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Abstract

The increasing demand for analyzing the insights in sports
has stimulated a line of productive studies from a variety
of perspectives, e.g., health state monitoring, outcome pre-
diction. In this paper, we focus on objectively judging what
and where to return strokes, which is still unexplored in turn-
based sports. By formulating stroke forecasting as a sequence
prediction task, existing works can tackle the problem but
fail to model information based on the characteristics of bad-
minton. To address these limitations, we propose a novel
Position-aware Fusion of Rally Progress and Player Styles
framework (ShuttleNet) that incorporates rally progress and
information of the players by two modified encoder-decoder
extractors. Moreover, we design a fusion network to integrate
rally contexts and contexts of the players by conditioning
on information dependency and different positions. Extensive
experiments on the badminton dataset demonstrate that Shut-
tleNet significantly outperforms the state-of-the-art methods
and also empirically validates the feasibility of each compo-
nent in ShuttleNet. On top of that, we provide an analysis
scenario for the stroke forecasting problem.

Introduction
In recent years, sports analytics has drawn significant atten-
tion due to the enormous market, which focuses on collect-
ing sports data and implementing advanced techniques for
mining useful information from the data. In Major League
Baseball, for example, teams started to shift to defense by
moving infielders to specific positions according to the hit-
ting pattern of opposing batters, and these types of shifts
dramatically rose from 4.62% in 2012 to 21.17% in 2019
(Bechtold 2019). Furthermore, there are about 100 sports-
related organizations currently investigating new technolo-
gies for delivering interesting stream contents to fans in 2021
(Morrison 2021). Generally, the target audience of sports an-
alytics is composed of both coaching-oriented groups and
community-oriented groups. Coaching-oriented groups aim
at improving player performance, e.g., tactic investigation
(Decroos, Haaren, and Davis 2018; Beal et al. 2020) and
action valuing (Jayanth et al. 2018; Sicilia, Pelechrinis, and
Goldsberry 2019), while community-oriented groups try to
boost the spectator engagement, e.g., highlight prediction
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Figure 1: An example of stroke forecasting in a singles rally.
The black line in the middle is the net. Each stroke consists
of the order in the rally and its shot type. Blue lines with shot
types represent possible choices in the next stroke.

(Decroos et al. 2017), play retrieval (Wang et al. 2019) and
autonomous broadcast production (Giancola and Ghanem
2021). There are also sports analytics applications that are
both for coaching-oriented groups and community-oriented
groups (Decroos et al. 2019; Merhej et al. 2021), e.g., player
performance analysis and providing the relation between
performance and market value of the player.

In this paper, we focus on turn-based sports and use bad-
minton as the demonstration example. The related works on
badminton mainly focus on quantifying stroke performance
(Sharma et al. 2021; Wang et al. 2021) or detecting stroke-
related information from videos (Chu and Situmeang 2017;
Hsu et al. 2019; Wang et al. 2020; Yoshikawa et al. 2021).
However, there is another application that has not yet been
addressed by previous works: to forecast the future strokes
including shot types and locations given the past stroke se-
quences. Predicting future strokes based on the past strokes
is essential and beneficial for coaching the player and de-
termining the strategies since it simulates the tactics of the
players, which can be used to investigate what shot types are
often returned and where the strokes are returned to by the
player for decision-making. In addition, stroke forecasting
can also benefit the community for storytelling by assessing
returning probability distributions during the matches.

Figure 1 illustrates an example of stroke forecasting. Sup-
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pose the past five strokes with corresponding shot types and
destination locations are known, and the fifth stroke is a
smash from the left side, the player on the right side has
several choices to return such as defensively returning to the
middle of the left side, or returning close to the net to mobi-
lize the opponent from the back court to front court. To the
best of our knowledge, there is no existing method that can
predict the next strokes.

