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Abstract

Knowledge graph completion (KGC) aims to infer missing
information in incomplete knowledge graphs (KGs). Most
previous works only consider the transductive scenario where
entities are existing in KGs, which cannot work effectively
for the inductive scenario containing emerging entities. Re-
cently some graph neural network-based methods have been
proposed for inductive KGC by aggregating neighborhood
information to capture some uncertainty semantics from the
neighboring auxiliary triples. But these methods ignore the
more general relational semantics underlying all the known
triples that can provide richer information to represent emerg-
ing entities so as to satisfy the inductive scenario. In this pa-
per, we propose a novel model called CFAG, which utilizes
two granularity levels of relational semantics in a coarse-
grained aggregator (CG-AGG) and a fine-grained generative
adversarial net (FG-GAN), for inductive KGC. The CG-AGG
firstly generates entity representations with multiple seman-
tics through a hypergraph neural network-based global ag-
gregator and a graph neural network-based local aggregator,
and the FG-GAN further enhances entity representations with
specific semantics through conditional generative adversarial
nets. Experimental results on benchmark datasets show that
our model outperforms state-of-the-art models for inductive
KGC.

Introduction
Knowledge graphs (KGs) store facts about the real world
as collections of triples. Each triple 〈h, r, t〉 in KGs indi-
cates a relation r between a head entity h and a tail en-
tity t. In recent years, several KGs such as NELL (Carlson
et al. 2010) and DBpedia (Lehmann et al. 2015) have been
built and become extremely useful resources for various ap-
plications (Hao et al. 2017; Moon et al. 2019; Zhu et al.
2020). Since KGs are still far from completion to support
the downstream tasks, many knowledge graph completion
(KGC) methods have been proposed to predict the missing
links, such as TransE (Bordes et al. 2013), DistMult (Yang
et al. 2015), and ConvE (Dettmers et al. 2018). However,
these traditional models are inherently transductive, which
require that all entities should be seen during training. As
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Figure 1: An example of inductive KGC. E is an emerging
entity and the task is 〈E, act in, ?〉. In addition to limited
local neighborhood information, through relations, we can
utilize coarse-grained relational semantics (global head en-
tities of author of and global tail entities of directed by)
and fine-grained relational semantics (query relation act in)
to represent the emerging entity E.

we know that KGs may continuously evolve into an induc-
tive scenario which emerges many new entities. So under the
inductive scenario, the traditional embedding-based models
hardly represent the emerging entities, and cannot work for
the inductive KGC.

The inductive KGC is more challenging than the tradi-
tional task, due to the uncertainty of emerging entity rep-
resentations. Traditional KGC methods can learn the repre-
sentations of entities more accurately by fully training, but
the inductive KGC methods need to learn a general model
through as much known information as possible to repre-
sent emerging entities. Recently, some methods (Hamaguchi
et al. 2017; Albooyeh, Goel, and Kazemi 2020) based on
graph neural networks (GNNs) (Defferrard, Bresson, and
Vandergheynst 2016; Kipf and Welling 2017) have been pro-
posed for inductive KGC, which generate the representa-
tion of an emerging entity by aggregating the information
of its local neighbors. Such methods can capture some un-
certainty semantics from the neighboring auxiliary triples,
but face two issues. Firstly, they obtain coarse-grained entity
representations by gathering the local information, but ig-
nore the possible global information. Secondly, for specific
query relations, they obtain fine-grained entity representa-
tions through training on known triples to balance with the
coarse-grained representations, but cannot generalize better
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to emerging entity representations. This paper considers the
relational semantics in KG to solve the two issues.

As we known, the relational semantics can be reflected by
the fact that entities with a same relation are usually seman-
tically similar. For example, given a relation author of and
some corresponding triples of the form 〈X, author of, Y 〉,
the head entities (X) mean writers and the tail entities (Y )
mean books. Through the relational semantics we can cap-
ture more useful information to represent emerging entities.
Therefore we consider the relational semantics at two granu-
larity levels for our work. At coarse granularity, an entity re-
lated to multiple relations may have multiple semantics (e.g.,
E in Figure 1 is both a writer and a director). We consider
the global head or tail entities related to these relations in the
known triples to capture global information, so as to obtain
entity representations with multiple semantics. At fine gran-
ularity, an entity under a certain query relation should have
specific semantics (e.g., for the task 〈E, act in, ?〉 in Figure
1, E is an actor). That existing methods enhancing entity
representations under query relations by training on known
triples is not enough to generalize to emerging entities. We
consider a model that can map known entities given a cer-
tain query relation to a same semantic distribution, while be-
ing able to generalize to emerging entities, so as to generate
more accurate entity representations with specific semantics.

