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Abstract

We introduce the triangle-densest-k-subgraph problem
(TDkS) for undirected graphs: given a size parameter k, com-
pute a subset of k vertices that maximizes the number of
induced triangles. The problem corresponds to the simplest
generalization of the edge based densest-k-subgraph problem
(DkS) to the case of higher-order network motifs. We prove
that TDkS is NP-hard and is not amenable to efficient ap-
proximation, in the worst-case. By judiciously exploiting the
structure of the problem, we propose a relaxation algorithm
for the purpose of obtaining high-quality, sub-optimal solu-
tions. Our approach utilizes the fact that the cost function of
TDkS is submodular to construct a convex relaxation for the
problem based on the Lovász extension for submodular func-
tions. We demonstrate that our approaches attain state-of-the-
art performance on real-world graphs and can offer substan-
tially improved exploration of the optimal density-size curve
compared to sophisticated approximation baselines for DkS.
We use document summarization to showcase why TDkS is
a useful generalization of DkS.

Introduction
The task of extracting dense subgraphs from a given graph
has diverse applications in graph mining ranging from fraud
detection (Hooi et al. 2016; Zhang et al. 2017), chemical in-
formatics (Podolyan and Karypis 2009), computational bi-
ology (Saha et al. 2010) and knowledge discovery (Angel
et al. 2012; Tixier, Malliaros, and Vazirgiannis 2016). Ow-
ing to its practical relevance, the problem has received ex-
tensive attention (see (Cadena, Chen, and Vullikanti 2018)
and references therein) - we briefly highlight some promi-
nent formulations.

Given an undirected graph, the classic densest-subgraph
(DS) problem (Goldberg 1984) aims to detect the subgraph
with the maximum average induced degree. The problem is
known to be polynomial-time solvable, and admits a sim-
ple linear-time 1/2 approximation via a greedy algorithm
(Charikar 2000). However, real-world examples are known
(Tsourakakis et al. 2013) where the greedy algorithm re-
turns the trivial solution corresponding to the graph itself as
the densest subgraph. This undesirable behavior can be at-
tributed to the fact that the approach does not allow explicit

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

specification of the desired subgraph size. Adding a simple
size constraint to the DS problem results in the densest-k-
subgraph (DkS) problem (Feige, Peleg, and Kortsarz 2001),
which, for a specified node-size k, aims to find the sub-
graph with the maximum number of induced edges. Unfor-
tunately, the constraint also renders DkS NP–hard. More-
over, the problem is notorious for being very difficult to ap-
proximate, in the worst-case sense (Khot 2006; Bhaskara
et al. 2012; Manurangsi 2017). Notwithstanding such pes-
simistic results, polynomial-time algorithms which work
well in practice for DkS are known – these include low (con-
stant) rank matrix approximation techniques (Papailiopou-
los et al. 2014) and a recent work (Konar and Sidiropoulos
2021), which uses tools from submodular optimization to
construct a convex relaxation for DkS.

A salient feature of the aforementioned formulations is
that they quantify subgraph density in terms of induced
edges, which represent pair-wise relationships between ver-
tices. However, real-world graphs are often rich in higher-
order motifs, which signify stronger associations among ver-
tices as compared to pair-wise relationships alone (Watts and
Strogatz 1998). This suggests that leveraging higher-order
motif structure for dense subgraph discovery can detect sub-
graphs which are more clique-like compared to those ob-
tained via the edge-based formulations. For example, prior
work (Tsourakakis 2015) has introduced the `-clique dens-
est subgraph problem to extract the subgraph with the largest
average number of induced `-cliques. This is a generaliza-
tion of the DS problem (the latter corresponds to choos-
ing ` = 2) which remains polynomial-time solvable and
also admits effective approximation via a greedy algorithm
(Tsourakakis 2015). More importantly, applying this for-
mulation with ` = 3 (triangles, the simplest example of a
higher-order motif) to real-world graphs yields subgraphs of
higher edge density compared to using the DS with ` = 2.
However, like its edge-based counterpart, the `-clique dens-
est subgraph problem formulation does not provide a means
of explicitly controlling the desired subgraph size. We ar-
gue that this is a restrictive feature, since it does not allow
the end-user the flexibility in picking a desired solution. By
varying the size explicitly, one can obtain small subsets of
vertices which are tightly knit, to larger subsets which ex-
hibit smaller density, and everything in-between.

