decomposition, undermining fact structure and se-
mantic. While RAM (Liu, Yao, and Li 2021) seeks to model
the semantic roles in n-ary relations and GRAN Wang et al.
2021a treats n-ary relational KBs as a heterogeneous graph.
Nevertheless, none of them notices the hierarchical anatomy
within n-ary relational KBs.

Preliminaries
N-ary Relational KBs N-ary facts are ubiquitous, but the
representation is not unified. The 3 widely used ones are sin-
gle relation {r, e1, e2, ..., ei, ..., en} (Wen et al. 2016), role-
value pairs {e1, r1, ..., ei, ri, ..., en, rn} (Guan et al. 2019),
and triple+pairs {h, r, t...., ri, ei, ..., rn−2, en−2} (Rosso,
Yang, and Cudré-Mauroux 2020). We follow the third one.
Formally, given an n-ary relational KB B with a set of enti-
ties E and a set of relations R, we represent a fact F in B
in the form of F : (eh, r, et, ...ri, ei, ..., rn−2, en−2), where
r ∈ R, ei ∈ E , and n ≥ 2. n indicates the number of enti-

4309



ties participating in the tuple F . In case n = 2, F is a binary
fact. If n > 2, F is a beyond-binary fact, then (eh, r, et) is
taken as primary triple.

Poincaré Ball Before diving into gyro-polygon, we first
briefly introduce Poincaré ball and some algebraic op-
erations in hyperbolic space. A d-dimensional Poincaré
ball (Hd, gH) is a real and smooth manifold Hd :={
x ∈ Rd : ∥x∥2 < 1

}
accompanied with a Riemannian

metric gH, where gH = (λx)
2
gE and λx = 2

(1−∥x∥2)
.

gE = Id and ∥x∥2 are the Euclidean identity metric tensor
and the Euclidean norm, respectively, while λx is the con-
formal factor between the Euclidean metric and the hyper-
bolic metric. Basic algebraic operations like addition and
multiplication in Euclidean space cannot be directly ap-
plied in hyperbolic space, gyrovector spaces (Ungar 2009;
Ganea, Bécigneul, and Hofmann 2018) provide correspond-
ing equivalence of these algebraic operations in hyperbolic
space. For a Poincaré ball of radius c, some basic opera-
tions are summarized in Appendix A. we list Möbius addi-
tion (⊕c), exponential map (expcx), logarithmic map (logcx),
matrix-vector product (⊗c), and Möbius half in Appendix A.
Moreover, the distance between two points x,y in a poincaré
ball is given by:

dH(x,y) =
2√
c
tanh−1

(√
c ∥−x⊕cy∥

)
, (1)

The inverse hyperbolic tangent function (tanh−1) brings the
exponential length growth in a Poincaré ball. Without loss
of generality, radius c is set to 1 in practice.

Gyro-Polygon Polygon in Euclidean space is defined by a
finite number of straight-line segments connected to form a
closed polygonal chain. In full analogy, gyro-polygon is the
equivalence of polygon in gyrovector space where gyro-line
segments replace straight-line segments (Ungar 2009). Fig-
ure 2 are two examples of gyro-polygons. As shown in Fig-
ure 2(a), ABC is a gyro-trigon. In Figure 2(b), ABCD is
a gyro-tetragon. Since n-ary relational KBs contain both bi-
nary and beyond binary facts, we utilize gyro-line segments
to represent 2-ary facts, while gyro-polygons are employed
to represent those beyond-binary facts. Similar to Euclidean
space, the gyro-midpoint of x,y is given by:

M(x,y) = x⊕c (
1

2
⊗c (−x⊕c y), (2)

while the gyro-centroid of the gyro-polygon with e1, · · · , en
being the vertexes is given by (Ungar 2009):

O(e1, ...en) =
1

2
⊗c

n∑
i=1

2γ2
ei
ei

n∑
i=1

(2γ2
ei

− 1)
, (3)

where γx =
√

1
1−∥x∥2 is the gamma factor in relativity the-

ory. With gamma factor, Möbius half is represented as:
1

2
⊗c x =

γx
1 + γx

x. (4)

Hence by (3) and (4), the lantent vector for gyro-centroid
can be obtained.