To tackle this challenging problem, stroke forecasting can
be formulated as the sequence prediction task. One possi-
ble solution is to use statistical methods like n-gram mod-
els in natural language processing to calculate the probabil-
ities of occurrence for predicting next future strokes. Nev-
ertheless, the probabilities of occurrence in n-gram models
become sparse when increasing window size. To solve the
issue, the sequence-to-sequence model (Sutskever, Vinyals,
and Le 2014) can be applied to encode the input sequence
and then decode the output sequence with encoding vec-
tors. However, there are three challenges for applying the
sequence-to-sequence model directly for stroke forecasting.
1) Mixed sequence. One of the characteristics of badminton
is that there are two players returning strokes alternatively to
form a rally. Therefore, stroke forecasting is a turn-based se-
quence prediction task rather than a conventional sequence
prediction task with the same target in the sequence. 2) Mul-
tiple outputs. Differing from general sequence tasks that
only predict one output, the stroke forecasting task has mul-
tiple outputs (shot types and area coordinates) at each times-
tamp. 3) Player dependence. Returning strokes are based on
the overall styles of the players and the current situation in
the rally. Furthermore, the importance of the overall styles of
the players and the current situation in the rally also varies
when encountering different players and different positions.
It is challenging to disentangle the player features directly
from the rally sequences.

To address the aforementioned challenges, we propose a
novel Position-aware Fusion of Rally Progress and Player
Styles framework (ShuttleNet), which consists of two
encoder-decoder extractors for modeling rally progress and
retrieving player styles from turn-based sequence and a fu-
sion network to take into account the dependencies between
rally progress and player styles at each stroke. To predict
multiple outputs at each step, two task-specific predictors
are adopted in the end for predicting shot types and area
coordinates. Specifically, the first encoder-decoder extrac-
tor, named Transformer-Based Rally Extractor (TRE), is de-
signed to capture the progress of the rally. Moreover, the sec-
ond encoder-decoder extractor, named Transformer-Based
Player Extractor (TPE), separates the information of each
player to generate the context of each player. Finally, a
Position-aware Gated Fusion Network (PGFN) is adopted
to fuse rally contexts and contexts of two players by incor-
porating information weights and position weights. In this
manner, we can learn different contributions at each stroke
to predict future shot types and area coordinates. In sum-
mary, our contributions are as follows:
• A novel framework named Position-aware Fusion of

Rally Progress and Player Styles (ShuttleNet) is pro-
posed to predict future strokes by giving past observed

strokes. To the best of our knowledge, this is the first
work for stroke forecasting in sports, which can be ap-
plied to turn-based sports analytics.

• The proposed framework first generates rally contexts
and contexts of players by leveraging two encoder-
decoder extractors and then fuses these contexts based on
information weights and position weights. Furthermore,
we introduce an attention mechanism to better integrate
the information of shot types and locations.

• Extensive experiments and ablation studies on a real-
world badminton dataset are conducted to demonstrate
the effectiveness of the proposed ShuttleNet framework.

Related Works
Sport Data Analytics
The area of artificial intelligence for sports contains five
technical issues (Decroos et al. 2020): representation (De-
croos, Haaren, and Davis 2018), interpretability (Silver and
Huffman 2021), decision making (Sicilia, Pelechrinis, and
Goldsberry 2019), understanding behavior (Weeratunga,
Dharmaratne, and How 2017), and experimental evaluation
(Liu and Schulte 2018). For instance, Decroos, Haaren, and
Davis (2018) proposed SPADL to address the data science
challenges as unique definitions of different vendors by uni-
fying soccer event-based data, which reduces the burden on
redesigning data formats when serving different objectives.
Mimic learning is another approach used in sports that builds
a model with both accurate predictions and interpretable in-
sights (Sun et al. 2020). Action valuing designs objective
metrics by valuing scoring and defensive performance of
each action, which can be used as evaluation tools for under-
standing the behavior of players (Decroos et al. 2019; Mer-
hej et al. 2021). Outcome prediction utilizes machine learn-
ing approaches and has been applied to cricket, soccer, and
badminton, to help coaches to select the optimal players to
win the game (Jayanth et al. 2018; Robberechts, Haaren, and
Davis 2021; Sharma et al. 2021). Pappalardo et al. (2019)
proposed PlayeRank by combining multi-dimensional and
role-aware evaluations from a massive soccer database, in
order to provide evaluations and rankings of soccer players.
Our focus, in contrast, addresses stroke forecasting in bad-
minton, which is also critically related to the above issues.
Predicting future strokes can facilitate decision-making and
provide behavioral understanding of returning strokes within
probability distributions. Moreover, ground truth labels can
also be objectively obtained when labeling instead of cus-
tomizing evaluation methods.