For this purpose, in this paper, we introduce the triangle-
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densest-k-subgraph problem (TDkS). Given an undirected
graph G on n vertices and a desired subgraph size k, we
aim to compute the subgraph with the maximum number of
induced triangles over all possible

(
n
k

)
subgraphs. Clearly,

TDkS is the simplest higher-order generalization of its edge
based counterpart DkS. To the best of our knowledge, how-
ever, this is the first time that the problem has been stud-
ied. Can adopting such a formulation enable us to discover
denser subgraphs compared to DkS, and thereby do a better
job at exploring the optimal density-size curve on real-world
graphs? Can TDkS extract more meaningful subsets than
DkS in real-world applications? These are the main ques-
tions considered in our paper. Given this context, our contri-
butions can be summarized as follows.
• Hardness: We prove that TDkS is NP-hard in the worst-
case. Additionally, we show that it is difficult to obtain a
favorable approximation of the optimal objective value of
TDkS in polynomial-time.
• Submodular relaxation and algorithm: Not withstand-
ing such pessimistic worst-case results, we focus on devel-
oping an approximation algorithm which can work well on
real-world instances. We show and leverage the fact that the
discrete cost function of TDkS is endowed with a specific
type of combinatorial structure - namely, it is a subdmodular
function. As such functions possess a unique, continuous,
convex extension (i.e., the Lovász extension), we devise a
convex relaxation for TDkS that minimizes the Lovász ex-
tension over the convex hull of the cardinality constraints.
Additionally, a key technical contribution of our paper is to
show that for TDkS, the Lovász extension admits an ana-
lytical functional form, which is difficult to determine for
general submodular functions. We exploit this structure to
develop a scalable Mirror Descent algorithm for solving
the problem, which, combined with a simple rounding pro-
cedure, can be employed for extracting candidate triangle-
dense subgraphs.
• Experiments: Our experiments reveal that the proposed
approach is very effective in mining triangle-dense sub-
graphs on real-world datasets. Interestingly, it can also ex-
tract subgraphs of higher edge density than state-of-the-art
DkS baselines, which is a bonus. Our experiments further
indicate that when TDkS is used for unsupervised document
summarization it yields more meaningful and interpretable
summaries than DkS does. A sneak preview of our results
can be found in Table 1, which depicts a summary of 30
words extracted from a text document representing a collec-
tion of reviews for the movie Joker, which we obtained from
the review aggregator website https://metacritic.com. In or-
der to apply our method to this text dataset, we constructed a
graph-based representation where unique words in the doc-
ument are vertices, with triplets of vertices being connected
via triangles if the words they correspond to co-occur to-
gether in a tri-gram (i.e., a sub-sentence of length 3). Note
that the TDkS represents a document summary composed
of a subset of k words which co-occur most frequently in
triples. An alternative graph model of text can be constructed
from bi-grams - here, an edge connects a pair of vertices if
the words they represent appear together in a bi-gram. In
this context, the DkS is the subset of k words which appear

Approach Extracted Summary

TDkS movie, joker, comic, book, character, reimagined,
movies, one, anchored, performance, joaquin,
phoenix, oscar, worthy, allows, would, study,
depressing, engrossing, masterful, iconic, well,
made, great, fine, almost, created, downside,
killer, work.

DkS film, movie, joker, comic, book, character, dc,
much, work, performance, joaquin, phoenix,
arthur, villain, todd, phillips, study, one, bad,

social, last, well, point, also, go, enough,
anything, specific, like, movies.

