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Abstract

Conventional static knowledge graphs model entities in rela-
tional data as nodes, connected by edges of specific relation
types. However, information and knowledge evolve contin-
uously, and temporal dynamics emerge, which are expected
to influence future situations. In temporal knowledge graphs,
time information is integrated into the graph by equipping
each edge with a timestamp or a time range. Embedding-
based methods have been introduced for link prediction on
temporal knowledge graphs, but they mostly lack explainabil-
ity and comprehensible reasoning chains. Particularly, they
are usually not designed to deal with link forecasting – event
prediction involving future timestamps. We address the task
of link forecasting on temporal knowledge graphs and in-
troduce TLogic, an explainable framework that is based on
temporal logical rules extracted via temporal random walks.
We compare TLogic with state-of-the-art baselines on three
benchmark datasets and show better overall performance
while our method also provides explanations that preserve
time consistency. Furthermore, in contrast to most state-of-
the-art embedding-based methods, TLogic works well in the
inductive setting where already learned rules are transferred
to related datasets with a common vocabulary.

Introduction
Knowledge graphs (KGs) structure factual information in
the form of triples (es, r, eo), where es and eo correspond
to entities in the real world and r to a binary relation, e. g.,
(Anna, born in, Paris). This knowledge representation leads
to an interpretation as a directed multigraph, where entities
are identified with nodes and relations with edge types. Each
edge (es, r, eo) in the KG encodes an observed fact, where
the source node es corresponds to the subject entity, the tar-
get node eo to the object entity, and the edge type r to the
predicate of the factual statement.

Some real-world information also includes a temporal di-
mension, e. g., the event (Anna, born in, Paris) happened
on a specific date. To model the large amount of available
event data that induce complex interactions between enti-
ties over time, temporal knowledge graphs (tKGs) have been
introduced. Temporal KGs extend the triples to quadruples
(es, r, eo, t) to integrate a timestamp or time range t, where t
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Figure 1: A subgraph from the dataset ICEWS14 with the
entities Angela Merkel, Barack Obama, France, and China.
The timestamps are displayed in the format yy/mm/dd. The
dotted blue line represents the correct answer to the query
(Angela Merkel, consult, ?, 2014/08/09). Previous interac-
tions between Angela Merkel and Barack Obama can be in-
terpreted as an explanation for the prediction.

indicates the time validity of the static event (es, r, eo), e. g.,
(Angela Merkel, visit, China, 2014/07/04). Figure 1 visual-
izes a subgraph from the dataset ICEWS14 as an example of
a tKG. In this work, we focus on tKGs where each edge is
equipped with a single timestamp.

One of the common tasks on KGs is link prediction,
which finds application in areas such as recommender sys-
tems (Hildebrandt et al. 2019), knowledge base comple-
tion (Nguyen et al. 2018a), and drug repurposing (Liu et al.
2021). Taking the additional temporal dimension into ac-
count, it is of special interest to forecast events for future
timestamps based on past information. Notable real-world
applications that rely on accurate event forecasting are, e. g.,
clinical decision support, supply chain management, and ex-
treme events modeling. In this work, we address link fore-
casting on tKGs, where we consider queries (es, r, ?, t) for
a timestamp t that has not been seen during training.
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Several embedding-based methods have been introduced
for tKGs to solve link prediction and forecasting (link
prediction with future timestamps), e.g., TTransE (Leblay
and Chekol 2018), TNTComplEx (Lacroix, Obozinski, and
Usunier 2020), and RE-Net (Jin et al. 2019). The underlying
principle is to project the entities and relations into a low-
dimensional vector space while preserving the topology and
temporal dynamics of the tKG. These methods can learn the
complex patterns that lead to an event but often lack trans-
parency and interpretability.

To increase the transparency and trustworthiness of the
solutions, human-understandable explanations are neces-
sary, which can be provided by logical rules. However, the
manual creation of rules is often difficult due to the complex
nature of events. Domain experts cannot articulate the con-
ditions for the occurrence of an event sufficiently formally
to express this knowledge as rules, which leads to a problem
termed as the knowledge acquisition bottleneck. Generally,
symbolic methods that make use of logical rules tend to suf-
fer from scalability issues, which make them impractical for
the application on large real-world datasets.