Sequence Prediction
The sequence-to-sequence model (Sutskever, Vinyals, and
Le 2014) was proposed to deal with machine translation by
encoding input with a Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber 1997) and then using another
LSTM as a decoder to generate predictions. The encoder-
decoder architecture has been widely adopted for various
sequence prediction tasks such as pedestrian trajectory pre-
diction (Mohajerin and Rohani 2019) and citation fore-
casting (Liu et al. 2017). Xu, Yang, and Du (2020) de-
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Figure 2: Illustration of the ShuttleNet framework. The Transformer-based rally extractor (TRE) in the yellow part generates
rally contexts. The Transformer-based player extractor (TPE) in green shares the same set of parameters and generates contexts
of both players. The contexts of the rally and both players are fed into the position-aware gated fusion network (PGFN) to
weigh the contributions based on information and position for predicting future strokes.

signed CF-LSTM with a feature-cascaded module to ro-
bustly capture dynamic information of trajectories from pre-
vious steps without other pedestrians’ information. More re-
cently, Transformer has become popular for sequence pre-
diction. Giuliari et al. (2020), for example, adopted Trans-
former Networks to predict future trajectory. DMA-Nets in-
troduced two temporal attention mechanisms to model local
temporal information and global temporal information for
citation forecasting (Ji et al. 2021), which is the most simi-
lar setting (multiple outputs) to stroke forecasting. However,
these previous works focus on the same target in a sequence,
and thus cannot be directly applied to turn-based sequences.

Problem Formulation
Let R = {Sr, Pr}|R|r=1 denote historical rallies of
badminton matches, where the r-th rally is composed
of a stroke sequence with type-area pairs Sr =
(〈s1, a1〉, · · · , 〈s|Sr|, a|Sr|〉) and a player sequence Pr =
(p1, · · · , p|Sr|). At the i-th stroke, si represents the shot
type, ai = 〈xi, yi〉 ∈ R2 are the coordinates of the shut-
tle destinations, and pi is the player who hits the shuttle.
We denote Player A as the served player and Player B as
the other for each rally in this paper. For instance, given a
singles rally between Player A and Player B, Pr may be-
come (A,B, · · · , A,B). We formulate the problem of stroke
forecasting as follows. For each rally, given the observed τ
strokes (〈si, ai〉)τi=1 with players (pi)τi=1, the goal is to pre-
dict the future strokes including shot types and area coordi-
nates for the next n steps, i.e., (〈si, ai〉)τ+ni=τ+1.

Methodology
Figure 2 illustrates the overview of the proposed framework.
The input of the encoder side is the sequence of observed τ

strokes Se = (〈si, ai〉)τi=1 and players P e = (pi)
τ
i=1, and

the decoder auto-regressively predicts the sequence of the
future n strokes Sd = (〈si, ai〉)τ+ni=τ+1 by taking encoding
contexts and target players P d = (pi)

τ+n
i=τ+1. Each stroke

encompassing a shot type and area coordinates is embed-
ded with player information from the embedding layer as a
personal stroke. Each encoder-decoder extractor is based on
the Transformer (Vaswani et al. 2017). We replace the first
multi-head self-attention layer in both the encoder and de-
coder with the proposed type-area-attention layer to better
integrate the information of shot types and area. Moreover,
contexts of the rally are generated by the Transformer-based
rally extractor, and contexts of the two players are obtained
by the Transformer-based player extractor. Outputs of these
contexts are fused by the position-aware gated fusion net-
work using information weights and position weights for
predicting future shot types and area coordinates.

Embedding Layer
Each stroke contains a shot type and area coordinates with
the player who hits the stroke. The output of embedding
layer at i-th stroke ei is calculated as follows:

ei = 〈esi , eai 〉 = 〈s′i + p′i, a
′
i + p′i〉, (1)

where s′i is a type embedding projected from si using Ms ∈
RNs×d, where Ns is the number of shot types, p′i is a player
embedding projected from pi using Mp ∈ RNp×d, where
Np is the number of players, and a′i is an area embedding
projected from ai using Ma ∈ R2×d with the ReLU activa-
tion function. In order to make use of the player in shot types
and area, player embeddings are added to both type embed-
dings and area embeddings. The parameters of embedding
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layers in the encoder side and the decoder side are shared
similar to (Press and Wolf 2017) for size reduction.