Table 1: Thirty-word summaries extracted from text reviews
of the 2019 movie Joker by applying TDkS (resp. DkS) on
a tri-gram (resp. bi-gram) graph-of-words model (Mihalcea
and Tarau 2004).

most frequently in pairs. Since TDkS exploits higher-order
co-occurrences (modeled using triangle motifs) relative to
DkS, we intuitively expect that for a fixed summary size
k, the former approach will yield more cohesive summaries
compared to the latter. The results in Table 1 confirm this
intuition.

We point out that, at a high level, our use of the Lovász
relaxation for TDkS is in the spirit of (Konar and Sidiropou-
los 2021) which introduced the Lovász relaxation for DkS.
That being said, there are also important differences (apart
from the fact that the two problems are distinct), the one
key being that computing an analytical functional form for
the Lovász extension of TDkS is substantially more chal-
lenging compared to the classical edge based case. Ad-
ditionally, the form that the Lovász extension of TDkS
takes is more complicated than that for DkS, which neces-
sitates an entirely different algorithmic approach. Finally,
to put our contributions into broader context, several re-
cent works (Tsourakakis 2015; Tsourakakis, Pachocki, and
Mitzenmacher 2017; Benson, Gleich, and Leskovec 2016;
Zhang and Parthasarathy 2012) have considered generaliz-
ing classical edge-based graph mining tasks to account for
higher-order network motifs. Our present work seeks to con-
tribute to this thread of research by developing new tools for
tackling a challenging problem in this area.

Primer on Submodularity
We provide a brief overview of basic concepts regarding
submodular functions (Lovász 1983; Bach et al. 2013; Fu-
jishige 2005). For a set of n objects V = {1, · · · , n}, a set
function F : 2|V| → R assigns a real value to any sub-
set S ⊆ V . A set function F is said to be submodular
if and only if F (A ∪ B) + F (A ∩ B) ≤ F (A) + F (B)
for all subsets A,B ⊆ V . For the special case where
n = 2 and V = {a, b}, the above condition simplifies to
F (∅)+F (V) ≤ F ({a})+F ({b}). A notable feature of sub-
modular functions is that they possesses a continuous, con-
vex extension known as the Lovász extension, which extends
their domain from 2|V| to the unit interval [0, 1]n (recall
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n = |V|). Formally, the Lovász extension fL : [0, 1]n → R
of a submodular function F is given by

fL(x) := max
g∈BF

gTx, (1)

where the set BF is the base polytope associated with F and
is defined as

BF := {g ∈ Rn : gT1V = F (V); gT1S ≤ F (S), ∀ S ⊆ V}.
(2)

It can be seen that the Lovász extension is the support func-
tion of the base polytope BF , and is thus a convex function.
In fact, fL is convex if and only if F is submodular. Further-
more, when evaluated at a binary vector x ∈ {0, 1}n, the
Lovász extension equals the value of the submodular func-
tion F .

Problem Statement
Given an undirected graph G := (V, E) on n vertices and
a parameter 4 ≤ k < n, we consider the problem of de-
termining the subgraph of size k that exhibits the maximum
weighted sum of induced triangles. LetX := {x ∈ {0, 1}n :
1Tx = k} be the set of all binary vectors with k non-zero
entries. Formally, the triangle-densest-k-subgraph (TDkS)
problem can be expressed as

max
x∈X

{
f(x) :=

∑
(u,v,w)∈∆

wtxuxvxw

}
, (3)

where ∆ denotes the set of triangles in the graph (each
counted once), and wt is a positive weight associated with
triangle t := {u, v, w} ∈ ∆ 1. We denote the optimal
value of (3) as f∗ (which represents the optimal weighted
sum of induced triangles) and the optimal triangle density
as ρ∗3(G, k) := f∗/

(
k
3

)
. Evidently, the above problem cor-

responds to maximizing a discrete third-order polynomial,
subject to a cardinality constraint. This suggests that it is no
easier to solve compared to the discrete quadratic maximiza-
tion form associated with its classic edge-based counterpart,
which is known to be NP–hard (Feige, Peleg, and Kortsarz
2001), and also very difficult to approximate. We make these
notions concrete by proving the following pair of negative
results regarding TDkS.
Theorem 1. TDkS is NP–hard.
In light of the above result, it is unlikely that the problem ad-
mits an efficient solution in polynomial-time. Consequently,
we focus on developing effective approximation algorithms
for problem (3) that run in polynomial-time. However, we
first show that TDkS is fundamentally not amenable to fa-
vorable approximation in the worst-case sense; in fact it is
more difficult to approximate compared to DkS.