In this paper, we propose CFAG, a novel method for in-
ductive KGC, which consists of a coarse-grained aggregator
(CG-AGG) and a fine-grained GAN (FG-GAN). To utilize
coarse-grained relational semantics, we build the CG-AGG,
in which we regard relations as hyperedges and construct a
hypergraph using triples in KGs. The CG-AGG uses a hyper-
graph neural network (HGNN)-base global aggregator and a
graph neural network (GNN)-based local aggregator to cap-
ture global and local entity information, so that it can ob-
tain entity representations with multiple semantics. To uti-
lize fine-grained relational semantics, we build the FG-GAN
based on conditional generative adversarial nets (CGANs).
The generator of FG-GAN uses the entity representations
generated by the CG-AGG as an input, and generates new
entity representations conditioned on certain query relations.
We associate each relation with a prior distribution and en-
force the generated representations to match the prior dis-
tributions, so as to generate more accurate entity represen-
tations with specific semantics. To keep predictive capabil-
ities, we also train our model using triples to predict target
entities. We evaluate our proposed CFAG model for induc-
tive KGC on two benchmark datasets, and the experimental
results demonstrate the effectiveness of relational semantics
and the superiority of our model.

In summary, our contributions are as follows:

• We propose a novel model called CFAG for inductive
KGC. CFAG consists of CG-AGG and FG-GAN, and
it utilizes coarse-grained and fine-grained relational se-
mantics in KGs to generate the representations of emerg-
ing entities.

• The CG-AGG, as a coarse-grained aggregator, regards
relations as hyperedges and construct a hypergraph on
a KG. It can capture both global and local entity infor-

mation to obtain entity representations with multiple se-
mantics.
• The FG-GAN, as a fine-grained net, associates each re-

lation with a prior distribution and enforces the gener-
ated representations to match the prior distributions. It
enhances our model to generate more accurate entity rep-
resentations with specific semantics.
• We evaluate our CFAG on two benchmark datasets

FB15k-237 and NELL-995. Experimental results show
that our model significantly and consistently outperforms
state-of-the-art methods.

Related Work
In recent years, the most successful methods for KGC are
embedding-based methods (Nayyeri et al. 2021; Zhou et al.
2021; Rossi et al. 2021). These methods map entities and
relations into a continuous space and define a scoring func-
tion to infer the missing information. Translational models,
such as TransE (Bordes et al. 2013) and its extensions (Wang
et al. 2014; Lin et al. 2015), represent entities and rela-
tions as vectors and treat relations as translations from head
entities to tail entities. Bilinear models, such as RESCAL
(Nickel, Tresp, and Kriegel 2011) and its extensions (Yang
et al. 2015; Trouillon et al. 2016), represent relations as ma-
trices and combine head and tail entities by multiplication.
Compared with these shallow models, some more expres-
sive models which based on CNNs (Dettmers et al. 2018;
Nguyen et al. 2018) or GNNs (Schlichtkrull et al. 2018;
Vashishth et al. 2020) have recently received widespread
attention and achieved better performance. However, these
models are used for transductive KGC, which needs all the
test entities have been seen in the training set.

Actually, KGs are constantly evolving, and there are many
emerging entities that are not in the original KGs. Transduc-
tive KGC methods are failed to handle these emerging en-
tities. Although some methods use external resources such
as text (Shi and Weninger 2018; Daza, Cochez, and Groth
2021) and images (Xie et al. 2017) to learn the represen-
tations of emerging entities, these resources may be hard
to acquire. Some GNNs such as GraphSAGE (Hamilton,
Ying, and Leskovec 2017) and GraphSAINT (Zeng et al.
2020) show their inductive representation learning ability
in graphs. Follow this direction, some GNN-based induc-
tive KGC methods have been proposed. Hamaguchi et al.
(2017) proposed a tailored GNNs to compute the embed-
dings of emerging entities by aggregating the representa-
tions of their neighbor entities and relations. To distinguish
the importance of neighbor entities and relations, Wang et
al. (2019) introduced a novel aggregator to aggregate neigh-
bors using the attention mechanism. He et al. (2020) de-
veloped a virtual neighbor prediction method to reduce the
neighbor sparsity problem. Since previous models are not
explainable, Bhowmik and de Melo (2020) utilized a vari-
ant of Graph Transformer encoder and the reinforcement
learning for inductive representation learning while preserv-
ing explainability. Albooyeh et al. (2020) extended current
transductive KGC methods by developing new training al-
gorithms which use aggregation functions to handle emerg-
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ing entities. However, these methods mainly utilize limited
local neighborhood information, while we utilize the rela-
tional semantics, which can capture more useful information
in known KGs to represent emerging entities.

We also note some related lines of studies on emerging
entities or relations. Some works focus on the few-shot sce-
nario of entities (Baek, Lee, and Hwang 2020) or relations
(Zhang et al. 2020; Jiang, Gao, and Lv 2021) in KGs, and
some researches (Teru, Denis, and Hamilton 2020; Chen
et al. 2021) focus on predicting missing relations on an en-
tirely new KGs. In this paper, we focus the inductive sce-
nario which contains emerging entities connected with orig-
inal KGs by auxiliary triples, and predict missing entities.
There are also some works which are close to ours. Fatemi
et al. (2020) extends the hypergraph to KGs with non-binary
relations, while we still focus on the general binary rela-
tional KGs. ReInceptionE (Xie et al. 2020) uses global en-
tity information for a triple through attention mechanism,
while we use global entity information for the emerging en-
tities through HGNNs. In addition, it focuses on transduc-
tive KGC while we focus on inductive KGC. ARGA (Pan
et al. 2018) regularizes graph embedding through an adver-
sarial training scheme and enforce the latent codes to match
a prior distribution. Unlike this model, we focus on the in-
ductive scenario of multi-relational graphs, and we enforce
the entity representations to match multiple semantic distri-
butions.