We propose TLogic that automatically mines cyclic tem-
poral logical rules by extracting temporal random walks
from the graph. We achieve both high predictive perfor-
mance and time-consistent explanations in the form of tem-
poral rules, which conform to the observation that the occur-
rence of an event is usually triggered by previous events. The
main contributions of this work are summarized as follows:
• We introduce TLogic, a novel symbolic framework

based on temporal random walks in temporal knowledge
graphs. It is the first approach that directly learns tempo-
ral logical rules from tKGs and applies these rules to the
link forecasting task.

• Our approach provides explicit and human-readable ex-
planations in the form of temporal logical rules and is
scalable to large datasets.

• We conduct experiments on three benchmark datasets
(ICEWS14, ICEWS18, and ICEWS0515) and show bet-
ter overall performance compared with state-of-the-art
baselines.

• We demonstrate the effectiveness of our method in the
inductive setting where our learned rules are transferred
to a related dataset with a common vocabulary.

Related Work
Subsymbolic machine learning methods, e. g., embedding-
based algorithms, have achieved success for the link pre-
diction task on static KGs. Well-known methods include
RESCAL (Nickel, Tresp, and Kriegel 2011), TransE (Bor-
des et al. 2013), DistMult (Yang et al. 2015), and Com-
plEx (Trouillon et al. 2016) as well as the graph con-
volutional approaches R-GCN (Schlichtkrull et al. 2018)
and CompGCN (Vashishth et al. 2020). Several approaches
have been recently proposed to handle tKGs, such as
TTransE (Leblay and Chekol 2018), TA-DistMult (Garcı́a-
Durán, Dumanc̆ić, and Niepert 2018), DE-SimplE (Goel
et al. 2020), TNTComplEx (Lacroix, Obozinski, and
Usunier 2020), CyGNet (Zhu et al. 2021), RE-Net (Jin et al.

2019), and xERTE (Han et al. 2021). The main idea of these
methods is to explicitly learn embeddings for timestamps or
to integrate temporal information into the entity or relation
embeddings. However, the black-box property of embed-
dings makes it difficult for humans to understand the predic-
tions. Moreover, approaches with shallow embeddings are
not suitable for an inductive setting with previously unseen
entities, relations, or timestamps. From the above methods,
only CyGNet, RE-Net, and xERTE are designed for the fore-
casting task. xERTE is also able to provide explanations by
extracting relevant subgraphs around the query subject.

Symbolic approaches for link prediction on KGs like
AMIE+ (Galárraga et al. 2015) and AnyBURL (Meilicke
et al. 2019) mine logical rules from the dataset, which are
then applied to predict new links. StreamLearner (Omran,
Wang, and Wang 2019) is one of the first methods for learn-
ing temporal rules. It employs a static rule learner to gener-
ate rules, which are then generalized to the temporal domain.
However, they only consider a rather restricted set of tempo-
ral rules, where all body atoms have the same timestamp.

Another class of approaches is based on random walks
in the graph, where the walks can support an interpretable
explanation for the predictions. For example, AnyBURL
samples random walks for generating rules. The meth-
ods dynnode2vec (Mahdavi, Khoshraftar, and An 2018)
and change2vec (Bian et al. 2019) alternately extract ran-
dom walks on tKG snapshots and learn parameters for
node embeddings, but they do not capture temporal pat-
terns within the random walks. Nguyen et al. (2018b) extend
the concept of random walks to temporal random walks on
continuous-time dynamic networks for learning node em-
beddings, where the sequence of edges in the walk only
moves forward in time.

Preliminaries
Let [n] := {1, 2, . . . , n}.

Temporal knowledge graph Let E denote the set of enti-
ties,R the set of relations, and T the set of timestamps.

A temporal knowledge graph (tKG) is a collection of facts
G ⊂ E × R × E × T , where each fact is represented by
a quadruple (es, r, eo, t). The quadruple (es, r, eo, t) is also
called link or edge, and it indicates a connection between
the subject entity es ∈ E and the object entity eo ∈ E via the
relation r ∈ R. The timestamp t ∈ T implies the occurrence
of the event (es, r, eo) at time t, where t can be measured in
units such as hour, day, and year.

For two timestamps t and t̂, we denote the fact that t oc-
curs earlier than t̂ by t < t̂. If additionally, t could represent
the same time as t̂, we write t ≤ t̂.

We define for each edge (es, r, eo, t) an inverse edge
(eo, r

−1, es, t) that interchanges the positions of the subject
and object entity to allow the random walker to move along
the edge in both directions. The relation r−1 ∈ R is called
the inverse relation of r.

