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Abstract

Methods for Knowledge Base Completion (KBC) reason about
a knowledge base (KB) in order to derive new facts that should
be included in the KB. This is challenging for two reasons.
First, KBs only contain positive examples. This complicates
model evaluation which needs both positive and negative ex-
amples. Second, those facts that were selected to be included
in the knowledge base, are most likely not an i.i.d. sample of
the true facts, due to the way knowledge bases are constructed.
In this paper, we focus on rule-based approaches, which tradi-
tionally address the first challenge by making assumptions that
enable identifying negative examples, which in turn makes it
possible to compute a rule’s confidence or precision. However,
they largely ignore the second challenge, which means that
their estimates of a rule’s confidence can be biased. This paper
approaches rule-based KBC through the lens of PU learning,
which can cope with both challenges. We make three contri-
butions. (1) We provide a unifying view that formalizes the
relationship between multiple existing confidences measures
based on (i) what assumption they make about and (ii) how
their accuracy depends on the selection mechanism. (2) We in-
troduce two new confidence measures that can mitigate known
biases by using propensity scores that quantify how likely a
fact is to be included the KB. (3) We show through theoret-
ical and empirical analysis that taking the bias into account
improves the confidence estimates, even when the propensity
scores are not known exactly.

1 Introduction
Knowledge Bases (KBs) such as Wikidata (Vrandecic and
Krötzsch 2014), YAGO (Rebele et al. 2016) and DBpe-
dia (Auer et al. 2007) are large collections of knowledge
about the world. They contain entities, such as Audrey, Bel-
gium and BestActress1960, and facts about those entities such
as 〈Audrey, wasBornIn, Belgium〉 and 〈Audrey, wonOscar,
BestActress1960〉. KBs are typically constructed through
crowdsourcing or automatically extracting information from
the web (Rebele et al. 2016). Consequently, these KBs are
incomplete as they do not contain all facts.

Knowledge Base Completion (KBC) (Nickel et al. 2015)
aims to address the issue of incompleteness by reasoning over
the knowledge base in order to derive new facts that should
be included in the KB. This is typically achieved by learning
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a model from the initial incomplete KB. One common way
to do this is to take a rule-based approach (Galárraga et al.
2013; Pellissier Tanon et al. 2017; Zupanc and Davis 2018).
This would result in learning rules like 〈X,wonOscar, Y〉 ∧
〈X, isMarriedTo, Z〉 ⇒ 〈Z, livesIn,USA〉, meaning that part-
ners of Oscar winners usually live in the USA. A common
measure for the quality of (intermediate) models is confi-
dence (precision), which is the fraction of correctly predicted
facts.

However, learning from the incomplete KB is challenging
for two important reasons. First, KBs operate under Open
World semantics which means that the truth value of any
triple not in the KB is unknown. These triples could be true
(i.e., they belong in the KB) or false (i.e., they should be
excluded from the KB). Practically, this means the data only
contains positive examples, whereas most learners require
both positive and negative examples. It also implies that a
rule’s confidence cannot be computed without making addi-
tional assumptions. Second, the way knowledge bases are
constructed makes it highly unlikely that the facts included in
the observed KB are an i.i.d sample of the facts in the ideal
knowledge base, aka the ground truth. Indeed, studies have
shown that knowledge bases suffer from observation biases:
They contain cultural biases, contain more facts about famous
people and represents men and women differently (Callahan
and Herring 2011; Wagner et al. 2015; Soulet et al. 2018).
If knowledge base completion is applied while ignoring the
observation bias, then the newly inferred facts are likely to
strengthen the bias. Yet, to the best of our knowledge, this is
what all current KBC methods do.

PU learning (learning from positive and unlabeled exam-
ples) (Bekker and Davis 2020), which is concerned with
learning a binary classifier while only having access to posi-
tive and unlabeled examples, is well-equipped for addressing
both these challenges. First, it perfectly matches the type of
data available for KBC: the positive examples are the facts in
the KB whereas the unlabeled data is any potential fact that
is not included in the KB. Second, recent work in PU learn-
ing (Kato, Teshima, and Honda 2018; Bekker, Robberechts,
and Davis 2019; Gong et al. 2021) has explicitly modeled
the selection mechanism that determines the probability of
observing a positive example’s label, i.e., the observation
bias.

Motivated by this, we view the KBC task as a PU Learning
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problem, which enables us to explicitly consider the selection
mechanism. We consider rule-based approaches to KBC and
make three contributions. (1) We provide a unifying view that
formalizes the relationship between multiple existing confi-
dences measures based on (i) what assumption they make
about and (ii) how their accuracy depends on the selection
mechanism. (2) We introduce two new confidence measures
that can mitigate known biases by using propensity scores
that quantify how likely a fact is to be included the KB. (3)
We show through theoretical and empirical analysis that tak-
ing the bias into account improves the confidence estimates,
even when the propensity scores are not known exactly.