Problem Definition

A knowledge graph can be formalized as a set of triplesK =
{〈h, r, t〉} ⊆ E×R×E , where E andR are the sets of exist-
ing entities and relations respectively. For our inductive sce-
nario, we define the set of emerging entities (i.e. unseen en-
tities when testing) as Ẽ , where each emerging entity ẽ ∈ Ẽ
is associated with some existing entities by auxiliary triples
{〈ẽ, r, e〉 or〈e, r, ẽ〉 | ẽ ∈ Ẽ , e ∈ E , r ∈ R, E ∩ Ẽ = ∅}.

Knowledge graph completion (KGC) typically refers to
the task of predicting either the tail entity t given h and r
(〈h, r, ?〉) or the head entity h given r and t (〈?, r, t〉). By
adding the inverse relation set R−1 to R, 〈?, r, t〉 can be
represented as 〈t, r−1, ?〉, so we unify these two tasks into
the task of predicting o ∈ E given an entity s and a query
relation q (〈s, q, ?〉). For traditional KGC, s ∈ E is an exist-
ing entity, while for inductive KGC, s ∈ Ẽ is an emerging
entity.

Methodology

In this section, we will describe the two parts (CG-AGG and
FG-GAN) of our model in detail. The CG-AGG aims at gen-
erating entity representations with multiple semantics. The
FG-GAN focuses on generating more accurate entity rep-
resentations with specific semantics, and keeping predictive
capabilities. Figure 2 shows the architecture of CFAG. In the
following, we take the task 〈s, q, ?〉 as an example, and the
target entity is o.

CG-AGG
In order to use coarse-grained relational semantics, we first
convert a KG to a hypergraph, and then use a HGNN-based
global aggregator to capture global entity information and
a GNN-based local aggregator to capture local entity infor-
mation. Finally, we combine the two aggregators to obtain
entity representations with multiple semantics.

Hypergraph Construction In the hypergraph, a hyper-
edge is a non-empty subset of a vertex set. We treat each
relation r as two hyperedges ζhr and ζtr, which represent
the head entity set and the tail entity set of r respectively.
The hypergraph on a KG is defined as HG = (E ,Z), where
Z = {ζhr | r ∈ R} ∪ {ζtr | r ∈ R} is the set of hyperedges.
Let E = {e1, e2, . . . , e|E|} andZ = {ζ1, ζ2, . . . , ζ2|R|},HG
can be denoted by an incidence matrix H, with entries de-
fined as:

Hij =

{
1, if ei ∈ ζj
0, otherwise.

(1)

Figure 2(a) shows an example of constructing H using
triples (e.g. H21 = 1 since e2 is a head entity of r1).

Global Aggregator To model complex graph data more
efficiently, in recent years, HGNNs (Feng et al. 2019; Ya-
dati et al. 2019; Bai, Zhang, and Torr 2021), the hypergraph
based GNNs, have emerged as promising solutions. In this
part, we build our global aggregator based on a one-layer
HGNN to capture global entity information. As is shown in
Figure 2(b), at first, the global aggregator gathers the global
entity information according to the hyperedges to form the
hyperedge features, and then aggregates the hyperedge fea-
tures related to the entities as their representations.

Formally, we first gather the representations of entities
which belong to each hyperedge to form the hyperedge rep-
resentations:

Z = WD−1HTE, (2)
where E ∈ R|E|×dE is the entity embedding matrix. H ∈
R|E|×2|R| is the incidence matrix. D ∈ R2|R|×2|R| is a
diagonal matrix of hyperedge degree and it is defined as
Djj =

∑
iHij . W ∈ R2|R|×2|R| is a diagonal matrix of

hyperedge weights, and we initialize it as an identity matrix,
which means equal weights for all hyperedges.

Then we get the representation of s by aggregating the
representations of hyperedges related to s:

sg = σ

(
1∑
j hs,j

hT
s ZΘg

)
, (3)

where σ(·) is an activation function. Θg ∈ RdE×dA is a
trainable weight matrix. hs ∈ R2|R| is an incidence vector,
i.e., hs,j = 1 if s ∈ ζj , and otherwise hs,j = 0. The rep-
resentation is normalized by the vertex degree of s, i.e., the
number of hyperedges related to s.