Link forecasting The goal of the link forecasting task is
to predict new links for future timestamps. Given a query
with a previously unseen timestamp (es, r, ?, t), we want to
identify a ranked list of object candidates that are most likely
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to complete the query. For subject prediction, we formulate
the query as (eo, r

−1, ?, t).
Temporal random walk A non-increasing temporal ran-

dom walk W of length l ∈ N from entity el+1 ∈ E to entity
e1 ∈ E in the tKG G is defined as a sequence of edges

((el+1, rl, el, tl), (el, rl−1, el−1, tl−1), . . . , (e2, r1, e1, t1))

with tl ≥ tl−1 ≥ · · · ≥ t1,
(1)

where (ei+1, ri, ei, ti) ∈ G for i ∈ [l].
A non-increasing temporal random walk complies with

time constraints so that the edges are traversed only back-
ward in time, where it is also possible to walk along edges
with the same timestamp.

Temporal logical rule Let Ei and Ti for i ∈ [l + 1]
be variables that represent entities and timestamps, respec-
tively. Further, let r1, r2, . . . , rl, rh ∈ R be fixed.

A cyclic temporal logical ruleR of length l ∈ N is defined
as

((E1, rh, El+1, Tl+1)← ∧l
i=1(Ei, ri, Ei+1, Ti))

with the temporal constraints

T1 ≤ T2 ≤ · · · ≤ Tl < Tl+1. (2)

The left-hand side ofR is called the rule head, with rh being
the head relation, while the right-hand side is called the rule
body, which is represented by a conjunction of body atoms
(Ei, ri, Ei+1, Ti). The rule is called cyclic because the rule
head and the rule body constitute two different walks con-
necting the same two variables E1 and El+1. A temporal
rule implies that if the rule body holds with the temporal
constraints given by (2), then the rule head is true as well for
a future timestamp Tl+1.

The replacement of the variables Ei and Ti by constant
terms is called grounding or instantiation. For example, a
grounding of the temporal rule

((E1, consult, E2, T2)← (E1, discuss by telephone, E2, T1))

is given by the edges (Angela Merkel, discuss by telephone,
Barack Obama, 2014/07/22) and (Angela Merkel, consult,
Barack Obama, 2014/08/09) in Figure 1. Let rule grounding
refer to the replacement of the variables in the entire rule
and body grounding refer to the replacement of the variables
only in the body, where all groundings must comply with the
temporal constraints in (2).

In many domains, logical rules are frequently violated
so that confidence values are determined to estimate the
probability of a rule’s correctness. We adapt the stan-
dard confidence to take timestamp values into account. Let
(r1, r2, . . . , rl, rh) be the relations in a rule R. The body
support is defined as the number of body groundings, i. e.,
the number of tuples (e1, . . . , el+1, t1, . . . , tl) such that
(ei, ri, ei+1, ti) ∈ G for i ∈ [l] and ti ≤ ti+1 for i ∈ [l − 1].
The rule support is defined as the number of body ground-
ings such that there exists a timestamp tl+1 > tl with
(e1, rh, el+1, tl+1) ∈ G. The confidence of the rule R, de-
noted by conf(R), can then be obtained by dividing the rule
support by the body support.

Algorithm 1: Rule learning
Input: Temporal knowledge graph G.
Parameters: Rule lengths L ⊂ N, number of temporal ran-
dom walks n ∈ N, transition distribution d ∈ {unif, exp}.
Output: Temporal logical rules T R.

1: for relation r ∈ R do
2: for l ∈ L do
3: for i ∈ [n] do
4: T Rl

r ← ∅
5: According to transition distribution d, sample a

temporal random walk W of length l + 1 with
tl+1 > tl. . See (4).

6: Transform walk W to the corresponding tempo-
ral logical rule R. . See (5).

7: Estimate the confidence of rule R.
8: T Rl

r ← T R
l
r ∪ {(R, conf(R))}

9: T Rr ← ∪l∈LT Rl
r

10: T R ← ∪r∈RT Rr

11: return T R

Our Framework
We introduce TLogic, a rule-based link forecasting frame-
work for tKGs. TLogic first extracts temporal walks from the
graph and then lifts these walks to a more abstract, seman-
tic level to obtain temporal rules that generalize to new data.
The application of these rules generates answer candidates,
for which the body groundings in the graph serve as explicit
and human-readable explanations. Our framework consists
of the components rule learning and rule application. The
pseudocode for rule learning is shown in Algorithm 1 and
for rule application in Algorithm 2.

Rule Learning
As the first step of rule learning, temporal walks are ex-
tracted from the tKG G. For a rule of length l, a walk of
length l + 1 is sampled, where the additional step corre-
sponds to the rule head.