Transformer-Based Rally Extractor (TRE)
TRE reflects the current situation in the rally, which is a criti-
cal condition for returning strokes. For example, if the player
defensively returns a stroke like a lob to the back court,
this indicates the player may become passive and the other
player can seize the chance to return an aggressive stroke.

To capture the progress in the rally, we first add positional
encodings (Vaswani et al. 2017) to the embeddings by
EL = (〈ẽs1, ẽa1〉, 〈ẽs2, ẽa2〉, · · · )

= (〈es1 + pe1, e
a
1 + pe1〉, 〈es2 + pe2, e

a
2 + pe2〉, · · · ),

(2)
where pei is the position encoding for i-th stroke.

Afterward, we adopt a modified Transformer framework
by replacing the first multi-head self-attention layer in the
encoder and decoder with the proposed multi-head type-
area-attention layer. Specifically, we takeEL as the inputs of
the Transformer-based rally extractor and generate the con-
texts of the rally HL = (hLτ+1, h

L
τ+2, · · · ), where the i-th

stroke hLi ∈ Rd is a d dimension vector.

Type-area-attention layer Since there are two compo-
nents (shot type and area) of each stroke, the self-attention
mechanism can only be applied in an early-fusion manner
(e.g., concatenation), which forces to attend shot types and
area at the same position. However, it is expected that play-
ing strategies should be considered from different aspects in
badminton matches. For example, returning a current shot
type may be considered the last shot type to decide the
proper choice, while where to return may be considered the
previous location returned from the same player because the
opponent is weak on a specific side.

Therefore, inspired by disentangled attention (He et al.
2021), we propose an attention mechanism to separately
characterize the importance of shot types and area and then
aggregate corresponding scores as final attention scores.
Here, we illustrate the computation of attention contexts on
the encoder side, and the decoder follows a similar pro-
cess. Given the input sequence with positional type embed-
dings Es = (ẽs1, · · · , ẽsτ ) and positional area embeddings
Ea = (ẽa1 , · · · , ẽaτ ), the formula of the multi-head type-area
attention is derived as follows:

Qs = EsWQs ,Ks = EsWKs , Vs = EsWVs , (3)
Qa = EaWQa ,Ka = EaWKa , Va = EaWVa , (4)
A = QaK

T
a +QaK

T
s +QsK

T
a +QsK

T
s , (5)

TAA(Es, Ea) = softmax(
A√
4d

)(Va + Vs), (6)

MultiHead(Es, Ea) = Concat(TAA1, · · · , TAAh)W o,
(7)

where TAA denotes the function of type-area attention with
single head, Qs, Ks, and Vs are queries, keys and values of
Es projected using projection matrices WQs ,WKs ,WVs ∈
Rd×d, respectively. Qa, Ka, and Va are queries, keys and
values of Ea projected using matrices WQa ,WKa ,WVa ∈
Rd×d, respectively. h is the number of heads, and W o ∈
Rhd×d is a learnable matrix.

Transformer-Based Player Extractor (TPE)
In addition to the information of the rally, returning strokes
also needs to consider the overall style of each player. That
is, the player should minimize their opponents’ advantages
and maximize their own. To this end, we designed an extrac-
tor to split the sequence into two subsequences based on the
player and then to produce the contexts of each player.

First, the outputs of the embedding layer are alternatively
split based on the players as follows:

EA = (e1, e3, · · · ), EB = (e2, e4, · · · ), (8)

where EA is the sequence of Player A, EB is the sequence
of Player B. TPE adopts two encoder-decoder architectures
to capture the two sequences split by players, both of which
are the same as the architecture in TRE. Specifically,EA and
EB are fed into TPE to generate corresponding contexts.

It is worth noting that the positional encodings are added
separately to the two subsequences to specify the order of
each player rather than using the entire sequence in Equa-
tion 2. Further, the parameters of the two architectures are
shared not only to reduce the number of parameters but also
to prevent player information from falling on the same side,
which would cause imbalance.