(a) Gyro-trigon (b) Gyro-tetragon

Figure 2: Instances of gyro-polygons. Left is a gyro-trigon,
right is a gyro-tetragon. In both (a) and (b), O represents the
gyrocentroid, M is the gyro-midpoint.

PolygonE
To retain the structure and semantic integrity, and capture hi-
erarchy, we propose PolygonE where 1) n-ary facts are mod-
eled as gyro-polygons in hyperbolic poincaré ball, 2) and a
vertex-gyrocentroid based plausibility function is designed
to optimize the gyro-polygon.

Modeling Facts as Gyro-Polygons
To keep facts intact, we model facts as whole gyro-polygons
and leverage the gyro-centroid to represent the seman-
tic. In polygonE, entities in an n-ary relational fact F :
(eh, r, et, ...ri, ei, ..., rn−2, en−2) are first initialized as ran-
dom d-dimensional vectors eh, et, ... ei, ...en−2 in a gyro-
polygon. As illustrated in Figure 3, the vertexes of the
gyro-polygon ABCDE stand for the stochastically ini-
tialized latent vector of the entities in the 5-ary fact F :
(A, r,B, r1, C, r2, D, r3, E). Meanwhile, relations are in-
terpreted as the operation of moving an entity (translation
or rotation). For the sake of clarity, we only visualize one
relation in Figure 3. As depicted, entity A is transferred to
Apos by a relation r. Similarly, other entities in the facts
are translocated by their corresponding relations in the same
manner. Translation and rotation are the two essential phys-
ical movements, inspired by this, we translate or rotate each
entity to obtain more accurate gyro-polygon or gyro-line
segment. The intuition behind this is to get relevant enti-
ties closer to form smaller gyro-polygon or shorter gyro-line
segment. From pre-experiment, in terms of the primary triple
(eh, r, et), head entity eh is rotated by a relation-specific
matrix R ∈ Rd×d, while tail entity et is translated by a rela-
tion r ∈ Rd, i.e.,

e
′

h = R⊗c eh, e
′

t = et ⊕c r. (5)
The rest entities ei, (i ∈ [0, n− 2)) are translocated by rela-
tion vector ri:

e
′

i = ei ⊕c ri. (6)
After being translocated by corresponding relations, entities
lean to get closer to form a smaller gyro-polygon. Ideally,
when all entities move to somewhere identical, the relation-
adjusted gyro-polygon would degenerate to a point. In this
way, the intrinsic semantic is contained in the gyrocentroid.

4310



Figure 3: Illustration of PolygonE. Take a 5-ary facts as an
instance, the 5 entities in the fact are first randomly initial-
ized as A,B,C,D,E. After being translocated by correspond-
ing relation, entities tend to get closer to each other to form a
smaller gyro-polygon as shown as AposB

′
C

′
D

′
E

′
. Ideally,

when all entities move to somewhere identical, the gyro-
polygon would degenerate to a point.

Vertex-Gyrocentroid Plausibility Measuring
To optimize the relation-adjusted gyro-polygon, the perime-
ter or area of the gyro-polygon are seemingly good met-
rics. But considering that 1) there isn’t an explicit integration
method that can directly give the area of an arbitrary gyro-
polygon; 2) perimeter involves multiple times gyro-line seg-
ment length calculation, bringing both fact decomposition
and high computation expense. We quit the two metrics.

Instead, we utilize the vertex-gyrocentroid geodesic
length as the metric to evaluate whether an entity is com-
patible with the whole fact, which is different from exist-
ing decomposition-based models (Guan et al. 2020; Rosso,
Yang, and Cudré-Mauroux 2020) that only consider the
compatibility between an entity and the primary triple be-
fore a final aggregation.

Specifically, as shown in Figure 3, the shorter distance
from vertex Apos to the gyrocentroid O than that from
Aneg to O suggests that the vertex-gyrocentroid met-
ric can separate positive samples from negative ones. In
fact, this metric avoids direct area or perimeter calcula-
tion, but can reflect area or perimeter. A shorter vertex-
gyrocentroid geodesic length always means a smaller area
and shorter perimeter. Significantly, after entities in F :
(eh, r, et, ...ri, ei, ..., rn−2, en−2) are translocated by corre-
sponding relations following equation (5) and (6), according
to equation (3), the gyrocentroid O is given by

O =
1

2
⊗c

2γ2
e
′
h

e
′

h + 2γ2
e
′
t

e
′
+

n−2∑
i=1

2γ2
e
′
i

e
′

i

(2γ2
e
′
h

− 1) + (2γ2
e
′
t

− 1) +
n−2∑
i=1

(2γ2
e
′
i

− 1)

.