More precisely, given an instance of DkS, let ρ∗2(G, k)
denote the optimal edge-density, defined as the ratio of the
number of induced edges in the optimal size-k subgraph and
the maximum possible number of induced edges

(
k
2

)
. Re-

garding the hardness of approximation of DkS, the follow-
ing result is known (Manurangsi 2017).

1If G is unweighted, each triangle t ∈ ∆ has weight wt = 1.

Lemma 1. Assuming that the Exponential Time Hypothesis
(ETH) is valid, there is no polynomial-time algorithm that
can approximate the optimal value of DkS better than a mul-
tiplicative factor α(n) := n1/(log log n)c , where c > 0 is a
universal constant.
Note that the quantity α(n) > 1. Hence, given an arbi-
trary instance of DkS, there is no polynomial-time algorithm
which can output a size-k subgraph whose edge-density is
guaranteed to be no worse than a fraction 1/(α(n))1−ε of
the optimal edge-density ρ∗2(G, k), for any ε > 0. In other
words - if ρ̄2(G, k) denotes the edge density achieved by
any polynomial-time approximation algorithm applied on a
fixed instance of DkS, it must hold that

ρ∗2(G, k) ≥ ρ̄2(G, k) ≥ O
(

1

α(n)

)
ρ∗2(G, k). (4)

We now demonstrate that the above hardness result for DkS
can be utilized to derive an analogous hardness of approxi-
mation result for TDkS as well.
Theorem 2. Assuming ETH is true, there is no polynomial-
time algorithm that can approximate the optimal value of
TDkS better than a multiplicative factor β(n) := (α(n))3/2.
The above result implies that TDkS is more difficult to ap-
proximate compared to DkS, which is already known to be a
challenging problem. Roughly speaking, Theorem 2 asserts
that even the best possible polynomial-time approximation
algorithm for TDkS must exhibit an approximation gap that
grows as a polynomial in the size of the problem input n,
which is a very pessimistic result.

That being said, the results of Theorem 1 and 2 are based
on viewing the problem from the perspective of the worst-
case scenario, which may not always arise in practice. With
this in mind, we propose a convex relaxation for TDkS with
the aim of obtaining high-quality, sub-optimal solutions on
real-world instances.

The Lovász Relaxation
In order to explain our approach, we first reformulate TDkS
in combinatorial form as follows. Let C := {S ⊂ V : |S| =
k} denote the collection of subsets of vertices of size k. Note
that there is a one-to-one correspondence between the el-
ements of X and C; every vector x ∈ X is precisely the
indicator function of a subset of vertices S ∈ C, i.e., given a
vector x ∈ X and a set S ∈ C, we have the equivalence

xu =

{
1 ⇔ u ∈ S
0 ⇔ u /∈ S. (5)

This observation allows us to equivalently express problem
(3) in minimization form as

min
S∈C

{
F (S) :=

∑
(u,v,w)∈∆

Fuvw(S)

}
, (6)

where for each triangle (u, v, w) ∈ ∆, we have defined the
function

Fuvw(S) := F (S ∩{u, v, w}) =

{
−wt, if (u, v, w) ∈ S,
0, otherwise.

(7)
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Hence, the cost function F (S) linearly decomposes over the
set of triangles of G, with each component function Fuvw(S)
contributing to the overall cost if and only if all three vertices
constituting a triangle are included in the subgraph induced
by S ∈ C. Our starting point is the following observation
regarding the cost function F (S).

Theorem 3. F (S) is a submodular function.