Local Aggregator As a powerful method for process-
ing graph-structured data, GNNs have been widely used in
KGs. Similar to traditional GNN-based methods for induc-
tive KGC, we build our local aggregator based on a one-
layer GNN to capture local entity information as basic in-
formation. As is shown in Figure 2(b), the main idea of our
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Figure 2: (a) is an example of constructing H using triples. (b) and (c) are the architecture of CFAG. We use the hypergraph
constructed in (a), and take the triple 〈s, q, o〉 as an example. Given some auxiliary triples related to s, the CG-AGG generates
s’s representation s using a GNN-based local aggregator and a HGNN-based global aggregator. s will be used as an input for
the generator of FG-GAN. The FG-GAN enforces the generator to generate sq conditioned on q to match a corresponding prior
distribution pq . The generator also uses the scoring function and the softmax function to predict the probability of o, so that it
can perform KGC task.

local aggregator is to generate the representation of an en-
tity by aggregating the representations of its neighbors. For-
mally, the local neighborhood aggregator is defined as:

sl = σ

(
1∑
i ns,i

nT
s EΘl

)
, (4)

where Θl ∈ RdE×dA is a trainable weight matrix. ns ∈ R|E|
is an incidence vector about s’s neighbor entity set N(s),
i.e., ns,i = 1 if ei ∈ N(s), and otherwise ns,i = 0.

Finally, we get the new representation of s through the
aggregator A which combines the representations obtained
from the global aggregator and the local aggregator:

s = A(s) = αsTl + (1− α) sTg , (5)

where α is a hyperparameter.

FG-GAN
In order to use fine-grained relational semantics, we asso-
ciate relations with prior distributions, where different distri-
butions mean different semantics, and use conditional GANs
(Mirza and Osindero 2014) to construct our FG-GAN to
make entity representations with the same query relation
match the same distribution. We build the generator of FG-
GAN based on CNNs, and hope it can generate entity repre-
sentations with specific semantics while have the ability to
perform KGC task, which is achieved by jointly optimizing
their objective functions in training procedure.

Generator and Discriminator The entity representation
obtained by the aggregator mixes multiple semantics, but for
a specific query relation q, the entity should have specific se-
mantics. To achieve this, we use a generator G to get an en-
tity representation conditioned on a certain relation. Similar

to some methods (Dettmers et al. 2018; Nguyen et al. 2018)
for traditional KGC, we build the generator using CNN since
it is expressive and efficient:

sq = G (A(s), q) = σ

(
K∑
i=1

(
[s;RTq]

)
∗Ωi

)
, (6)

where R ∈ R|R|×dA is the relation embedding matrix and
q ∈ R|R| is the one-hot vector of relation q. ∗ denotes a con-
volution operator. K is the number of filters. Ωi ∈ R1×2 is
the i-th filter. The generator takes a query relation q and the
output of CG-AGG A(s) as inputs. As is shown in Figure
2(c), it first combines the representations of entity and rela-
tion into a matrix, and then performs the convolution opera-
tion on this matrix using multiple filters. Finally, it adds the
feature maps generated by the filters to a vector, and applies
an activation on the vector as the output.

Different relations usually represent different semantics,
and entities under the same query relation usually have some
similarities. In order to distinguish this difference and sim-
ilarity, we associate each relation with a prior distribution
and make entity representations with the same query relation
match the same distribution. We achieve this by an adversar-
ial training procedure with a discriminator:

D(x, q) = Sigmoid (W1(W0(x||q) + b0) + b1) , (7)

where || denotes a concatenation operator. W and b are
the parameters of this multi-layer perceptron (MLP). The
discriminator is a binary classifier, which can distinguish
whether the representation x is from the prior distribution
pq (positive) or from the generator G (negative). In this pa-
per, we choose the multivariate Gaussian distribution as the
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prior distribution pq(z) = N (z;µq,Σq) where µq and Σq

are the pre-defined mean vector and covariance matrix of re-
lation q respectively (see the experimental setup part for the
details of parameter selection).

Objective Function One objective of our model is to en-
force the generator to generate the entity representation con-
ditioned on a query relation sq that match the prior distribu-
tion pq . We treat the representations generated by the gener-
ator as negative examples, and the examples sampled from
the prior distributions as positive examples. When training,
the generator tries to generate positive examples to deceive
the discriminator, while the discriminator tries to distinguish
negative examples from positive examples. This adversarial
training procedure optimizes the min-max objective function
as follows:

min
G,A

max
D

V (G,A,D) = Ez∼pq [logD(z, q)]+

Es∼pdata
[log(1−D(G(A(s), q), q)].

(8)

Another objective of our model is to perform KGC task.
We first define a scoring function which can measure the
plausibility of triples being valid:

f(s, q, o) = sTq o, (9)
where o is generated byA. Then we compute the probability
of o using the softmax function:

p (o|s, q) = exp (f (s, q, o))∑
o′∈E exp (f (s, q, o

′))
. (10)

The objective function is defined as a cross-entropy loss:

min
G,A
L(G,A) = −

∑
〈s,q,o〉∈K

log p (o|s, q) . (11)

Considering these two objectives, the final objective func-
tion is:

min
G,A

max
D
L(G,A) + V (G,A,D) (12)

Algorithm 1 shows the whole training procedure of our
model. We jointly optimize these two objectives according
to Eq. (8) and Eq. (11). Finally, the optimized aggregator
and generator will be used to represent the emerging entities
and perform KGC task.