2 Preliminaries
Knowledge Bases (KBs) store interlinked information about
entities in the form of relations between the entities, often
as RDF triple stores (WWW Consortium 2004). Using this
format, the KB is a triple (E ,P, F ), with E the set of entities,
P the set of predicates and the F set of facts, denoted by
〈s, p, o〉 triples with subject s ∈ E and object o ∈ E and
predicate p ∈ P , meaning that a relation of type p holds
between entities s and o. The triples in a KB are a subset
of the Cartesian product E × P × E and each predicate and
entity in E and P occurs at least once in a triple in the KB.

A knowledge base models a certain part of the world. We
call a knowledge base ideal if it has a triple for each rele-
vant fact, and incomplete if it contains only a subset of those
triples. We will consistently use I to refer to the ideal knowl-
edge in some context, and K to refer to a given "known"
(incomplete) knowledge base. The task of Knowledge Base
Completion (KBC) is then: given a knowledge base K, re-
construct the ideal knowledge base I .

The KBC task is often approached as follows: given an
incomplete knowledge base, rules are derived of the form
Body(s, o)⇒ 〈s, p, o〉, with the semantics that if Body(s, o)
(some condition on s and o) is fulfilled in K, then 〈s, p, o〉 is
in I . These rules can then be used to derive new facts (facts
that are not in K, but are in I). We follow these semantics:
Body(s, o) is always applied to K, predicting 〈s, p, o〉 to be
in I . Body(s, o) is typically a conjunctive condition (Galár-
raga et al. 2013; Fürnkranz, Gamberger, and Lavrač 2014;
Pellissier Tanon et al. 2017; Zupanc and Davis 2018; Lajus,
Galárraga, and Suchanek 2020), though this is not essential
for this paper.

In the remainder of this paper, we will use the following
notation. In the context of a specific rule, R refers to the
rule itself, and p refers to the (fixed) predicate of the rule’s
prediction. We use the following indicator functions (which
return 1 if the associated condition is true and 0 otherwise):

• R(s, o) : 〈s, o〉 fulfills the rule’s conditions Body(s, o)

• y(s, o) = y(〈s, p, o〉): 〈s, p, o〉 is in I (“is a fact”)
• l(s, o) = l(〈s, p, o〉) : 〈s, p, o〉 is in K (“is observed”)
• y(s) = y(〈s, p〉) = maxo y(s, o)

• l(s) = l(〈s, p〉) = maxo l(s, o)

For readability, we use the short versions y(s, o), l(s, o), y(s),
l(s) when p is implied (e.g., in the context of a single rule).

Note that y(s) and l(s) indicate that, for this specific s, at
least one triple of the form 〈s, p, ·〉 is respectively in I / in K.

Based on the above functions, we define the following sets:

• R = {〈s, o〉 | R(s, o) = 1}
• R+ = {〈s, o〉 ∈ R | y(s, o) = 1}
• Rl = {〈s, o〉 ∈ R | l(s, o) = 1}
• R+

s = {〈s, o〉 ∈ R | y(s) = 1}
• Rl

s = {〈s, o〉 ∈ R | l(s) = 1}
That is, R is the rule’s coverage containing all 〈s, o〉 triples
for which the rule fires (i.e. the rule’s predictions); among
those, R+ and Rl contain respectively the true and observed
ones. R+

s and Rl
s respectively restricts R to triples with an s

for which at least one 〈s, p, o〉 is true or observed.
This paper focuses on evaluating rules of the format just

described. Confidence measures are typically used to eval-
uate the quality of rules, during rule induction and model
evaluation. The confidence of a rule is

conf(R) =

∑
〈s,o〉∈R y(s, o)

|R|
=
|R+|
|R|

.

This definition reflects the fact that rules are executed on K
but their predictions are considered correct if the predicted
triple is in I .

When constructing a rule set from a knowledge base,
a learner typically repeatedly tries to pick the highest-
confidence rule from a number of options. As the learner has
access to K but not I , it cannot compute conf(R), so it must
estimate it. Before discussing existing and novel estimators
in section 4, we first discuss how current KBC approaches
deal with this.

3 Assumptions on the Selection Mechanism
If K were an i.i.d. sample from the set of all triples, labeled
positive or negative according to whether they are in I , and
each triple had the same probability of being included in K,
then simply counting how many of the predicted triples are la-
beled positive or negative would yield an unbiased estimator
of conf(R) (just like test set accuracy is an unbiased esti-
mator for population accuracy). But K contains no negative
examples at all. This poses the following challenge:

How can one estimate the confidence of a rule without
access to negative examples?

3.1 Typical Assumptions in KBC
In general, evaluating models without access to negative ex-
amples remains an open problem (Speranskaya, Schmitt, and
Roth 2020; Pezeshkpour, Tian, and Singh 2020). A common
approach in KBC is to make assumptions that allow deriving
negative examples. Two prominent assumptions are:

The closed-world assumption (CWA) (naively) assumes
that all facts not included in K are false. Hence, if a
rule derives a fact not in K, that corresponds to a false
positive.

The partial-completeness assumption (PCA) (a.k.a. local
closed-world assumption) assumes that if a 〈s, p, o〉 triple
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Figure 1: Which facts of I are observed in K depends the
selection mechanism.

is observed, then all triples 〈s, p, ·〉 in I with the same
subject and predicate are observed (Galárraga et al. 2013;
Dong et al. 2014). It follows from this that if 〈s, p, o〉 is
predicted and K contains 〈s, p, o′〉 for some o′ 6= o, but
not 〈s, p, o〉, then this must be a false positive.