(7)

Following the Möbius half in equation (4), the gyrocentroid
O can be obtained. To this end, we can draw the geodesic
length from a translocated entity e

′
(e

′

h, e
′

t or any e
′

i) to the
gyrocentroid O by the distance function in equation (1), i.e.,

dG =
2√
c
tanh−1

(√
c
∥∥∥−O⊕ce

′
∥∥∥) , (8)

based on which, we give the global plausibility score as:

SGlobal(F) = −d2G + bh + bt +
n−2∑
i=1

bi, (9)

where b is bias coming along with entity movement. From
equation (9), we can learn that a smaller dG brings a higher
global plausibility score. In binary cases, gyro-polygon de-
generates to gyro-line segment, while gyrocentroid degener-
ates to gyromidpoint, which we term as M, can be obtained
following equation (2), i.e.,

M = M(e
′

h, e
′

t) = e
′

h ⊕c (
1

2
⊗c (−e

′

h ⊕c e
′

t). (10)

The geodesic length between M and a translocated entity e
′

(e
′

h or e
′

t), is obtained by:

dB =
2√
c
tanh−1

(√
c
∥∥∥−M⊕ce

′
∥∥∥) , (11)

from which a plausibility function for binary relational facts
can be obtained by:

SBinary(F) = −d2B + bh + bt. (12)

Since the primary triple also plays significant roles in
beyond-binary fact (Rosso, Yang, and Cudré-Mauroux
2020), we further incorporate the binary score SBinary into
SGlobal. The final score for fact F are defined as below:

S(F) = αSBinary(F) + βSGlobal(F). (13)

In case F is a binary relational fact, β is set to 0. When
β = 0 and α = 4, PolygonE can generalize to Murp. When
the gyro-vector operations turn to their Euclidean analogs,
PolygonE can generalize to TransE or RotatE.

Training and Optimization
As a widely used method for data augmentation (Kazemi
and Poole 2018), reciprocal relations (e

′

t, r
−1, e

′

h) are intro-
duced for each binary relational fact and each primary triple
in beyond-binary fact. And for each fact in training set, nneg

negative samples are generated by corrupting an entity do-
main with randomly selected entities from E . Cross-entropy
loss function are applied to optimize the model, which is
given by:

L = − 1

N

N∑
i=1

(yi log (pi) + (1− yi) log (1− pi)), (14)

where N denotes the total number of facts in training set, yi
is a binary indicator suggesting whether a fact is genuine or
not. pi = sigmoid(S(F)) is the predicted probability for
fact F . Parameters in PolygonE are learned via Riemannian
stochastic gradient descent (RSGD Bonnabel (2013)).
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Dataset |E| Arity |R| #Train #Valid #Test #2-ary #3-ary #4-ary #≥ 5-ary

WikiPeople 47,765 2-9 707 305,725 38,223 38,281 337,914 25,820 15,188 3,307
JF17K 28,645 2-6 322 61,104 15,275 24,568 54,627 34,544 9,509 2,267
FB-AUTO 3,388 2,4,5 8 6,778 2,225 2,180 3,786 0 125 7,212
WN18 40,943 2 18 141,442 5,000 5,000 141,442 - - -
FB15K 14,951 2 1,345 484,142 50,000 59,071 141,442 - - -

Table 1: Statistics of Datasets

Experiments
Experimental Setup
Dataset Knowledge base completion (KBC) experiments
are conducted on JF17K (Wen et al. 2016), WikiPeople
(Guan et al. 2019), and FB-AUTO (Fatemi et al. 2020). Bi-
nary relational facts in the three datasets, WN18,and FB15K
are tested in binary relational KBC experiments. Details of
the three datasets are given in Table 1.
Metric Mean Reciprocal Rank (MRR) and Hit@k (k =
1, 3, 10) are utilized for evaluation following the filter set-
ting (Bordes et al. 2013). All entity domains are evaluated.
Baseline We compare PolygonE with several strongest mod-
els, including RAE, NaLP, tNaLP+, HypE , HINGE, NeuIn-
fer, S2S, and RAM. While StarE focuses on triple only,
thus it’s excluded in comparison. In binary case, we com-
pare with several best-performing models, including TransE,
SimplE, RotatE, and Tucker and RAM. Hyperbolic models
Murp and ATTH are also compared.
Hyper-parameters Embedding dimensions are set to 50 for
a fair comparison with RAM. Other hyper-parameters are
chosen from grid search. Concretely, learning rate η is se-
lected from {10, 15, 30, 50, 100}, batch size nbatch are cho-
sen from {64, 128, 256}, number of negative samples nneg