Let rh be a fixed relation, for which we want to learn
rules. For the first sampling step m = 1, we sample an edge
(e1, rh, el+1, tl+1), which will serve as the rule head, uni-
formly from all edges with relation type rh. A temporal ran-
dom walker then samples iteratively edges adjacent to the
current object until a walk of length l + 1 is obtained.

For sampling stepm ∈ {2, . . . , l+1}, let (es, r̃, eo, t) de-
note the previously sampled edge and A(m, eo, t) the set of
feasible edges for the next transition. To fulfill the temporal
constraints in (1) and (2), we define

A(m, eo, t) :=
{(eo, r, e, t̂) | (eo, r, e, t̂) ∈ G, t̂ < t} if m = 2,

{(eo, r, e, t̂) | (eo, r, e, t̂) ∈ G̃, t̂ ≤ t} if m ∈ {3, . . . , l},
{(eo, r, e1, t̂) | (eo, r, e1, t̂) ∈ G̃, t̂ ≤ t} if m = l + 1,

where G̃ := G \ {(eo, r̃−1, es, t)} excludes the inverse edge
to avoid redundant rules. For obtaining cyclic walks, we
sample in the last step m = l + 1 an edge that connects
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the walk to the first entity e1 if such edges exist. Otherwise,
we sample the next walk.

The transition distribution for sampling the next edge
can either be uniform or exponentially weighted. We de-
fine an index mapping m̂ := (l + 1) − (m − 2) to be
consistent with the indices in (1). Then, the exponentially
weighted probability for choosing edge u ∈ A (m, em̂, tm̂)
for m ∈ {2, . . . , l + 1} is given by

P(u;m, em̂, tm̂) =
exp(tu − tm̂)∑

û∈A(m,em̂,tm̂)

exp(tû − tm̂)
(3)

where tu denotes the timestamp of edge u. The exponential
weighting favors edges with timestamps that are closer to the
timestamp of the previous edge and probably more relevant
for prediction.

The resulting temporal walk W is given by

((e1, rh, el+1, tl+1), (el+1, rl, el, tl), . . . , (e2, r1, e1, t1)). (4)

W can then be transformed to a temporal rule R by re-
placing the entities and timestamps with variables. While the
first edge in W becomes the rule head (E1, rh, El+1, Tl+1),
the other edges are mapped to body atoms, where each
edge (ei+1, ri, ei, ti) is converted to the body atom
(Ei, r

−1
i , Ei+1, Ti). The final rule R is denoted by

((E1, rh, El+1, Tl+1)← ∧l
i=1(Ei, r

−1
i , Ei+1, Ti)). (5)

In addition, we impose the temporal consistency constraints
T1 ≤ T2 ≤ · · · ≤ Tl < Tl+1.

The entities (e1, . . . , el+1) inW do not need to be distinct
since a pair of entities can have many interactions at differ-
ent points in time. For example, Angela Merkel made several
visits to China in 2014, which could constitute important in-
formation for the prediction. Repetitive occurrences of the
same entity in W are replaced with the same random vari-
able in R to maintain this knowledge.

For the confidence estimation of R, we sample from the
graph a fixed number of body groundings, which have to
match the body relations and the variable constraints men-
tioned in the last paragraph while satisfying the condition
from (2). The number of unique bodies serves as the body
support. The rule support is determined by counting the
number of bodies for which an edge with relation type rh
exists that connects e1 and el+1 from the body. Moreover,
the timestamp of this edge has to be greater than all body
timestamps to fulfill (2).

For every relation r ∈ R, we sample n ∈ N tempo-
ral walks for a set of prespecified lengths L ⊂ N. The set
T Rl

r stands for all rules of length l with head relation r
with their corresponding confidences. All rules for relation
r are included in T Rr := ∪l∈LT Rl

r, and the complete set
of learned temporal rules is given by T R := ∪r∈RT Rr.

It is possible to learn rules only for a single relation or a
set of specific relations of interest. Explicitly learning rules
for all relations is especially effective for rare relations that
would otherwise only be sampled with a small probability.
The learned rules are not specific to the graph from which
they have been extracted, but they could be employed in an

Algorithm 2: Rule application
Input: Test query q = (eq, rq, ?, tq), temporal logical rules
T R, temporal knowledge graph G.
Parameters: Time window w ∈ N ∪ {∞}, minimum num-
ber of candidates k, score function f .
Output: Answer candidates C.