Since the lengths of two subsequences are shorter than the
original sequence, sequence alignment is applied to align
two subsequences with the same length of rally sequence
after generating two contexts of the players. The alignment
principle is to add a copy stroke to the next stroke, which be-
comes the opponent to return. The formula of the sequence
alignment is derived as follows:

HA = (hAτ+1, h
A
τ+1, h

A
τ+2, h

A
τ+2, · · · ), (9)

HB = (0, hBτ+1, h
B
τ+1, h

B
τ+2, h

B
τ+2, · · · ), (10)

where the i-th stroke hAi ∈ Rd denotes the output from the
decoder for Player A, and the i-th stroke hBi ∈ Rd is the
output from the other decoder for Player B. Zero is padded
at the first stroke ofHB since the first stroke is always served
by Player A.

Position-Aware Gated Fusion Network (PGFN)
When returning strokes, players consider various important
information about both players and current rally. Moreover,
the importance of these types of information at each stroke
will vary. To take the above consideration into the design,
we propose a position-aware gated fusion network based on
gated multi-modal units (Ovalle et al. 2020) to fuse rally
contexts and contexts of two players.

Given the contexts of Player A and Player B (hAi and hBi ),
and the rally hLi at i-th stroke, the PGFN first projects to
hidden vectors of fusing contexts:

h̃Ai = δt(h
A
i W

A), h̃Bi = δt(h
B
i W

B), h̃Li = δt(h
L
i W

L),
(11)

where δt(·) is the tanh activation function, and
WA,WB ,WL ∈ Rd×d are learnable matrices. The
information weights to represent the importance of the three
contexts are calculated as follows:

αA = δs([h̃
A
i , h̃

B
i , h̃

L
i ]W̃

A), (12)
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αB = δs([h̃
A
i , h̃

B
i , h̃

L
i ]W̃

B), (13)

αL = δs([h̃
A
i , h̃

B
i , h̃

L
i ]W̃

L), (14)

where δs(·) is the sigmoid activation function, [·, ·, ·] denotes
the concatenation operator, and W̃A, W̃B , W̃L ∈ R3d×d are
learnable matrices.

Finally, the i-th fusing output is calculated as:

zi = δs(β
A
i ⊗αA⊗ h̃Ai +βBi ⊗αB⊗ h̃Bi +βLi ⊗αL⊗ h̃Li ),

(15)
where ⊗ denotes the element-wise multiplication, and
βAi , β

B
i , β

L
i ∈ Rd are learnable position weights to learn

how much to pass at each stroke.

Prediction Layer
To predict the shot type and area coordinates at i-th stroke,
we first assume area coordinates follow a bi-variate Gaus-
sian distribution since there exists uncertainty and potential
multi-modality when returning strokes. For instance, when
the opponent returns the stroke to the back court, the player
can return to the non-handedness side to force the opponent
to return the shuttle with back hand, or to return to near
the net to make the opponent return defensively. Moreover,
the predictive distribution enables the ability to investigate
the locations of frequent and less frequent stroke returns to
better understand the players’ behaviors. Specifically, area
coordinates are sampled from a bi-variate Gaussian distri-
bution with the mean µi = 〈µx, µy〉i, standard deviation
σi = 〈σx, σy〉i, and correlation coefficient ρi.

Hard parameter sharing is adopted to share the same fu-
sion outputs to predict multiple outputs at each step. Two
linear layers are used to predict the parameterized distribu-
tion 〈µi+1, σi+1, ρi+1〉 and the shot type ŝi+1 at (i + 1)-th
stroke by combining the target player embedding pi+1 and
the fusing output zi, respectively:

ŝi+1 = softmax((zi + pi+1)W
s), (16)

〈µi+1, σi+1, ρi+1〉 = (zi + pi+1)W
a, (17)

where W s ∈ Rd×Ns and W a ∈ Rd×5 are two learnable
matrices. The predicted area coordinates are sampled by
〈x̂i+1, ŷi+1〉 ∼ N (µi+1, σi+1, ρi+1). The reason for adding
the target player embedding to the fused contexts is to spec-
ify the player who returns the stroke.