are selected from {25, 50, 100}. α and β in equation (13)
are integers sampled from {1, 2, 3, 4, 5, 6}. Experiments are
implemented on a single NVIDIA RTX 3080 GPU.

N-ary Relational KBC Results
Overall results of n-ary relational KBC on benchmark
datasets are reported in Table 2. It is noted that Poly-
gonE achieves significant performance boost on all the
three benchmark datasets in comparison with all the base-
lines. PolygonE surpasses S2S, RAM, and other models
that treat entities as equally important, that’s because Poly-
gonE takes into consideration the validity of the primary
triple in the scoring function. It is also observed that NeuIn-
fer, NaLP, tNaLP+, and HINGE show relatively weak ex-
pressiveness. Beyond-binary relational facts in these models
are neither decomposed into role-entity pairs or quadruples,
which could undermine structural and semantical informa-
tion within facts. Our proposed PolygonE keeps n-ary fact
intact by leveraging the gyro-centroid to represent the intrin-
sic semantic without introducing decomposition, therefore
showing casing better expressive power.

With regard to the break-down performance on single-
arity data, the same observation can be obtained from Figure
4. Conclusion also can be drawn that PolygonE consistently

outperforms the baseline models. It’s noticed that RAM lags
far behind NeuInfer on WikiPeople concerning 3-ary and 4-
ary relational facts, which Liu, Yao, and Li (2021) attribute
to the unbalance of the dataset (Binary relational facts are in
the overwhelming majority). However, our model surpasses
NeuInfer on 3-ary data and achieves competitive results on
4-ary data, showcasing strong robustness.

Effectiveness of Vertex-Gyrocentroid Metric
To validate the vertex-gyrocentroid-based metric’s effective-
ness and explain PolygonE’s advantage in modeling high-
arity data, we design two variants of PolygonE, i.e., perime-
terE and PolygonE(Eu). PerimeterE optimizes the gyro-
polygon with perimeter, PolygonE(Eu) replaces all gyro-
vector operations with corresponding Euclidean equiva-
lences. As the results shown in Table 3, PerimeterE is largely
inferior to PolygonE. One plausible explanation can be that
only one entity is corrupted during training, but lengths of
all edges are summed. As illustrated in Figure 3, only the
two edges connected to the corrupted entity domain are in-
fluenced by the negative entity; the rest n − 2 edges stay
the same. With the addition of the rest n − 2 edges, the gap
between positive and negative sample keep the same, i.e.,

P (AnegB
′
C

′
D

′
E

′
)− P (AposB

′
C

′
D

′
E

′
)

= (AnegE
′
+AnegB

′
)− (AposE

′
+AposB

′
),

(15)

where P (·) is a function calculating perimeter. However, the
divergence could be offset by the rest n − 2 edges. Poly-
gonE calculates the vertex-gyrocentroid geodesic, avoiding
such offset brought by redundant edges. Moreover, to get
the perimeter requires multiple times calculation of gyro-
line segment, which also brings about decomposition.

In Table 3, it’s obtained that both PolygonE and Poly-
gonE(Eu) outperform the best baseline RAM. To see the
breakdown performance in Table 4, PolygonE(Eu) doesn’t
show an obvious advantage to RAM in 4-ary and 5-ary
data. We believe it can surpass RAM in terms of the over-
all MRR mainly due to its good performance on binary and
3-ary data. PolygonE brings more performance gain to RAM
than PolygonE(Eu), which can be explained by PolygonE’s
expressiveness for high-arity data. We note that PolygonE
and PolygonE(Eu) are on par with each other in terms of
binary and 3-ary facts, but PolygonE significantly outper-
forms PolygonE(Eu) in 4-ary and 5-ary facts. This result tal-
lies with our illustration in Figure 1 where we show that the
higher the arity, the more pronounced the exponential char-
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WikiPeople JF17K FB-AUTO
Model MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1