1: C ← ∅
. Apply the rules in T R by decreasing confidence.

2: if T Rrq 6= ∅ then
3: for rule R ∈ T Rrq do
4: Find all body groundings of R in SG ⊂ G, where

SG consists of the edges within the time window
[tq − w, tq).

5: Retrieve candidates C(R) from the target entities
of the body groundings.

6: for c ∈ C(R) do
7: Calculate score f(R, c). . See (6).
8: C ← C ∪ {(c, f(R, c))}
9: if |{c | ∃R : (c, f(R, c)) ∈ C}| ≥ k then

10: break
11: return C

inductive setting where the rules are transferred to related
datasets that share a common vocabulary for straightforward
application.

Rule Application
The learned temporal rules T R are applied to answer
queries of the form q = (eq, rq, ?, tq). The answer candi-
dates are retrieved from the target entities of body ground-
ings in the tKG G. If there exist no rules T Rrq for the query
relation rq , or if there are no matching body groundings in
the graph, then no answers are predicted for the given query.

To apply the rules on relevant data, a subgraph SG ⊂ G
dependent on a time window w ∈ N∪ {∞} is retrieved. For
w ∈ N, the subgraph SG contains all edges from G that have
timestamps t ∈ [tq − w, tq). If w = ∞, then all edges with
timestamps prior to the query timestamp tq are used for rule
application, i. e., SG consists of all facts with t ∈ [tmin, t

q),
where tmin is the minimum timestamp in the graph G.

We apply the rules T Rrq by decreasing confidence,
where each rule R generates a set of answer candidates
C(R). Each candidate c ∈ C(R) is then scored by a func-
tion f : T Rrq × E → [0, 1] that reflects the probability of
the candidate being the correct answer to the query.

Let B(R, c) be the set of body groundings of rule R that
start at entity eq and end at entity c. We choose as score func-
tion f a convex combination of the rule’s confidence and a
function that takes the time difference tq−t1(B(R, c)) as in-
put, where t1(B(R, c)) denotes the earliest timestamp t1 in
the body. If several body groundings exist, we take from all
possible t1 values the one that is closest to tq . For candidate
c ∈ C(R), the score function is defined as

f(R, c) = a·conf(R)+(1−a)·exp(−λ(tq−t1(B(R, c)))) (6)

with λ > 0 and a ∈ [0, 1].
The intuition for this choice of f is that candidates gener-

ated by high-confidence rules should receive a higher score.
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Adding a dependency on the timeframe of the rule ground-
ing is based on the observation that the existence of edges in
a rule become increasingly probable with decreasing time
difference between the edges. We choose the exponential
distribution since it is commonly used to model interarrival
times of events. The time difference tq − t1(B(R, c)) is al-
ways non-negative for a future timestamp value tq , and with
the assumption that there exists a fixed mean, the exponen-
tial distribution is also the maximum entropy distribution for
such a time difference variable. The exponential distribution
is rescaled so that both summands are in the range [0, 1].

All candidates are saved with their scores as (c, f(R, c))
in C. We stop the rule application when the number of dif-
ferent answer candidates |{c | ∃R : (c, f(R, c)) ∈ C}| is at
least k so that there is no need to go through all rules.

Candidate Ranking
For the ranking of the answer candidates, all scores of each
candidate c are aggregated through a noisy-OR calculation,
which produces the final score

1−Π{s|(c,s)∈C}(1− s). (7)

The idea is to aggregate the scores to produce a probabil-
ity, where candidates implied by more rules should have a
higher score.

In case there are no rules for the query relation rq , or
if there are no matching body groundings in the graph, it
might still be interesting to retrieve possible answer candi-
dates. In the experiments, we apply a simple baseline where
the scores for the candidates are obtained from the overall
object distribution in the training data if rq is a new relation.
If rq already exists in the training set, we take the object
distribution of the edges with relation type rq .

Experiments
Datasets
We conduct experiments on the dataset Integrated Cri-
sis Early Warning System1 (ICEWS), which contains in-
formation about international events and is a commonly
used benchmark dataset for link prediction on tKGs. We
choose the subsets ICEWS14, ICEWS18, and ICEWS0515,
which include data from the years 2014, 2018, and 2005
to 2015, respectively. Since we consider link forecasting,
each dataset is split into training, validation, and test set so
that the timestamps in the training set occur earlier than the
timestamps in the validation set, which again occur earlier
than the timestamps in the test set. To ensure a fair compar-
ison, we use the split provided by Han et al. (2021)2. The
statistics of the datasets are summarized in the supplemen-
tary material.

