Graph Structure Learning with Variational Information Bottleneck

Authors

  • Qingyun Sun Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing 100191, China School of Computer Science and Engineering, Beihang University, Beijing 100191, China Shenyuan Honors College, Beihang University, Beijing 100191, China
  • Jianxin Li Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing 100191, China School of Computer Science and Engineering, Beihang University, Beijing 100191, China
  • Hao Peng Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing 100191, China
  • Jia Wu School of Computing, Macquarie University, Sydney, Australia
  • Xingcheng Fu Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing 100191, China School of Computer Science and Engineering, Beihang University, Beijing 100191, China
  • Cheng Ji Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing 100191, China School of Computer Science and Engineering, Beihang University, Beijing 100191, China
  • Philip S Yu Department of Computer Science, University of Illinois at Chicago, Chicago, USA

DOI:

https://doi.org/10.1609/aaai.v36i4.20335

Keywords:

Data Mining & Knowledge Management (DMKM)

Abstract

Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real-world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL is the first attempt to advance the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of the proposed VIB-GSL.

Downloads

Published

2022-06-28

How to Cite

Sun, Q., Li, J., Peng, H., Wu, J., Fu, X., Ji, C., & Yu, P. . S. (2022). Graph Structure Learning with Variational Information Bottleneck. Proceedings of the AAAI Conference on Artificial Intelligence, 36(4), 4165-4174. https://doi.org/10.1609/aaai.v36i4.20335

Issue

Section

AAAI Technical Track on Data Mining and Knowledge Management