Algorithm 1: Model Training

Require: a knowledge graphK, the number of iterations T ,
the number of samples m, |R| prior distributions p =
{pq | q ∈ R}

Ensure: aggregator A, generator G
1: for iterator = 1 to T do
2: Sample m positive examples with corresponding re-

lations {(zi, ri)}mi=1 from the prior distributions p;
3: Sample m entities S = {si}mi=1 from E ;
4: Sample m relations {q i}mi=1 fromR;
5: Update D by Eq. (8) to maxmize:

1
m

∑m
i=1

[
logD(zi, ri) + log(1−D(G(A(si), qi), qi)

]
6: Update G and A by Eq. (8) to minimize:

1
m

∑m
i=1

[
log(1−D(G(A(si), qi), qi)

]
7: Extract training examples {〈s, q, o〉 | s ∈ S} from K;
8: Update G and A according to Eq. (11);
9: end for

Dataset |E| |Ẽ | |R| |train| |aux| |valid| |test|
FB15k-237-Sub 10,468 4,072 237 86,629 96,126 5,365 3,735
FB15k-237-Obj 10,728 2,135 237 80,591 115,350 4,025 3,969
NELL-995-Sub 34,770 2,071 200 35,963 17,097 5,281 2,728
NELL-995-Obj 28,812 1,550 200 26,090 14,551 3,640 2,276

Table 1: Statistics of the experimental datasets.

Experiments
Datasets
To evaluate our proposed model, we adopt two bench-
mark datasets: FB15k-237 (Toutanova and Chen 2015) and
NELL-995 (Xiong, Hoang, and Wang 2017). FB15k-237 is
a subset of Freebase, and NELL-995 is a subset of NELL.
Freebase and NELL are two large knowledge bases that con-
tain a large number of general facts. They cover a variety of
relations, such as cities, companies, things, and people.

We adapt the original datasets to fit inductive KGC task
in a similar way to (Hamaguchi et al. 2017) and (Wang et al.
2019). We first randomly select 30% of the triples from the
original testing set. We choose two different settings to get
the initial emerging entities. One is Subject, which chooses
the head entities in the selected triples as emerging entities.
The other is Object, which chooses the tail entities in the
selected triples as emerging entities. Some initial emerging
entities which have no connection with the original training
set will be filtered out. The remaining entities constitute the
emerging entity set Ẽ . We construct new datasets according
to Ẽ .

The original training set is split into the training set and
the auxiliary set, where the training set does not contain the
emerging entities and each triple in the auxiliary set con-
tains only one emerging entity. The validation set is con-
structed by removing triples which contain emerging entities
from the original validation set. The testing set retains those
triples in the selected triples where only the head entities
(for Subject setting) or the tail entities (for Object setting)
are emerging entities. Finally, we construct the following
datasets for inductive KGC task: FB15k-237-Sub, FB15k-
237-Obj, NELL-995-Sub, and NELL-995-Obj, where Sub
and Obj represent adopting Subject setting and Object set-
ting respectively. Table 1 presents the statistics of these
datasets.

Evaluation Protocol
When testing, for a test triple 〈s, q, ?〉, we calculate the score
for each possible triple 〈s, q, o′〉 using the scoring function
f . Then we rank the possible entities o′ according to the
scores in a descending order. Our evaluation is performed
on these rankings.

To measure the performance of different methods, we
choose two common evaluation metrics, including MRR and
Hits@N. MRR is the mean reciprocal ranking of the tar-
get entities. Hits@N denotes the proportion of the triples
whose target entities are ranked within top N. Higher MRR
and Hits@N indicate better performance. We use the filtered
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Model
FB15k-237-Sub FB15k-237-Obj NELL-995-Sub NELL-995-Obj

Hits@N Hits@N Hits@N Hits@N

MRR 1 3 10 MRR 1 3 10 MRR 1 3 10 MRR 1 3 10

MEAN 0.376 27.9 42.2 56.6 0.128 6.6 13.6 25.5 0.296 17.3 33.9 57.4 0.253 17.3 28.3 40.6
LAN 0.359 25.6 40.9 56.1 0.138 7.5 15.1 26.3 0.313 17.5 37.8 60.7 0.250 16.0 29.7 42.6
ELPE 0.371 26.6 41.8 53.3 0.126 6.4 13.0 24.1 0.287 16.7 32.7 57.1 0.248 16.2 27.5 40.2
OOS 0.325 23.8 37.1 48.9 0.132 8.1 14.3 23.7 0.263 16.6 28.6 51.4 0.290 22.0 32.3 42.1

CFAG 0.393 29.5 44.0 57.5 0.156 9.4 17.0 27.6 0.360 23.9 41.9 62.0 0.312 23.8 34.2 45.9

Table 2: Experimental results on FB15k-237 and NELL-995.

setting (Bordes et al. 2013) to filter out some fake negatives
before ranking.

Baselines
To compare our model against others, we choose four state-
of-the-art and open source models as baselines:
• MEAN (Hamaguchi et al. 2017) uses a tailored GNN to

compute the embeddings of emerging entities.
• LAN (Wang et al. 2019) introduces a novel aggrega-

tor which aggregates neighbors using a both rule- and
network-based attention mechanism.
• ELPE (Bhowmik and de Melo 2020) aggregates neigh-

borhood information through a variant of Graph Trans-
former encoder and provides explainability through rein-
forcement learning.
• OOS (Albooyeh, Goel, and Kazemi 2020) extends cur-

rent transductive KGC models to the inductive scenario
via aggregation functions that can compute representa-
tions of emerging entities.