Experimental Setup
For each test instance (eqs, r

q, eqo, t
q), we generate a list of

candidates for both object prediction (eqs, r
q, ?, tq) and sub-

ject prediction (eqo, (r
q)−1, ?, tq). The candidates are ranked

by decreasing scores, which are calculated according to (7).
1https://dataverse.harvard.edu/dataverse/icews
2https://github.com/TemporalKGTeam/xERTE

The confidence for each rule is estimated by sampling 500
body groundings and counting the number of times the rule
head holds. We learn rules of the lengths 1, 2, and 3, and
for application, we only consider the rules with a minimum
confidence of 0.01 and minimum body support of 2.

We compute the mean reciprocal rank (MRR) and hits@k
for k ∈ {1, 3, 10}, which are standard metrics for link pre-
diction on KGs. For a rank x ∈ N, the reciprocal rank is
defined as 1

x , and the MRR is the average of all reciprocal
ranks of the correct query answers across all queries. The
metric hits@k (h@k) indicates the proportion of queries for
which the correct entity appears under the top k candidates.

Similar to Han et al. (2021), we perform time-aware filter-
ing where all correct entities at the query timestamp except
for the true query object are filtered out from the answers. In
comparison to the alternative setting that filters out all other
objects that appear together with the query subject and re-
lation at any timestamp, time-aware filtering yields a more
realistic performance estimate.

Baseline methods We compare TLogic3 with the state-
of-the-art baselines for static link prediction DistMult (Yang
et al. 2015), ComplEx (Trouillon et al. 2016), and Any-
BURL (Meilicke et al. 2019, 2020) as well as for tempo-
ral link prediction TTransE (Leblay and Chekol 2018), TA-
DistMult (Garcı́a-Durán, Dumanc̆ić, and Niepert 2018), DE-
SimplE (Goel et al. 2020), TNTComplEx (Lacroix, Obozin-
ski, and Usunier 2020), CyGNet (Zhu et al. 2021), RE-
Net (Jin et al. 2019), and xERTE (Han et al. 2021). All
baseline results except for the results on AnyBURL are
from Han et al. (2021). AnyBURL samples paths based
on reinforcement learning and generalizes them to rules,
where the rule space also includes, e. g., acyclic rules and
rules with constants. A non-temporal variant of TLogic
would sample paths randomly and only learn cyclic rules,
which would presumably yield worse performance than
AnyBURL. Therefore, we choose AnyBURL as a baseline
to assess the effectiveness of adding temporal constraints.

Results
The results of the experiments are displayed in Table 1.
TLogic outperforms all baseline methods with respect to the
metrics MRR, hits@3, and hits@10. Only xERTE performs
better than Tlogic for hits@1 on the datasets ICEWS18 and
ICEWS0515.

Besides a list of possible answer candidates with corre-
sponding scores, TLogic can also provide temporal rules and
body groundings in form of walks from the graph that sup-
port the predictions. Table 2 presents three exemplary rules
with high confidences that were learned from ICEWS14.
For the query (Angela Merkel, consult, ?, 2014/08/09), two
walks are shown in Table 2, which serve as time-consistent
explanations for the correct answer Barack Obama.

Inductive setting One advantage of our learned logical
rules is that they are applicable to any new dataset as long
as the new dataset covers common relations. This might be
relevant for cases where new entities appear. For example,
Donald Trump, who served as president of the United States

3Code available at https://github.com/liu-yushan/TLogic.
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Dataset ICEWS14 ICEWS18 ICEWS0515

Model MRR h@1 h@3 h@10 MRR h@1 h@3 h@10 MRR h@1 h@3 h@10

DistMult 0.2767 0.1816 0.3115 0.4696 0.1017 0.0452 0.1033 0.2125 0.2873 0.1933 0.3219 0.4754
ComplEx 0.3084 0.2151 0.3448 0.4958 0.2101 0.1187 0.2347 0.3987 0.3169 0.2144 0.3574 0.5204
AnyBURL 0.2967 0.2126 0.3333 0.4673 0.2277 0.1510 0.2544 0.3891 0.3205 0.2372 0.3545 0.5046