We minimize cross-entropy loss Ltype to learn the predic-
tion of shot types:

Ltype = −
|R|∑
r=1

|Sr|∑
i=τ+1

silog(ŝi). (18)

We also minimize the negative log-likelihood loss Larea to
learn the prediction of area coordinates:

Larea = −
|R|∑
r=1

|Sr|∑
i=τ+1

log(P(xi, yi|µi, σi, ρi)). (19)

The total loss L of our model is jointly trained with:

L = Ltype + Larea. (20)

Results and Analysis
Experimental Setup
Dataset. Since there is no public dataset of stroke event
records, we collected real-world badminton singles matches
from public sources1 and asked domain experts to manually
label them. The dataset contains 75 high-ranking matches
from 2018 to 2021 played by 31 players from men’s singles
and women’s singles. After filtering flaw data, e.g., replay
highlights, the dataset contains 180 sets, 4,325 rallies, and
43,191 strokes. The average length of the rallies is 10. There
are 10 shot types defined by domain experts for distinguish-
ing the strokes: net shot, clear, push/rush, smash, defensive
shot, drive, lob, drop, short service, and long service.

For the stroke forecasting task, each stroke contains the
id of the rally, the order of the stroke in a rally, the player
returning the stroke, the shot type, and the area coordinates
where the shuttle was returned to. We split the first 80% of
the rallies of each match as training data to ensure that the
model is equipped with past information of all players, and
the remaining rallies were used for testing. We conducted
5-fold cross-validation for tuning hyper-parameters.
Implementation Details. The dimension of embeddings
and contexts (d) was set to 32, the number of heads (h) used
in multi-head attention and multi-head type-area attention
was set to 2, and the inner dimension of feed-forward layer
was 64. The max sequence length of a rally was 35. n is
the rally length and varies in different rallies. The layer nor-
malization (Ba, Kiros, and Hinton 2016) and dropout tech-
nique with a dropout rate of 0.1 were used for each sub-
layer, similar to (Vaswani et al. 2017). The batch size was
32 and the number of training epochs was 150 using Adam
(Kingma and Ba 2015) as the optimizer. The learning rate
was set to 0.0001. In the training phase, we adopted zero
padding for sequences and used ground truth labels as the
next step input in decoding. In the evaluation phase, we
replaced the ground truth labels with sampled shot types
and area coordinates. Following the procedures for evalu-
ating stochastic models in previous work, e.g., (Amirian,
Hayet, and Pettré 2019), we generated K = 10 sam-
ples and took the closest one to ground truth for evalua-
tion. The input of area coordinates was normalized with the
mean as zero. All the training and evaluation phases were
conducted on a machine with Intel i7-8700 3.2GHz CPU,
Nvidia GTX 2070 8GB GPU, and 32GB RAM. The average
results from 10 runs are reported. Our code is available at
https://github.com/wywyWang/ShuttleNet.

Baselines Due to the lack of baselines for the proposed
tasks, we compared the proposed model with the baselines
of various sequence prediction tasks:
• Seq2Seq (Sutskever, Vinyals, and Le 2014) consists of

one LSTM as encoder and another LSTM as decoder.
• CF-LSTM (Xu, Yang, and Du 2020) is a feature-

cascaded LSTM integrating feature information from
previous two steps as dynamic interactions.

• TF (Giuliari et al. 2020) utilizes the Transformer Net-
work to learn contexts of pedestrians.
1http://bwf.tv
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τ = 8 τ = 4 τ = 2

Model CE MSE MAE CE MSE MAE CE MSE MAE

Seq2Seq 2.5219 1.7124 1.4181 2.5192 1.6674 1.4049 2.5325 1.6799 1.4022
CF-LSTM 2.3138 2.1805 1.6844 2.2623 2.2510 1.7055 2.3860 2.0392 1.5966

TF 2.3843 1.6427 1.4017 2.3881 1.6665 1.4033 2.4243 1.6317 1.3773
dNRI 2.4391 2.4056 1.7903 2.4475 2.3518 1.7822 2.4441 2.3025 1.7587

DMA-Nets 2.4949 1.8419 1.4791 2.6710 1.8463 1.4876 2.5975 1.8436 1.4813

ShuttleNetP2R (Ours) 2.3892 1.6665 1.4052 2.3112 1.6296 1.3838 2.3963 1.5900 1.3693
ShuttleNetR2P (Ours) 2.3528 1.6864 1.4233 2.3874 1.6278 1.3882 2.3923 1.5627 1.3563

ShuttleNet (Ours) 1.9802 1.5856 1.3802 1.9916 1.5867 1.3896 2.0755 1.5761 1.3747

Table 1: Quantitative results of our models and baselines on different given lengths. The best result in each column is in boldface
while the second best result is underlined.