RAE .253 .463 .343 .118 .396 .561 .433 .312 .703 .854 .764 .614
NaLP .338 .466 .364 .272 .386 .517 .413 .386 .672 .774 .712 .611

tNaLP+ .339 .473 .369 .269 .449 .598 .484 .370 - - - -
HINGE .333 .477 .361 .259 .473 .618 .490 .397 .678 .774 .772 .630
NeuInfe .350 .467 .381 .282 .451 .604 .484 .373 .737 .805 .755 .700
HyPE .292 .502 .375 .162 .507 .669 .550 .421 .804 .856 .824 .774
S2S .372 .533 .439 .277 .528 .690 .570 .457 - - - -
RAM .380 .539 .445 .279 .539 .690 .573 .463 .830 .876 .851 .803

PolygonE .431 .568 .454 .334 .565 .708 .601 .485 .858 .921 .871 .826

Table 2: N-ary relational KBC results on benchmark datasets. Best results are in bold and second best are underlined. Results of
HypE on FB-AUTO and results of NeuInfer, S2S, and tNaLP+ are copies from original papers. Others are copied from RAM.

(a) WikiPeople (b) JF17K (c) FB-AUTO

Figure 4: Breakdown Performance of MRR on single-arity data.

JF17K FB-AUTO
Model MRR Hit@10 Hit@1 MRR Hit@10 Hit@1

RAM .539 .690 .463 .830 .876 .803
PerimeterE .498 .674 .401 .824 .884 .792
PolygonE(Eu) .548 .695 .474 .832 .896 .807
PolygonE .565 .708 .485 .858 .921 .826

Table 3: PolygonE and its variants’ performance on JF17K
and FB-AUTO.

acteristic. PolygonE is built in hyperbolic space, therefore
demonstrating a better understanding of high-arity data.

Binary Relational KBC Results
To show PolygonE’s generalizability to binary relational
data, we compare it with several representative binary mod-
els. Results of binary relational KBC are listed in Table 5.
PolygonE brings apparent performance gain on WikiPeople
and JF17K. In terms of FB-AUTO, it also vastly outperforms
all baselines except for a marginal improvement compared
with RAM. Concerning WN18 and FB15K, PolygonE sees
competitive performance compared with the strongest base-
lines. And PolygonE can outperform its hyperbolic binary
counterparts Murp and ATTH as well. The above analysis
indicates that PolygonE generalizes well on binary data, the
gyro-line segment can effectively model binary facts.

JF17K FB-AUTO
2ary 3ary 4ary 5ary 2ary 4ary 5ary

Model 42.4% 43.7% 10.5% 3.4% 35.1% 2.0% 62.9%

RAM .337 .579 .722 .801 .557 .400 .903
PolygonE(Eu) .362 .617 .735 .722 .562 .404 .901
PolygonE .364 .612 .787 .812 .565 .540 .925

Table 4: Breakdown MRR of PolygonE and PolygonE(Eu)
on JF17K and FB-AUTO.

Awareness of Hierarchical Anatomy
To help comprehend hierarchy anatomy, the embeddings of
entities in WikiPeople are shown in Figure 5. From Fig-
ure 5(a), it can be intuitively observed that in PolygonE,
more entities are prone to lying near the boundary of the
ball, which is in good coherence with the exponential length
growth in Poincaré ball (Figure 1(b)). While in RAM, en-
tities distribute more randomly, and no obvious geometry
can be learned. The sparsity in the center and density in
the boundary suggest PolygonE well captures the hierarchy
structure.

To further show the hierarchies, we calculate the dis-
tance to origin and accumulate degrees for all entities in FB-
AUTO. Comparison between PolygonE and RAM is shown
in Figure 6 where a scatter means an entity. Generally, only
a tiny number of entities lie at the top hierarchical level
in a hierarchy structure. And these high-hierarchical enti-
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WikiPeople JF17K FB-AUTO WN18 FB15K
Model MRR Hit@10 Hit@1 MRR Hit@10 Hit@1 MRR Hit@10 Hit@1 MRR Hit@10 Hit@1 MRR Hit@10 Hit@1