Experimental Setup
We train our models using Adam (Kingma and Ba 2015) op-
timizer and use grid search to select the hyperparameters of
our model. Hyperparameter ranges are as follows: learning
rate lr in {0.1, 0.01, 0.005, 0.001}, α in Eq. (5) in {0, 0.3,
0.5, 0.7, 1.0}, embedding size dE in {100, 200, 300}, out-
put size of CG-AGG dA in {200, 500, 1000}, the number of
filters K in {10, 50, 100}. The optimal hyperparameter con-
figurations are lr = 0.001, α = 0.5, dE = 100, dA = 200
for all datasets, K = 50 for FB15k-237-Sub and FB15k-
237-Obj, K = 10 for NELL-995-Sub and NELL-995-Obj.
We use ReLU as the activation function and multiple multi-
variate Gaussian distributions as the prior distributions. Be-
fore training, we sample |R| vectors from the uniform dis-
tribution on [0, 1]dA . Each vector is associated with a re-
lation, and is regarded as the mean vector of a prior dis-
tribution. We choose 0.1I as the covariance matrix for all
distributions, where I is the identity matrix. Best models
are selected by using early stopping according to MRR on
the validation sets. The code and datasets are available at
https://github.com/changjianw/CFAG.

Results
Experimental results on benchmark datasets are shown in
Table 2. We can see that CFAG consistently outperforms

Model MRR Hits@1 Hits@3 Hits@10

CFAG w/o A 0.348 23.6 39.7 56.4
CFAG w/o G 0.342 23.5 38.3 56.8
CFAG w/o A, G 0.334 22.3 37.8 54.4

CFAG 0.360 23.9 41.9 62.0

Table 3: Ablation results on NELL-995-Sub.

all baselines on four datasets. Compared with the second
best result, CFAG has the highest relative improvement on
Hits@1 in four datasets, by a margin of 5.7%, 16.0%, 36.6%,
and 8.1% in FB15k-237-Sub, FB15k-237-Obj, NELL-995-
Sub, and NELL-995-Obj respectively. Our model signifi-
cantly outperforms baselines, especially on Hits@1 metric,
which means CFAG can predict the real missing entities
more accurately. We also find that even the simplest GNN-
based methods MEAN has obtained competitive results
on multiple datasets. Experimental results demonstrate our
model which utilizes both coarse-grained and fine-grained
relational semantics performs better than these neighbor-
hood aggregation baselines. We will also investigate the im-
pact of each part of CFAG in the following parts.

Ablation Studies
In order to investigate the effectiveness of coarse-grained
and fine-grained relational semantics, we conduct ablation
studies on NELL-995-Sub. More specifically, we remove the
global aggregator in CG-AGG (denoted as w/o A) and the
adversarial training procedure (i.e. removing the discrimina-
tor) in FG-GAN (denoted as w/o G) to construct three new
models, and compare them with our full model CFAG. Ta-
ble 3 shows the results. Compared with CFAG, the perfor-
mance of “CFAG w/o A, G” declines on all metrics, up to
12.3% relative decrease on Hits@10. Both “CFAG w/o A”
and “CFAG w/o G” are better than “CFAG w/o A, G” and
worse than CFAG. Experimental results show that coarse-
grained and fine-grained relational semantics all contribute
to the performance improvement of our model, and consid-
ering both can obtain better performance.

To further explore the role of adversarial training, we se-
lect four query relations and corresponding head entities
from the validation set of NELL-995-Sub, and visualize the
representations of entities under different query relations

4189



Figure 3: Visualization of entity representations under dif-
ferent query relations.

Model MRR Hits@1 Hits@3 Hits@10

TransE∗ 0.294 - - 46.5
DistMult+ 0.241 15.5 26.3 41.9
R-GCN 0.248 15.3 25.8 41.4
ConvE 0.316 23.9 35.0 49.1
ReInceptionE 0.349 - - 52.8

CFAG 0.342 24.9 37.8 52.9

Table 4: Transductive KGC results on FB15k-237. Results
of ∗ are taken from (Nguyen et al. 2018) and results of + are
taken from (Dettmers et al. 2018).

using the t-SNE (Van der Maaten and Hinton 2008) algo-
rithm. The results are shown in Figure 3. We can see that the
representations generated by CFAG are more compact than
“CFAG w/o G”, which means that the adversarial training
procedure can help our model generate more accurate entity
representations with specific semantics.

Transductive Knowledge Graph Completion
Our CFAG mainly focuses on the inductive KGC, but it can
also be used for the transductive KGC. We compare our
model with several transductive KGC methods on FB15k-
237 and the results are shown in Table 4. Compared with the
baselines, our CFAG achieves competitive performance on
the transductive KGC. It should be noted that the transduc-
tive KGC methods directly train the embeddings of known
entities, while our CFAG mainly trains the aggregatorA and
the generator G which can generalize to the representations
of emerging entities. Compared with the transductive KGC
methods, our CFAG has more application scenarios.