The key insight in our paper is that these assumptions fail
to account for the underlying mechanism that determines
how the KB is populated, which results in biased estimates
of a rule’s confidence. In the following, we explicitly look at
possible selection mechanisms and how the CWA and PCA
assumptions connect with them.

3.2 Selection Mechanisms
Which facts are observed in K depends on how the KB
was populated. Conceptually, this can be modeled by as-
suming that whether a fact is included or not in the KB
depends on a selection mechanism sel(〈s, p, o〉) which se-
lects triples 〈s, p, o〉 from E × P × E (see Figure 1). If a
selected triple is a fact in I then it becomes part of K :
l(〈s, p, o〉) = sel(〈s, p, o〉)y(〈s, p, o〉).

The selection mechanism can operate in different ways.
From a probabilistic point of view, the simplest version is that
K is an independent and identically distributed (i.i.d.) sam-
ple from I . CWA is then the special case where each triple
has probability 1 of being included in K. More realistically,
groups of triples might be selected together (not independent)
and some triples might be more likely to be selected than oth-
ers (not identically distributed). PCA implies one particular
type of dependence: It assumes a hierarchical selection mech-
anism that first selects pairs 〈s, p〉, then selects all triples
〈s, p, ·〉 of the selected pairs, as depicted in Figure 1.

We next focus on the actual selection probabilities. While
existing rule-based KBC work neither explicitly states nor
considers the selection mechanism, the field of PU Learning
makes such assumptions very explicit. Therefore, we follow
their terminology. The probability with which a positive ex-
ample is selected for inclusion is called its propensity score
e (Bekker, Robberechts, and Davis 2019):

e(〈s, p, o〉) = Pr(sel(〈s, p, o〉) = 1) # no PCA

e(〈s, p〉) = e(〈s, p, o〉) = Pr(sel(〈s, p〉) = 1) # PCA

From this, the probability that a triple appears in K follows:

Pr(l(〈s, p, o〉) = 1) = e(〈s, p, o〉)y(〈s, p, o〉)

We use shorthands e(s, o)=e(〈s, p, o〉) and e(s)=e(〈s, p〉).

Assumptions in PU Learning about the selection proba-
bilities range from Selected Completely At Random (SCAR),
where each positive example has the constant probability
e(·)=c to be selected, to Selected At Random (SAR), where
the propensity score is a function of the example’s fea-
tures (Bekker, Robberechts, and Davis 2019).

Based on this, we propose the following taxonomy for
assumptions about KBC selection probabilities:
Closed World Assumption (CWA): All facts are observed:
e(〈s, p, o〉)=1.

SCAR All facts have the same probability to be selected:
e(〈s, p, o〉)=c

SCAR-per-predicate (SCARp): All facts about the same
predicate p have the same probability to be selected:
e(〈s, p, o〉=cp

SCAR-per-rule (SCARR): All facts predicted by a
rule R have the same probability to be selected:
R(s, o)=1 ⇒ e(〈s, p, o〉)=cR

SAR: The probability that a fact gets selected, depends on
its characteristics in the incomplete KB K .1

Note that this categorization is largely orthogonal to any de-
pendence structures in the selection mechanism. In particular,
all five levels are compatible with PCA, though additional re-
strictions may apply (e.g., SCAR-per-rule under PCA implies
that rules with different cR cannot cover the same subject s).

Only SAR, the least strict assumption, can in general rep-
resent common observation biases such as higher propensity
scores for famous entities, and certain predicates having dif-
ferent propensity scores for women and men (Callahan and
Herring 2011; Wagner et al. 2015). SCAR-per-rule can in-
clude such biases, but only if each rule covers one group
exclusively (famous or plebeian, man or woman).

Note that all except the SAR assumption consider the
observed facts covered by a certain rule to be unbiased. The
next section will show that this assumption is made implicitly
by all existing confidence measures.

4 Confidence Estimators
We now return to the problem of estimating the confidence of
a rule R, conf(R). First, we discuss and analyze estimators
that have been used in the KBC field. Second, we will intro-
duce new estimators that account for possible observation
bias.

4.1 Existing Confidence Estimators
CWA-based estimator Under the closed-world assump-
tion, a prediction is considered correct if it is known to be
correct (i.e., the predicted triple is observed in K), and incor-
rect otherwise. The confidence calculated as such is usually
referred to as the standard confidence (Galárraga et al. 2013),
but for clarity, we call it the CWA-based estimator.

CWA(R) =

∑
〈s,o〉∈R l(s, o)

|R|
=
|Rl|
|R|

= conf(R)
|Rl|
|R+|

1More realistically, the probability depends on its true (possibly
unobserved) characteristics. However, in the KBC task, only the
characteristic that are observable are relevant.
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CWA(R) generally underestimates conf(R) be-
cause K⊂I and therefore |Rl|≤|R+|, yielding
CWA(R)≤ conf(R).