• dNRI (Graber and Schwing 2020) models dynamic entity
relations for neural relational inference.

• DMA-Nets (Ji et al. 2021) constructs a hierarchical dy-
namic attention layer by considering local temporal in-
formation and global temporal information for citation
forecasting, which is the closest setting to stroke fore-
casting with multiple outputs at each timestamp.

Due to the lack of official codes, we reproduced CF-LSTM
and DMA-Nets by following the corresponding implemen-
tation details in their papers. For fair comparison, the same
embedding layer, prediction layer, and hyper-parameters
were used for all the baselines. Moreover, since all the base-
lines take single inputs2, we concatenated shot types and
area and projected them to same dimension of these base-
lines instead. In addition, the loss function of shot types was
added to the baselines to fit the stroke forecasting task.

To better explore the design of our proposed method, we
extended two variants of our method in the experiments:
• ShuttleNetP2R feeds the outputs of the embedding layer

first to TPE and then feeds the outputs of TPE into TRE.
• ShuttleNetR2P feeds the outputs of the embedding layer

first to TRE and then feeds the outputs of TRE into TPE.

Quantitative Results
Comparison with Baselines. To evaluate the results of shot
type prediction, we used cross-entropy (CE), which has been
widely used for uncertainty measurement (Schmidt, Mandt,
and Hofmann 2019). Moreover, mean absolute error (MAE)
and mean square error (MSE) were used for evaluating the
predicted area coordinates similar to (Graber and Schwing
2020). We conducted three sets of experiments with the
number of observed strokes τ set to 8, 4, and 2 to inves-
tigate the performance with different numbers of observed
strokes. Table 1 reports the best results of different models,
which shows that our model consistently outperforms other
baselines for both shot types and area prediction in terms
of all metrics and different τ . Specifically, our method sur-
passes all the baselines by at least 12.0% and 3.4% in terms
of CE and MSE, respectively.

2DMA-Nets has multiple inputs but also using concatenation.

As CF-LSTM and dNRI are based on the characteristics
of trajectories (such as velocity), they fail to perform well
on forecasting area coordinates. In other words, the trajecto-
ries in the dataset are different from the human trajectories
since they are event-based data and dramatically change po-
sitions. Moreover, Seq2Seq, TF, and DMA-Nets are biased
in their ability to forecast area coordinates well, which in-
dicates that integrating rally information is insufficient for
returning strokes. Also, these methods lack the capacity for
turn-based targets in a sequence since they assume each el-
ement in the sequence belongs to the same target. With the
Transformer-based player extractor that considers player in-
formation, our model is capable of extracting the contexts of
the players to correctly predict future strokes.

It is worth noting that the performance of both variants
of ShuttleNetP2R and ShuttleNetR2P did not improve for shot
types but improved for area coordinates. This indicates the
effect on applying the fusing technique. Early integration of
player contexts when extracting the rally information and
vice versa, both hamper the model’s learning of the other in-
formation. Our model thus demonstrates the need of learning
each type of information separately and then employing the
fusing technique afterward to achieve the best results.

Ablation Study An extensive ablation study was con-
ducted to verify the design of ShuttleNet. We developed six
variants to investigate the relative contributions of different
components introduced in ShuttleNet: 1) w/o L, which is
ShuttleNet without the Transformer-based rally extractor, 2)
w/o A, which is ShuttleNet without information of Player
A in the Transformer-based player extractor, 3) w/o B,
which is ShuttleNet without information of Player B in the
Transformer-based player extractor, 4) w/o α, which is Shut-
tleNet without information weights in the position-aware
gated fusion network, 5) w/o β, which is ShuttleNet without
position weights in the position-aware gated fusion network,
and 6) w/o TAA, which is ShuttleNet with the type-area-
attention mechanism replaced by the self-attention mecha-
nism using concatenation of shot types and area.