Impact of the Proportion of Emerging Entities
As mentioned in the datasets part, we mainly select 30%
triples from the original testing sets to construct the new test-
ing sets. In this part, we will investigate the impact of the se-
lection percentage. Higher selection percentage means more
emerging entities and indicates that the observed knowl-
edge graph becomes sparser. We conduct our experiments
on NELL-995 under the Subject setting. The datasets are
constructed with 10%, 20%, and 30% selection percentages,
denoted as Sub10, Sub20, and Sub30 respectively. We ex-
periment on these datasets and compare our model with two
baselines LAN and OOS. Table 5 shows the results. We can
see that our model consistently outperforms OOS and LAN

Dataset Model MRR Hits@1 Hits@3 Hits@10

Sub10 LAN 0.320 19.5 37.2 57.4
OOS 0.286 20.2 30.5 46.7

CFAG 0.365 24.7 41.1 60.3
Sub20 LAN 0.304 17.3 36.7 57.1

OOS 0.277 18.1 31.1 49.3
CFAG 0.361 24.3 42.6 59.2

Sub30 LAN 0.313 17.5 37.8 60.7
OOS 0.263 16.6 28.6 51.4

CFAG 0.360 23.9 41.9 62.0

Table 5: Experimental results on NELL-995 with different
selection percentages.

Model MRR Hits@1 Hits@3 Hits@10

CFAG r/w TransE 0.350 23.6 40.4 58.7
CFAG r/w DistMult 0.319 21.0 36.1 55.9

CFAG 0.360 23.9 41.9 62.0

Table 6: Experimental results on NELL-995-Sub with dif-
ferent generators.

on the datasets with different selection percentages. We note
that as the proportion of emerging entities increases, the per-
formance of all models decreases with varying degrees on
the most strict overall metrics MRR and fine-grained met-
rics Hits@1, but our model performs best. For example, on
Hits@1, CFAG drops by 0.8% from S10 to S30, while LAN
and OOS drop by 2.0% and 3.6% respectively. The experi-
mental results show that our model is more robust than LAN
and OOS on sparse knowledge graphs.

Impact of Different Generators
Our CFAG constructs the generator based on CNN. This
module can also be replaced with other models. In this
part, we investigate the impact of different generators on
model performance. We choose TransE and DistMult to con-
struct two new models, denoted as “CFAG r/w TransE” and
“CFAG r/w DistMult” respectively. The model comparison
results are shown in Table 6. We can see that our generator
is a better choice.

Conclusion
In this paper, we focus on the inductive KGC task in KGs,
which contains emerging entities that are not in the original
KGs. We propose a model called CFAG, which utilizes the
relational semantics in KGs at two granularity levels to bet-
ter represent the emerging entities. CFAG consists of CG-
AGG and FG-GAN. The CG-AGG utilizes coarse-grained
relational semantics to obtain entity representations with
multiple semantics. The FG-GAN utilizes fine-grained rela-
tional semantics to generate more accurate entity represen-
tations with specific semantics, while keeping predictive ca-
pabilities. Experimental results on benchmark datasets show
that our model significantly and consistently outperforms
state-of-the-art methods.

4190



Acknowledgments
This work is supported by the National Natural Science
Foundation of China No.62176252 and No.62102421.

References
Albooyeh, M.; Goel, R.; and Kazemi, S. M. 2020. Out-of-
Sample Representation Learning for Knowledge Graphs. In
Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: Findings, 2657–2666.
Baek, J.; Lee, D. B.; and Hwang, S. J. 2020. Learning to Ex-
trapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction. Advances in Neural Information Process-
ing Systems, 33.
Bai, S.; Zhang, F.; and Torr, P. H. 2021. Hypergraph convo-
lution and hypergraph attention. Pattern Recognition, 110:
107637.
Bhowmik, R.; and de Melo, G. 2020. Explainable link pre-
diction for emerging entities in knowledge graphs. In Inter-
national Semantic Web Conference, 39–55. Springer.
Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; and
Yakhnenko, O. 2013. Translating embeddings for modeling
multi-relational data. Advances in Neural Information Pro-
cessing Systems, 26.
Carlson, A.; Betteridge, J.; Kisiel, B.; Settles, B.; Hruschka,
E. R.; and Mitchell, T. M. 2010. Toward an architecture
for never-ending language learning. In Twenty-Fourth AAAI
Conference on Artificial Intelligence.
Chen, J.; He, H.; Wu, F.; and Wang, J. 2021. Topology-
Aware Correlations Between Relations for Inductive Link
Prediction in Knowledge Graphs. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35,
6271–6278.
Daza, D.; Cochez, M.; and Groth, P. 2021. Inductive Entity
Representations from Text via Link Prediction. In Proceed-
ings of the Web Conference 2021, 798–808.
Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional neural networks on graphs with fast localized
spectral filtering. In Advances in Neural Information Pro-
cessing Systems, 3844–3852.
Dettmers, T.; Minervini, P.; Stenetorp, P.; and Riedel, S.
2018. Convolutional 2d knowledge graph embeddings. In
Thirty-second AAAI Conference on Artificial Intelligence.
Fatemi, B.; Taslakian, P.; Vázquez, D.; and Poole, D. 2020.
Knowledge Hypergraphs: Prediction Beyond Binary Rela-
tions. In Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, 2191–2197.
Feng, Y.; You, H.; Zhang, Z.; Ji, R.; and Gao, Y. 2019. Hy-
pergraph neural networks. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, 3558–3565.
Hamaguchi, T.; Oiwa, H.; Shimbo, M.; and Matsumoto, Y.
2017. Knowledge transfer for out-of-knowledge-base enti-
ties: a graph neural network approach. In Proceedings of
the 26th International Joint Conference on Artificial Intelli-
gence, 1802–1808.