Now consider different possible realizations of K given
some I . Because the probability for a fact to be included in K
is Pr(l(s, o)=1 | y(s, o)=1) = e(s, o), the expected value
for CWA(R) over all K is

E
sel∼e

[CWA(R)] = conf(R)
1

|R+|
∑

〈s,o〉∈R+

e(s, o).

Under SCAR-per-predicate, with a constant e(s, o) = cp
per predicate p, it has the same constant multiplicative
bias cp for all rules for a predicate p, meaning that the
ranking of rules is still expected to be correct. To better
analyse the problem for the setting where only the rela-
tive ranking of rules matter, we introduce an inverse cp-
weighted version of the CWA-based estimator ICW (R) =
1
cp
CWA(R), which is indeed unbiased under SCAR-per-

predicate: Esel∼cp [ICW (R)] = conf(R).

PCA-based estimator To solve the above-mentioned un-
derestimation problem, the PCA-based estimator only con-
siders the subset of predictions Rl

s assumed to have a known
truth value under the PCA assumption. That is, the PCA-
based estimator only considers predictions Rl

s for which the
subject appears in an observed fact in K (l(s) = 1). For all
triples in Rl

s, if the specific triple is observed (l(s, o) = 1)
then the prediction is considered correct, if it is not ob-
served (l(s, o) = 0) then the prediction is considered in-
correct (Galárraga et al. 2013):

PCA(R) =

∑
〈s,o〉∈R l(s, o)∑
〈s,o〉∈R l(s)

=
|Rl|
|Rl

s|

While the PCA-based estimator is a commonly-used con-
fidence estimator, we are, to the best of our knowledge, the
first to study under which conditions it is expected to per-
form well. The PCA-based estimator can suffer from biases
induced by three factors, which are mathematically derived
and interpreted in Appendix A2:

E
sel∼e

[PCA(R)] ≈
Esel∼e

[
|Rl|

]
Esel∼e [|Rl

s|]
first-order

Taylor approximation

= conf(R) · bias��PCA(R) · biasy(s)=0(R) · biase(s)(R)

= conf(R)

∑
〈s,o〉∈R+ e(s, o)∑
〈s,o〉∈R+ e(s)

|R|
|R+

s |

1
|R+|

∑
〈s,o〉∈R+ e(s)

1
|R+

s |

∑
〈s,o〉∈R+

s
e(s)

,

The three biases can cancel each other out, making it hard
to predict how PCA(R) will perform, when the problem
is not well understood. We explain the three biases using
an example rule that predicts which people won an Oscar,
e.g., 〈Audrey,wonOscar,BestActress1954〉. Under PCA, K
is assumed to contain either all or none of the Oscars that
each person has won.

2The appendices can be found at: https://github.com/ML-
KULeuven/KBC-as-PU-Learning

Audrey

BA1960BA1954 BA1955 BA1962 BA1968 JHHA1993

Figure 2: Correctly predicted facts R+ for subject Audrey by
the example rule. Dotted arrows indicate predicted facts not
in K, which the PCA considers to be false positives.

To illustrate when bias��PCA arises, consider a KB that
only contains facts denoting four of Audrey Hepburn’s six
Oscars meaning the PCA assumption is violated for the
〈Audrey,wonOscar〉 pair. Suppose a rule is learned that cor-
rectly derives all six of Audrey Hepburn’s Oscars (Figure 2).
Making the PCA assumption results in the two Oscar wins
not in the KB being incorrectly denoted as false positives,
yielding an underestimate of the rule’s confidence just like
in the CWA case. More formally, this bias arises whenever
a rule fires for a 〈s, p〉 pair for which the PCA assumption
is violated and the rule derives a 〈s, p, o〉 s.t. l(〈s, p, o〉) = 0
and y(〈s, p, o〉) = 1 (an unobserved fact). This bias never
arises for functional predicates (where each subject appears
in at most 1 fact) because the PCA trivially holds for such
predicates.

To illustrate when biasy(s)=0 arises, consider a rule that
predicts that Alan Rickman won an Oscar, which is a false
positive since he has never won an Oscar. However, because
there is no fact 〈AlanRickman,wonOscar, ·〉 in K, since no
such facts exist, the PCA estimator disregards the prediction
in its confidence. In this case the PCA estimator overestimates
the rule’s confidence. More generally, such an overestimate
occurs whenever a rule predicts a triple 〈s, p, o′〉 where ∀o :
y(〈s, p, o〉) = 0 (s occurs in no facts). In these cases, these
false positive predictions R \R+

s are ignored by the PCA.
The third bias factor biase(s) is the mean e(s) over all cor-

rect predictions R+ made by the rule divided by the mean
e(s) over all its predictions R+

s (restricting s to those s where
y(s) = 1) (Figure 3). This bias is > 1 when correct predic-
tions tend to have higher e(s), or, put differently, when there
are more correct predictions for high-propensity subjects.
Vice versa, this bias is < 1 when there are fewer correct pre-
dictions for high-propensity subjects. In our Oscars example,
when a rule happens to give more accurate predictions for
high-propensity Oscar winners than for low-propensity ones,
the confidence of this rule is overestimated.

In our experiments in Section 5, Q3 illustrates how
PCA(R) can vary due to this bias when e(s) varies for differ-
ent subjects.