TTransE 0.1343 0.0311 0.1732 0.3455 0.0831 0.0192 0.0856 0.2189 0.1571 0.0500 0.1972 0.3802
TA-DistMult 0.2647 0.1709 0.3022 0.4541 0.1675 0.0861 0.1841 0.3359 0.2431 0.1458 0.2792 0.4421
DE-SimplE 0.3267 0.2443 0.3569 0.4911 0.1930 0.1153 0.2186 0.3480 0.3502 0.2591 0.3899 0.5275
TNTComplEx 0.3212 0.2335 0.3603 0.4913 0.2123 0.1328 0.2402 0.3691 0.2754 0.1952 0.3080 0.4286
CyGNet 0.3273 0.2369 0.3631 0.5067 0.2493 0.1590 0.2828 0.4261 0.3497 0.2567 0.3909 0.5294
RE-Net 0.3828 0.2868 0.4134 0.5452 0.2881 0.1905 0.3244 0.4751 0.4297 0.3126 0.4685 0.6347
xERTE 0.4079 0.3270 0.4567 0.5730 0.2931 0.2103 0.3351 0.4648 0.4662 0.3784 0.5231 0.6392

TLogic 0.4304 0.3356 0.4827 0.6123 0.2982 0.2054 0.3395 0.4853 0.4697 0.3621 0.5313 0.6743

Table 1: Results of link forecasting on the datasets ICEWS14, ICEWS18, and ICEWS0515. All metrics are time-aware filtered.
The best results among all models are displayed in bold.

Confidence Head Body

0.963 (E1, demonstrate or rally, E2, T4) (E1, riot, E2, T1) ∧ (E2,make statement, E1, T2) ∧ (E1, riot, E2, T3)

0.818 (E1, share information, E2, T2) (E1, express intent to ease sanctions−1, E2, T1)

0.750 (E1, provide military aid, E3, T3) (E1, provide military aid, E2, T1) ∧ (E2, intend to protect−1, E3, T2)

0.570 (Merkel, consult, Obama, 14/08/09) (Merkel, discuss by telephone, Obama, 14/07/22)

0.500 (Merkel, consult, Obama, 14/08/09) (Merkel, express intent to meet, Obama, 14/05/02)
∧ (Obama, consult−1, Merkel, 14/07/18) ∧ (Merkel, consult−1, Obama, 14/07/29)

Table 2: Three exemplary rules from the dataset ICEWS14 and two walks for the query (Angela Merkel, consult, ?, 2014/08/09)
that lead to the correct answer Barack Obama. The timestamps are displayed in the format yy/mm/dd.

Figure 2: MRR performance on the validation set of
ICEWS14. The transition distribution is either uniform or
exponentially weighted.

from 2017 to 2021, is included in the dataset ICEWS18 but
not in ICEWS14. The logical rules are not tied to particu-
lar entities and would still be applicable, while embedding-
based methods have difficulties operating in this challeng-
ing setting. The models would need to be retrained to obtain
embeddings for the new entities, where existing embeddings
might also need to be adapted to the different time range.

For the two rule-based methods AnyBURL and TLogic,

we apply the rules learned on the training set of ICEWS0515
(with timestamps from 2005/01/01 to 2012/08/06) to the test
set of ICEWS14 as well as the rules learned on the train-
ing set of ICEWS14 to the test set of ICEWS18 (see Ta-
ble 3). The performance of TLogic in the inductive setting
is for all metrics close to the results in Table 1, while for
AnyBURL, especially the results on ICEWS18 drop signif-
icantly. It seems that the encoded temporal information in
TLogic is essential for achieving correct predictions in the
inductive setting. ICEWS14 has only 7,128 entities, while
ICEWS18 contains 23,033 entities. The results confirm that
temporal rules from TLogic can even be transferred to a
dataset with a large number of new entities and timestamps
and lead to a strong performance.

Analysis
The results in this section are obtained on the dataset
ICEWS14, but the findings are similar for the other two
datasets. More detailed results can be found in the supple-
mentary material.

Number of walks Figure 2 shows the MRR performance
on the validation set of ICEWS14 for different numbers of
walks that were extracted during rule learning. We observe
a performance increase with a growing number of walks.
However, the performance gains saturate between 100 and
200 walks where rather small improvements are attainable.
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Gtrain Gtest Model MRR h@1 h@3 h@10

ICEWS0515 ICEWS14 AnyBURL 0.2664 0.1800 0.3024 0.4477
TLogic 0.4253 0.3291 0.4780 0.6122

ICEWS14 ICEWS18 AnyBURL 0.1546 0.0907 0.1685 0.2958
TLogic 0.2915 0.1987 0.3330 0.4795

Table 3: Inductive setting where rules learned on Gtrain are transferred and applied to Gtest.