TransE 0.312 0.574 0.146 0.276 0.495 0.167 0.313 0.562 0.132 0.495 0.943 0.113 0.463 0.749 0.297
SimplE 0.326 0.449 0.249 0.333 0.512 0.244 0.510 0.621 0.450 0.942 0.947 0.939 0.727 0.838 0.660
RotatE 0.422 0.519 0.285 0.304 0.496 0.244 0.470 0.577 0.408 0.949 0.959 0.944 0.797 0.884 0.746
Tucker 0.429 0.538 0.365 0.333 0.512 0.244 0.510 0.621 0.450 0.953 0.958 0.949 0.795 0.892 0.741
RAM 0.408 0.568 0.303 0.337 0.523 0.246 0.557 0.649 0.507 0.947 0.952 0.943 0.803 0.882 0.756
GETD - - - - - - - - - 0.948 0.954 0.944 0.824 0.888 0.787

S2S - - - - - - - - - 0.955 0.963 0.949 0.850 0.910 0.820

Murp 0.451 0.577 0.388 0.348 0.550 0.261 0.546 0.644 0.490 0.945 0.952 0.940 0.803 0.885 0.720
ATTH 0.366 0.557 0.259 0.327 0.528 0.244 0.562 0.651 0.519 0.942 0.953 0.935 0.806 0.883 0.722

PolygonE 0.462 0.596 0.401 0.364 0.578 0.279 0.565 0.678 0.512 0.953 0.956 0.949 0.824 0.891 0.783

Table 5: Binary relational KBC results on benchmark datasets. Best results are in boldface and second best are underlined.

(a) Embedding of PolygonE (b) Embedding of RAM

Figure 5: Embeddings of WikiPeople learned by PolygonE
and RAM. T-SNE is employed to realize dimension reduc-
tion. Then entities are visualized according to the distance
to the origin. We mark some clusters in (a).

ties are involved in more facts, i.e., they are few in number,
high in degree. PolygonE can capture such hierarchy; it is
obtained from Figure 6(a), high-degree entities are fewer
in number and tend to lie closer to the root, while low-
degree entities tend to be far from the origin. In Figure 6(b),
entity-origin length is positively correlated with entity de-
gree, which means RAM does not well learn the hierarchical
structure.

Translocation MRR Hit@10 Hit@3 Hit@1

T(all) .791 .901 .831 .731
R(all) .721 .850 .792 .685
T(tail) R(rest) .741 .860 .804 .712
T(head) R(rest) .752 .873 .812 .735
R(tail) T(rest) .837 .905 .850 .796
R(head) T(rest) .858 .921 .871 .826

Table 6: Influence of translocations on FB-AUTO, T means
translation, R stands for rotation.

(a) PolygonE (b) RAM

Figure 6: Scatter plot of entity-origin distance v.s. node de-
grees on FB-AUTO. The x-coordinate stands for entity de-
gree, y-coordinate denotes the distance between entity em-
bedding and the origin. The curve shows the tendency that
distance to origin changes with degrees.

Influence of Different Translocations
Translation and rotation are the two basic movements in the
physical world, in this part, we explore the influence of dif-
ferent translation and rotation operations on each entity on
FB-AUTO dataset. As shown in Table 6, rotating the head
and translating the rest performs the best. PolygonE adopts
this setting in experiments. Translating all entities, rotat-
ing all entities, or other settings will all bring performance
degradation. Rotating all brings the most significant perfor-
mance drop. We study other parameters in the Appendix.

Conclusion
In this paper, we propose an n-ary relational KB embedding
method named PolygonE, where we embed n-ary facts as
gyro-polygons in hyperbolic Poincaré ball. Gyro-polygon
helps retain structural and semantical information. More-
over, we devise the vertex-gyrocentoid optimization goal,
which is effective for fact plausibility measuring. Our ap-
proach significantly surpasses current SOTA methods, gen-
eralizes well to binary data, and captures the hierarchy
anatomy. We will explicitly explore entity type in future
work.
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Operation Symbol Formalization Description

Möbius addition ⊕c x⊕cy =
(1+2c⟨x,y⟩+c∥y∥2)x+(1−c∥x∥2)y

1+2c(x,y)+c2∥x∥2∥y∥2 Vector Addition

Exponential map expcx(·) expcx(v) = x⊕c

(
tanh

(√
c
λc
x∥v∥
2

)
v√
c∥v∥

)
Map from Euclidean to Hyperbilic space

Logarithmic map logcx(·) log
c
x(v) =

2√
cλc

x
tanh−1 (

√
c ∥−x⊕cv∥) −x⊕cv

∥−x⊕cv∥ Map from Hyperbolic to Euclidean space
Matrix-vector product ⊗c M⊗c x = expc0 (Mlogc0(x)) Matrix-vector multiplication
Möbius half ⊗c