4.2 Observation Bias Aware Confidence
Estimators

In this section we propose two novel confidence estimators
that can counteract observation biases by explicitly taking the
selection mechanism into account. The difference between
the estimators is whether or not they make the PCA assump-
tion. The proposed estimators need propensity scores as input,
therefore we additionally analyze their bias when using im-
perfect propensity scores and show that rough estimates are
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Figure 3: Example biase(s) calculation. The arrows indicate
predictions R+

s for which the subject occurs in at least one
fact. Black arrows are correct predictions R+, grey arrows
are incorrect predictions R+

s \R+.

better than assuming that there is no observation bias.
The Inverse Propensity Weighted estimator (IPW)

aims to debias CWA(R) by weighting the observed triples
with inverse propensity score estimates ê(s, o):

IPW(R) =
1

|R|
∑
〈s,o〉∈R

l(s, o)

ê(s, o)

From its expected value over all possible K, it is clear that
the estimator is unbiased when ê(s, o) = e(s, o):

E
sel∼e

[IPW(R)] = conf(R)
1

|R+|
∑

〈s,o〉∈R+

e(s, o)

ê(s, o)
.

Similarly, the Inverse Propensity Weighted PCA-based
estimator (IPW-PCA) aims to debias PCA(R):

IPW-PCA(R) =

∑
〈s,o〉∈R

l(s,o)
ê(s)∑

〈s,o〉∈R
l(s)
ê(s)

The first-order Taylor approximation of its expected value is:

E
sel∼e

[IPW-PCA(R)]

≈ conf(R) · biasIPW-PCA
��PCA (R) · biasy(s)=0(R) · biasIPW-PCA

e(s) (R)

≈ conf(R)

∑
〈s,o〉∈R+

e(s,o)
ê(s)∑

〈s,o〉∈R+
e(s)
ê(s)

|R|
|R+

s |

1
|R+|

∑
〈s,o〉∈R+

e(s)
ê(s)

1
|R+

s |

∑
〈s,o〉∈R+

s

e(s)
ê(s)

.

Here, 2 of the 3 bias factors are inverse propensity weighted
versions of the corresponding PCA(R) biases. Note that when
ê(s)=e(s), the biasIPW-PCA

e(s) (R) related to the selection mech-
anism completely disappears.

Most often, the exact propensity scores e(s, o) cannot be
used for ê(s, o), as they are unknown. When the propensity
scores are not known exactly, using reasonable estimates for
ê(s, o) can still result in a better confidence estimator than
not using any ê(s, o) and making a SCAR assumption.

To investigate how accurate the propensity score estimates
ê(·) should be, we compare confidence estimators when the
PCA does or does not hold, respectively: IPW-PCA(R) vs
PCA(R) and IPW(R) vs CWA(R)3.

3To allow for rule comparison, we considered the calibrated
version ICW(R) = 1

cp
CWA(R).

Too much overshootSufficient conditionsWrong direction

Sufficient conditions Wrong direction

  if  

  if  

Too much overshoot

Figure 4: If cal (ê(s, o)) is between c and e(s, o) · 1
2−e(s,o)/c ,

then 〈s, o〉 has a lower error contribution in the IPW(-PCA)
estimator than in the CWA/PCA estimator.

In Appendix B, we show that an individual triple 〈s, o〉
has a smaller error contribution in the IPW(-PCA) estimator
than in the CWA/PCA estimators when its propensity score
estimate ê(s, o) satisfies:®
c ≤ cal (ê(s, o)) ≤ e(s, o) 1

2−e(s,o)/c , when c ≤ e(s, o),

c ≥ cal (ê(s, o)) ≥ e(s, o) 1
2−e(s,o)/c , when c ≥ e(s, o),

with c=cR under PCA and c=cp otherwise. Here,
cal(ê(s, o)) multiplicatively calibrates ê(s, o), so that
E [e(s, o)/ cal(ê(s, o))] = E [e(s, o)/c] = 1 (note that
ê(s, o) itself need not be calibrated). In other words, the
IPW-(PCA) confidence estimator is preferable over the
CWA/PCA confidence estimator as soon as cal (ê(s, o))
deviates from c “in the right direction”, that is, towards
e(s, o), and this up to the point where it overshoots by a
certain factor (see Figure 4). The allowed overshoot increases
with e(s, o)/c.

As shown, reasonable estimates ê can be used in the IPW(-
PCA) estimators that do not need be calibrated; only their
relative values matter. In practice, these relative ê could be
derived from domain knowledge, e.g., from research on KB
bias (Callahan and Herring 2011; Wagner et al. 2015), or
estimated through incompleteness estimation (Razniewski,
Suchanek, and Nutt 2016; Galárraga et al. 2017). For exam-
ple, in a movie-recommendation setting, Saito et al. (2020)
use a movie’s popularity as its propensity score.

5 Experiments
We aim to empirically answer the following research ques-
tions: can we effectively account for observation biases (i.e.,
obtain more accurate confidence estimates) using the newly
proposed propensity-based estimators, (Q1) when the propen-
sities are known, (Q2) when propensities are guessed (“noisy”
propensities), (Q3) even when the PCA assumption holds?