Hamilton, W. L.; Ying, R.; and Leskovec, J. 2017. Induc-
tive representation learning on large graphs. In Proceedings
of the 31st International Conference on Neural Information
Processing Systems, 1025–1035.
Hao, Y.; Zhang, Y.; Liu, K.; He, S.; Liu, Z.; Wu, H.; and
Zhao, J. 2017. An end-to-end model for question answering
over knowledge base with cross-attention combining global
knowledge. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1:
Long Papers), 221–231.
He, Y.; Wang, Z.; Zhang, P.; Tu, Z.; and Ren, Z. 2020. VN
Network: Embedding Newly Emerging Entities with Vir-
tual Neighbors. In Proceedings of the 29th ACM Interna-
tional Conference on Information & Knowledge Manage-
ment, 505–514.
Jiang, Z.; Gao, J.; and Lv, X. 2021. MetaP: Meta Pat-
tern Learning for One-Shot Knowledge Graph Completion.
In Proceedings of the 44th International ACM SIGIR Con-
ference on Research and Development in Information Re-
trieval, 2232–2236.
Kingma, D. P.; and Ba, J. 2015. Adam: A Method for
Stochastic Optimization. In 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings.
Kipf, T. N.; and Welling, M. 2017. Semi-Supervised Clas-
sification with Graph Convolutional Networks. In Interna-
tional Conference on Learning Representations (ICLR).
Lehmann, J.; Isele, R.; Jakob, M.; Jentzsch, A.; Kontokostas,
D.; Mendes, P. N.; Hellmann, S.; Morsey, M.; Van Kleef, P.;
Auer, S.; et al. 2015. Dbpedia–a large-scale, multilingual
knowledge base extracted from wikipedia. Semantic Web,
6(2): 167–195.
Lin, Y.; Liu, Z.; Sun, M.; Liu, Y.; and Zhu, X. 2015. Learn-
ing entity and relation embeddings for knowledge graph
completion. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 29.
Mirza, M.; and Osindero, S. 2014. Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784.
Moon, S.; Shah, P.; Kumar, A.; and Subba, R. 2019. Open-
dialkg: Explainable conversational reasoning with attention-
based walks over knowledge graphs. In Proceedings of the
57th Annual Meeting of the Association for Computational
Linguistics, 845–854.
Nayyeri, M.; Vahdati, S.; Aykul, C.; and Lehmann, J. 2021.
5* Knowledge Graph Embeddings with Projective Transfor-
mations. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 35, 9064–9072.
Nguyen, T. D.; Nguyen, D. Q.; Phung, D.; et al. 2018. A
Novel Embedding Model for Knowledge Base Completion
Based on Convolutional Neural Network. In Proceedings
of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers), 327–333.
Nickel, M.; Tresp, V.; and Kriegel, H.-P. 2011. A three-way
model for collective learning on multi-relational data. In
Proceedings of the 28th International Conference on Inter-
national Conference on Machine Learning, 809–816.

4191



Pan, S.; Hu, R.; Long, G.; Jiang, J.; Yao, L.; and Zhang,
C. 2018. Adversarially regularized graph autoencoder for
graph embedding. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence, 2609–2615.
Rossi, A.; Barbosa, D.; Firmani, D.; Matinata, A.; and Meri-
aldo, P. 2021. Knowledge graph embedding for link predic-
tion: A comparative analysis. ACM Transactions on Knowl-
edge Discovery from Data (TKDD), 15(2): 1–49.
Schlichtkrull, M.; Kipf, T. N.; Bloem, P.; Van Den Berg, R.;
Titov, I.; and Welling, M. 2018. Modeling relational data
with graph convolutional networks. In European Semantic
Web Conference, 593–607. Springer.
Shi, B.; and Weninger, T. 2018. Open-world knowledge
graph completion. In Thirty-Second AAAI Conference on
Artificial Intelligence.
Teru, K.; Denis, E.; and Hamilton, W. 2020. Inductive re-
lation prediction by subgraph reasoning. In International
Conference on Machine Learning, 9448–9457. PMLR.
Toutanova, K.; and Chen, D. 2015. Observed versus latent
features for knowledge base and text inference. In Proceed-
ings of the 3rd Workshop on Continuous Vector Space Mod-
els and Their Compositionality, 57–66.

Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, É.; and
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