Transition distribution We test two transition distribu-
tions for the extraction of temporal walks: uniform and ex-
ponentially weighted according to (3). The rationale behind
using an exponentially weighted distribution is the observa-
tion that related events tend to happen within a short time-
frame. The distribution of the first edge is always uniform to
not restrict the variety of obtained walks. Overall, the perfor-
mance of the exponential distribution consistently exceeds
the uniform setting with respect to the MRR (see Figure 2).

We observe that the exponential distribution leads to more
rules of length 3 than the uniform setting (11,718 compared
to 8,550 rules for 200 walks), while it is the opposite for
rules of length 1 (7,858 compared to 11,019 rules). The ex-
ponential setting leads to more successful longer walks be-
cause the timestamp differences between subsequent edges
tend to be smaller. It is less likely that there are no feasi-
ble transitions anymore because of temporal constraints. The
uniform setting, however, leads to a better exploration of the
neighborhood around the start node for shorter walks.

Rule length We learn rules of lengths 1, 2, and 3. Us-
ing all rules for application results in the best performance
(MRR on the validation set: 0.4373), followed by rules of
only length 1 (0.4116), 3 (0.4097), and 2 (0.1563). The rea-
son why rules of length 3 perform better than length 2 is that
the temporal walks are allowed to transition back and forth
between the same entities. Since we only learn cyclic rules,
a rule body of length 2 must constitute a path with no re-
curring entities, resulting in fewer rules and rule groundings
in the graph. Interestingly, simple rules of length 1 already
yield very good performance.

Time window For rule application, we define a time win-
dow for retrieving the relevant data. The performance in-
creases with the size of the time window, even though rele-
vant events tend to be close to the query timestamp. The sec-
ond summand of the score function f in (6) takes the time
difference between the query timestamp tq and the earliest
body timestamp t1(B(R, c)) into account. In this case, ear-
lier events with a large timestamp difference receive a lesser
weight, while generally, as much information as possible is
beneficial for prediction.

Score function We define the score function f in (6) as a
convex combination of the rule’s confidence and a function
that depends on the time difference tq − t1(B(R, c)). The
performance of only using the confidence (MRR: 0.3869) or
only using the exponential function (0.4077) is worse than
the combination (0.4373), which means that both the infor-
mation from the rules’ confidences and the time differences
are important for prediction.

Variance The variance in the performance due to differ-

ent rules obtained from the rule learning component is quite
small. Running the same model with the best hyperparame-
ter settings for five different seeds results in a standard devia-
tion of 0.0012 for the MRR. The rule application component
is deterministic and always leads to the same candidates with
corresponding scores for the same hyperparameter setting.

Training and inference time The worst-case time com-
plexity for learning rules of length l is O(|R|nlDb), where
n is the number of walks, D the maximum node degree
in the training set, and b the number of body samples for
estimating the confidence. The worst-case time complex-
ity for inference is given by O(|G|+ |T Rrq |DL|E| log(k)),
where L is the maximum rule length in T Rrq and k the
minimum number of candidates. For large graphs with high
node degrees, it is possible to reduce the complexity to
O (|G|+ |T Rrq |KLD|E| log(k)) by only keeping a max-
imum of K candidate walks during rule application.

Both training and application can be parallelized since
the rule learning for each relation and the rule application
for each test query are independent. Rule learning with 200
walks and exponentially weighted transition distribution for
rule lengths {1, 2, 3} on a machine with 8 CPUs takes 180
sec for ICEWS14, while the application on the validation
set takes 2000 sec, with w = ∞ and k = 20. For compari-
son, the best-performing baseline xERTE needs for training
one epoch on the same machine already 5000 sec, where an
MRR of 0.3953 can be obtained, while testing on the valida-
tion set takes 700 sec.

Conclusion

We have proposed TLogic, the first symbolic framework that
directly learns temporal logical rules from temporal knowl-
edge graphs and applies these rules for link forecasting. The
framework generates answers by applying rules to observed
events prior to the query timestamp and scores the answer
candidates depending on the rules’ confidences and time dif-
ferences. Experiments on three datasets indicate that TLogic
achieves better overall performance compared to state-of-
the-art baselines. In addition, our approach also provides
time-consistent, explicit, and human-readable explanations
for the predictions in the form of temporal logical rules.

As future work, it would be interesting to integrate acyclic
rules, which could also contain relevant information and
might boost the performance for rules of length 2. Further-
more, the simple sampling mechanism for temporal walks
could be replaced by a more sophisticated approach, which
is able to effectively identify the most promising walks.
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