5.1 Experimental Setup
Evaluating a confidence estimator requires knowledge of I ,
which is generally unavailable for real-world KBs. We there-
fore equate I to a real-world KB from which K ’s are gener-
ated by applying different selection mechanisms. Our I is the
popular KBC benchmark dataset Yago3-10 (Mahdisoltani,
Biega, and Suchanek 2015). Rules predicting any p ∈ P are
mined from I with AMIE (Galárraga et al. 2015) with its
default settings and a minimum CWA(R) ≥ 0.1. This set
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of rules serves as the testbed for our confidence estimators
(thus, the same rules are used over all K and estimators). See
Appendix E for the rule list.

The applied selection mechanisms differ in two ways.
First, they either explicitly uphold the PCA (by selecting
subjects s in Q3) or not (by selecting triples in Q1, Q2). For
functional p, the PCA always holds by definition. Second,
the mechanisms differ in which assumptions hold for the
propensity scores: CWA, SCARp or SAR. Under SCARp, cp
is varied. Two SAR mechanisms are considered: 1) SARgroup
where the subjects of the triples are divided into two groups
Sq, S¬q (e.g., actors and non-actors), each with a constant
propensity score cq, c¬q, and 2) SARpop where a triple’s
propensity score is a logistic function of the number of facts
in which the subject occurs, thus reflecting the subject’s pop-
ularity:

#(s, p) = |{〈s, q, ·〉 ∈ I } ∪ {〈·, q, s〉 ∈ I }| , q 6= p

e(〈s, p, o〉) = max

ï
2

1 + e−k ·#(s,p)
− 1, emin

ò
More popular s have a higher e. The scaling factor k de-
termines how often s must occur for a given e(〈s, p, o〉).
Choosing emin > 0 allows unpopular s to be selected.

When a rule’s coverage R changes by applying the rule
to different K , not only the estimators but also the rule’s
actual confidence conf can change. In order to keep conf
constant, the chosen selection mechanisms should not affect
R. Therefore, 1) only non-recursive rules are considered, and
2) each selection mechanism is applied to a single p ∈ P at a
time; the facts of P \ {p} are completely included in K (cfr.
CWA). This way, we can vary e(·) for p while keeping the
confidence conf(R) constant.

As evaluation metric, the Brier score ER[‘conf(R) −
conf(R)]2 is chosen (with ‘conf any estimator); this is a stan-
dard way of evaluating probability estimates.

For Q1 and Q2, we compare ICW(R)4 and IPW(R) to
CWA(R) and PCA(R). For Q3, we compare IPW-PCA(R)
to PCA(R), as the former modifies the latter to consider
propensity scores.

Propensity scores are required to calculate IPW(-PCA)(R).
We use correct propensity scores e(·) for the idealized sce-
narios in Q1 and Q3 and noisy versions ê for Q2.

More details about the exact setup can be found in Ap-
pendix C. Our source code is publicly available.5

5.2 Results
(Q1) Does using the ground truth propensity scores lead to a
better confidence estimate? Table 1 shows the Brier scores
for the estimators under SCARp, SARgroup and SARpop. Only
the leftmost IPW(R) column is relevant for Q1, i.e., the col-
umn with superscript Q1. The table shows that using correct
propensity scores under SCARp and SAR results in a much
better conf estimate: the Brier score for IPW(R) is often or-
ders of magnitude lower than for the other estimators. (See
also Tables 3, 4 and 5 in Appendix D.)

4 For cp the average e(·) over all p-triples in K is used. Note
that under SCARp, ICW(R) = IPW(R).

5https://github.com/ML-KULeuven/KBC-as-PU-Learning

Figure 5: For a single rule under SCARp (left), divid-
ing CWA(R) by cp is (trivially) as good as ICW(R) =
IPW(R) ≈ conf(R) for all cp. Under SARgroup (right), di-
viding CWA(R) by cp fails to account for the bias for most
c¬q

4. Correct propensity scores are used, and cq = 0.5 for
SARgroup. conf(R) is hidden by IPW(R).

Figure 5 zooms in on a single rule. It shows how, un-
der SCARp, both IPW(R) and ICW(R) almost perfectly
compensate for CWA(R)’s underestimation. However, un-
der SARgroup, ICW(R) does not recover conf(R) for most
c¬q , while IPW(R) still does.

This illustrates how bad CWA(R) can be by ignoring the
observation bias. If a learner merely ranks rules predicting the
same predicate p under the simple SCARp, all CWA(R) are
biased with the same constant cp. Under this simple setting,
CWA(R) works as well as ICW(R) (and hence IPW(R)).
However, CWA(R) fails under more complex settings (e.g.,
SARgroup), where using propensity scores allows IPW(R) to
be clearly superior to CWA(R).

Figure 6 (left) shows PCA(R) and IPW-PCA(R) for a sin-
gle rule under SCARp, for both p (person, diedin, place)
and its inverse p−1 (place, wheredied, person). Here, the
PCA holds for p (a person dies in at most 1 place), but
not for p−1 (only a fraction cp of all the people who died
somewhere are in K). Therefore, PCAp(R) remains constant
for most cp, differing from conf(R) with a constant fac-
tor biasy(s)=0(R) = |R|/|R+

s |. In contrast, bias��PCA causes
PCAp−1(R) to vary with cp.