1
2 ⊗c x = γx

1+γx
x, γx =

√
1

1−∥x∥2 γx: gamma factor in relativity theory

Gyromidpoint M M(x,y) = x⊕c (
1
2 ⊗c (−x⊕c y) midpoint for gyro-line segment

Gyrocentroid O O(e1, ...en) =
1
2 ⊗c

n∑
i=1

2γ2
ei

ei

n∑
i=1

(2γ2
ei

−1)
Centroid of gyro-polygon

Distance function dH(·, ·) dH(x,y) = 2√
c
tanh−1 (

√
c ∥−x⊕cy∥) . Distance between gyro-vectors

Table 7: Summary of Operations in gyro-vector space

Appendices
A Gyrovector Space
Algebraic operations such as addition and scalar product
which are straightforward in the Euclidean space cannot
be directly applied in hyperbolic space. While Gyrovector
spaces allow for the formalization of these operations in hy-
perbolic space. We list some basic operations in the gyro-
vector space in Table 7.

B Hyperparameter Study
This section will study the influence brought by dimensions
and α, β in the scoring function. The optimal settings are
reported in Table 8.

WikiPeople JF17K FB-AUTO

batch size 128 128 128

learning rate 30 30 10

negative sample 100 100 50

dimension 50 50 50

α 4 4 4

β 4 4 6

Table 8: Optimal Hyperparameters.

Dimensions
As we can obtain from Figure 7, increasing dimension from
20 to 50 or to 100 brings noticeable performance gain. Poly-
gonE can achieve good performance with very low dimen-
sion, it surpasses the baseline RAM with 20 dims. To com-
promise between time and performance, the dimension is set
to 100 in main context. Actually, with 200 dims or 500 dims,
PolygonE may achieve even better results than reported.

α, β in Scoring Function
When β = 0, given 2 points e1,e2, and the gyro-midpoint
O. Murp outputs score as s1 = −d2(e1, e2)+ b1+ b2. while
s2 = −α ∗ d2(e1, O) + b1 + b2 is the score for PolygonE.

Figure 7: MRR of PolygonE with different dimensions.

d(e1, e2) = 2 ∗ d(e1, O), α = 4 → s1 = s2, then PolygonE
generalizes to Murp.

For fair comparison with Murp, α is set to 4 in exper-
iments. Under this setting, we explore PolyonE’s perfor-
mance on the three n-ary relational KBs. According to re-
sults in Figure 8, the best α for FB-AUTO, JF17K, and
WikiPeople is set to 4, 4, 6, respectively.

Figure 8: MRR of PolygonE with different β in scoring func-
tion.
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Fox, E. B.; and Garnett, R., eds., Advances in Neural Infor-
mation Processing Systems 32: Annual Conference on Neu-
ral Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, 4465–4475.
Balazevic, I.; Allen, C.; and Hospedales, T. M. 2019b.
TuckER: Tensor Factorization for Knowledge Graph Com-
pletion. In Inui, K.; Jiang, J.; Ng, V.; and Wan, X., eds.,
Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7,
2019, 5184–5193. Association for Computational Linguis-
tics.
Bonnabel, S. 2013. Stochastic Gradient Descent on Rieman-
nian Manifolds. IEEE Trans. Autom. Control., 58(9): 2217–
2229.
Bordes, A.; Usunier, N.; Garcı́a-Durán, A.; Weston, J.; and
Yakhnenko, O. 2013. Translating Embeddings for Mod-
eling Multi-relational Data. In Burges, C. J. C.; Bottou,
L.; Ghahramani, Z.; and Weinberger, K. Q., eds., Advances
in Neural Information Processing Systems 26: 27th An-
nual Conference on Neural Information Processing Systems
2013. Proceedings of a meeting held December 5-8, 2013,
Lake Tahoe, Nevada, United States, 2787–2795.
Chami, I.; Wolf, A.; Juan, D.; Sala, F.; Ravi, S.; and Ré,
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