It should be noted that the related terms of w/o L, w/o A,
and w/o B were also removed in the fusion network and the
fusion network was removed in w/o A + w/o B, w/o A +
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Figure 3: Illustration of three different matchups. The latter one of each case is the player returning the next stroke. That is,
Player B is in the left figure, Player A is in the middle figure, and Player C is in the right figure. Black lines represent the court
with the net in red. The top three shot types and corresponding probabilities are shown in green text.

Model CE MSE MAE

w/o L 1.9917 1.6471 1.4085
w/o A 1.9900 1.6418 1.4111
w/o B 1.9848 1.6347 1.4071

w/o A + w/o B 2.4169 1.6525 1.4113
w/o A + w/o L 2.1693 2.7223 1.8647
w/o B + w/o L 2.0805 2.6625 1.8343

w/o β 2.1197 1.6344 1.4002
w/o α 1.9822 1.6405 1.4088

w/o TAA 1.9880 1.6628 1.4290

ShuttleNet (Ours) 1.9802 1.5856 1.3802

Table 2: Ablation study of our model.

w/o L, and w/o B + w/o L since there is only one context
information of each. Table 2 shows the results with τ = 8.
We summarize the observations as follows.
The effect of each context. It is obvious that removing
any one context in ShuttleNet results in a significant perfor-
mance drop. Also, as expected, using a single context leads
to inferior performance in both shot types and area predic-
tion. The results verify the reasonable and effective design
of our model. Further, using only the rally context deterio-
rates the shot performance more substantially, while using
only the context of either Player A or Player B negatively
impacts more on area performance. We suggest that the lo-
cations of the returns rely more on current progress, while
the types of the returns can be more likely affected by the
styles of each player. Meanwhile, our model demonstrates
the ability of incorporating the use of each context.
The performance of PGFN. When we discard either fus-
ing weights or position weights, the performance degrades
in comparison with ShuttleNet. The results suggest that fus-
ing the information of contexts is effective for different sig-
nificance. Also, position weights play an important role in
the discrepancy of the importance of each stroke.
Comparison with self-attention mechanism. To testify the
effective of the proposed type-area-attention mechanism, we
compared it to the original self-attention mechanism. It is

clear that applying the self-attention mechanism reduces the
performance by 0.4% on CE, 4.6% on MSE, and 3.4% on
MAE in contrast to ShuttleNet. These results signify that
binding shot types and area on the same position is inade-
quate, whereas attending to different positions enhances the
ability to capture the dependency from various aspects.

Case Study: A Usage of Stroke Forecasting
Analyzing returning strategies in different matchups with
the same situation can help understand the possible strate-
gies that the player may use by considering past information
to formulate tactics. In this case, the goal is to predict the
shot type and area coordinates that the player returns at the
sixth stroke of different matchups. Figure 3 shows three top-
ranking players of men’s singles. It shows that these players
are likely to return with a passive shot type when encounter-
ing a smash from the opponent. However, area distributions
are quite different with respect to the players. The distribu-
tion of Player A is more in the middle of court, while both
Player B and Player C are closer to the net. Since the fourth
stroke is at back court, if the return is nearer the net, the op-
ponent will have a greater distance to move, which will con-
sume more energy of the opponent. This case demonstrates
a scenario analysis of stroke forecasting in badminton, and
our model is capable of assisting not only coaches for tactic
investigation but communities for storytelling.

Conclusions and Future Works
In this paper, we present ShuttleNet for tackling the chal-
lenging stroke forecasting problem. Based on the encoder-
decoder architecture, our model incorporates rally informa-
tion and player information with two extractors. In addition,
a position-aware gated fusion network is proposed leverag-
ing information dependency and position weights to decide
the importance of rally contexts and contexts of the players
for returning each strokes. The quantitative evaluation con-
ducted on the real-world dataset demonstrates the effective-
ness of our proposed approach compared to state-of-the-art
baselines. For future work, we plan to extend our model to
cope with extra conditions, e.g., win and loss, which can be
analyzed for advanced tactic investigation.
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