The 3 factors that can cause PCA(R) to be biased interact;
if they are unknown in advance, it is difficult to say how
well PCA(R) will perform. For example in Figure 6 (left),
PCAp−1(R) is equal to conf(R) at approximately cp = 0.7
due to an ‘accidental’ combination of these dimensions. How-
ever, if the PCA holds and |R|/|R+

s | is close to 1, PCA(R)
will be close to conf for all cp, as shown with PCAp(R). Fig-
ure 6 (right) illustrates PCA(R) under SAR. The difference
between PCAp(R) and conf(R) is equal to |R|/|R+

s | for the
SCAR point (cq = c¬q), but changes when varying the rela-
tive number of triples in Sq and S¬q in K (see also the results
for Q3).

This illustrates how complex the behavior of the PCA(R)
is. Its disadvantage is its dependence on different interacting
biases. In contrast, using propensity scores allows IPW(R)
to be close to conf(R) in all settings.

(Q2) Can noisy propensity scores be used to improve con-
fidence estimates? The rightmost IPW columns in Table 1
(with superscript Q2) show Brier scores for IPW(R) with re-
spectively 0.1 and −0.1 added as noise to the correct propen-
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Figure 6: PCA holds for p = diedin but not for p−1 =
wheredied. Under SCARp (left), PCAp(R) for the exam-
ple R differs from conf with |R|/|R+

s | for most cp, while
PCAp−1(R) also varies with cp. Under SARgroup with
cq = 0.5 (right), PCAp(R) also varies with c¬q, which
IPW-PCAp(R) corrects (see also figure 7).

sity scores for SCARp and SARgroup. For SARpop, the noisy
propensity scores are obtained by increasing/decreasing k
by 10%. The results show that IPW(R) is generally the best
estimator for conf(R) if the noise is not too large. The exact
differences between IPW(R), CWA(R) and PCA(R) depend
on 1) the specific selection mechanism affecting CWA(R) and
PCA(R) as seen in Q1, and 2) the noisy propensity scores
affecting IPW(R).

(Q3) When the PCA holds, PCA(R) becomes a better es-
timate as bias��PCA(R) = 1. Are there then still situations
in which PCA(R) can be improved by using propensity
scores? Here, we compare IPW-PCA(R) and PCA(R) under
SARgroup and explicitly uphold the PCA for non-functional
p by selecting subjects, e.g., if a person is a citizenof mul-
tiple countries, then either all or none of its triples are se-
lected. We consider rules with predictions in both subject
groups Sq and S¬q, with neither group dominating in size:
0.3 ≤ (|R ∩ Sq|)/ |R| ≤ 0.7. We only include rules for
which the group-local confidence (the confidence consider-
ing only the predictions in a group) differs by at least 0.1.
The total confidence is the weighted mean of the group-local
confidences where the weights are the fraction of predic-
tions per group. By varying c¬q for a fixed cq, biase(s)(R)

is varied (while biasy(s)=0(R) = |R|/|R+
s | remains con-

stant): the relative number of subjects (and thus triples) in
K belonging to each group varies, and is different from I
for cq 6= c¬q. Consequently, the total PCA(R) moves to-
wards the group-local PCA(R) of the overrepresented group
(Figure 7). However, IPW-PCA(R) remains relatively con-
stant. Table 2 shows the Brier scores for this specific scenario.
The results highlight how well PCA(R) works under PCA
without needing propensity scores: although IPW-PCA(R) is
mostly better, its improvement is rather small.

In conclusion, CWA(R) and PCA(R) fail to account
for general observation biases in contrast to IPW(R) and
IPW-PCA(R), which make them explicit through propensity
scores.

6 Related Work
Several confidence measures for KBC have been intro-
duced to address the problem of dealing with the lack of

Figure 7: If the PCA holds under SARgroup, PCA(R) for a
rule with different group-local confidences (upper left) but a
similar number of predictions per group (lower left) changes
with c¬q towards |R|/|R+

s | · conf(R) of the overrepresented
group, while IPW-PCA(R) remains more constant (right).
cq = 0.5.

negative examples (Galárraga et al. 2013; Pellissier Tanon
et al. 2017; Zupanc and Davis 2018), but none of them handle
general observation biases. The confidence measures from
Zupanc and Davis and Pellissier Tanon et al. were omitted
from the discussion, because, the former consists of an ad-
hoc pipeline, and the latter consistently underestimates the
confidence (see Appendix F). Other confidences were in-
troduced with different goals: xconf (Zhou, Sadeghian, and
Wang 2019) to limit computation effort and smooth confi-
dence to cope with rules with low support (Meilicke et al.
2019).

Estimating propensity scores is closely related to esti-
mating where the KB is more and less complete. The lim-
ited work on this topic combines several simple complete-
ness oracles such as popularity, cardinality and change over
time (Razniewski, Suchanek, and Nutt 2016; Galárraga et al.
2017). Soulet et al. (2018) estimate representativeness as
deviation from an i.i.d. sample, but do not estimate which bias
is causing the deviation nor propose a method for mitigating
the bias at learning time.

Most of the work in PU Learning has been conducted un-
der the SCAR assumption, where the labeled examples are an
i.i.d. sample from the true positive examples (Elkan and Noto
2008). This is clearly violated by KBs. The more general
SAR assumption allows for non-i.i.d. selection mechanisms,
but needs additional assumptions to enable learning. Only
a handful of such assumptions have been proposed (Kato,
Teshima, and Honda 2018; Bekker, Robberechts, and Davis
2019; Gong et al. 2021). While none of these assumptions
are sufficient for the KBC setting, the notion of explicitly
modeling the selection mechanism inspired this paper.

Recommender systems solve a problem similar to KBC,
but with only 1 predicate type (|P| = 1). Similar to our ap-
proach, Saito et al. (2020) and Gupta et al. (2021) adapt the
PU learning loss function from Bekker, Robberechts, and
Davis (2019). Amongst others, our paper differs from these
works in 1) our unifying view on how KBs are constructed
(including the taxonomy of assumptions) that allows ana-
lyzing the conditions under which evaluation metrics can
be evaluated, 2) our analysis of the commonly used CWA
and PCA estimators and 3) our newly proposed IPW(-PCA)
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# rules CWAQ1,2 PCAQ1,2 ICWQ1,2 IPWQ1,2 IPW −∆Q2 IPW +∆Q2

SCARp cp = 0.3 47 292.5 192.7 4.6 4.6 154.2 40.9
cp = 0.7 47 53.8 173.3 1.1 1.1 18.1 10.0

SARgroup cq = 0.5, c¬q = 0.3 33 189.5 155.6 8.1 3.4 50.3 14.0
cq = 0.5, c¬q = 0.7 33 83.8 155.1 4.0 1.8 6.9 4.6

SARpop k = 0.01 47 458.6 264.2 168.5 62.8 81.8 56.6
k = 0.1 47 172.3 182.7 51.0 3.5 7.4 6.2

Table 1: Results for Q1 and Q2 (see superscript).
î‘conf − conf

ó2
·104 under SCARp, SARgroup and SARpop. Results are averaged

over p, the rules and (for SARgroup ) q. The 3 IPW confidence columns: 1 with correct ê = e (left) and 2 with noisy ê 6= e (middle
and right). For SCARp, noisy ĉp = cp ± 0.1. For SARgroup, noisy ĉ¬q = c¬q ± 0.1. For SARpop, the noisy ê are obtained by
using k̂ = k ± 0.1k.

p # R c¬q = 0.3 c¬q = 0.7
PCA IPW-PCA IPW-PCA−∆ IPW-PCA+∆ PCA IPW-PCA IPW-PCA−∆ IPW-PCA+∆

dealswith 1 22.4 16.9 13.5 19.9 9.1 12.4 10.7 14.0
diedin 1 3.9 1.6 3.7 2.0 1.4 0.5 0.7 0.7
happenedin 1 6.6 1.7 4.0 3.3 2.3 0.7 1.0 1.1
iscitizenof 2 13.1 14.5 20.0 13.2 11.0 9.9 10.2 10.0
isleaderof 1 58.1 55.5 58.0 56.6 74.1 72.0 72.7 71.6
ispoliticianof 3 8.0 9.3 16.9 7.8 9.2 8.3 8.4 8.5
livesin 1 7.0 6.8 8.5 6.7 4.7 4.0 4.1 4.1
participatedin 1 16.0 11.6 8.1 14.1 10.9 13.2 12.1 14.2

Table 2: Results for Q3.
î‘conf − |R|/|R+

s | · conf
ó2
· 104 for SARgroup with PCA upheld (avg. over q and rules predicting p).

c¬q ∈ {0.3, 0.7} with cq = 0.5 Bold is best per c¬q and p. Three IPW-PCA(R) columns for ĉ¬q = c¬q + ∆, ∆ ∈ {0,±0.1}.
Rules are included if 0.3 ≤ (|R ∩ Sq|)/ |R| ≤ 0.7 and the difference in group-local |R|/|R+

s | · conf(R) is at least 0.1.

confidence measures.

Biases are mostly studied in the fairness litera-
ture (Mehrabi et al. 2019; Barocas, Hardt, and Narayanan
2019), with the aim to learn bias-free models. This paper, in
contrast, does not enforce certain ideals, but rather aims to
increase model quality by being conscious of observation bi-
ases. This is a recent perspective in fairness literature (Blum
and Stangl 2020).

7 Conclusion

We investigated rule evaluation, specifically confidence es-
timation, for knowledge base completion in the face of ob-
servation biases. Our theoretical and empirical analysis has
shown that ignoring the observation bias results in biased
confidence estimates. Yet, this is exactly what existing meth-
ods do. We have proposed two new confidence estimators
that can mitigate known biases by using propensity scores
that quantify how likely a fact is to be included the KB. We
have shown that these estimators are unbiased with respect to
the observation bias. Our experiments showed that the Brier
score of our IPW(R) measure is often orders of magnitude
lower than those of the other estimators when observation
biases are present. Our metric even outperforms the others
when it has inexact values for the propensity scores.
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