Note that Theorem 3 does not change the fact that prob-
lem (3) is difficult to solve in the worst-case. However, it
does allow us to adopt the following relaxation strategy. Let
P := {x ∈ [0, 1]n;1Tx = k} denote the convex hull of the
combinatorial sum-to-k constraints. The key idea underpin-
ning our approach is the following. Since the cost function
of (6) is submodular, we can replace it by its Lovász exten-
sion to obtain the following equivalent problem

min fL(x)

s.to x ∈ {0, 1}n ∩ P . (8)

Note that the equivalence stems from the fact that the Lovász
extension equals the value of F (.) at all binary {0, 1}n vec-
tors. Upon dropping the discrete constraints, we obtain the
relaxed problem

min
x∈P

fL(x) (9)

which corresponds to minimizing the Lovász extension of
F over the convex hull of the combinatorial set C. Our ra-
tionale for employing the Lovász extension as a convex sur-
rogate of F stems from the fact that it corresponds to the
convex closure of F on the domain [0, 1]n. In other words,
in a certain sense, the Lovász extension is the tightest convex
under-estimator of F .

It is evident that problem (9) is convex, and hence can be
optimally solved in polynomial-time to obtain a lower bound
on the optimal value of (6). However, from an algorithmic
standpoint, a major issue in solving the above problem is
that the Lovász extension of a submodular function does not
admit an analytical functional form in general. This can be
attributed to the fact that the base polytope BF is character-
ized by (potentially) an exponential number of inequalities
in the problem dimension n. In a seminal paper, Edmonds
(Edmonds 1970) established that a greedy algorithm based
on sorting and querying F on n specific subsets suffices to
compute a subgradient of the Lovász extension at any point
x ∈ [0, 1]n without requiring explicit specification of the
base polytope BF . While this result can be utilized within
a projected subgradient framework for solving (9), for our
present problem, we elect not to do so. This is due to the
fact that the greedy algorithm is generic, i.e., it is not tai-
lored to exploit the form of the submodular cost function of
(6), which, in addition to its incremental nature, can result in
a heavy computational footprint on large graphs.

We now demonstrate that it is possible to circumvent the
aforementioned challenges related to solving (9) efficiently,
and the main reason is that the Lovász extension for TDkS
does admit an analytical form. In order to formally establish
the result, we exploit the fact that F is linearly decompos-
able over the triangle-set ∆, which in turn implies that its
base polytope can be expressed as the Minkowski sum of the

base polytopes of the constituent functions Fuvw(Schrijver
2003, Theorem 44.6), i.e., we have

BF =
∑

(u,v,w)∈∆

BFuvw
, (10)

where BFuvw
is the base polytope associated with the com-

ponent Fuvw, and we have overloaded notation to represent
set addition using the standard addition operator. Our next
result shows that each such “sub”-polytope BFuvw

admits a
simple characterization.
Lemma 2. The base polytope of Fuvw is given by

BFuvw = −wtconv(eu, ev, ew). (11)

Hence, the base polytope of Fuvw is the probability simplex
in the space spanned by the coordinates indexed via (u, v, w)
reflected about the origin and scaled by the weight wt. Next,
we exploit this result to derive an analytical form for the
Lovász extension of F .
Theorem 4. The Lovász extension of F is given by

fL(x) = −
∑

(u,v,w)∈∆

wt min{xu, xv, xw}

The above result allows us to express problem (9) as

min
x∈[0,1]n,∑n
u=1 xu=k

∑
(u,v,w)∈∆

wt max{−xu,−xv,−xw}, (12)

which we designate as the Lovász relaxation. On inspecting
the problem, however, it offers little in terms of an intuitive
explanation as to why it can serve as a useful approximation
for TDkS. To this end, our next result shows that the Lovász
extension can be cast in an alternate form, which provides
additional insight regarding (12).
Theorem 5. The Lovász extension of F can be expressed as

fL(x) = −tTx +
∑

(u,v,w)∈∆

wt · φt(xu, xv, xw) (13)

where t ∈ Rn denotes the vector of triangle degrees and
φt(xu, xv, xw) := max{xu+xv−2xw, xv+xw−2xu, xu+
xw − 2xv}.

Using the above derived form, we now provide an intu-
itive explanation for the Lovász relaxation. Given any subset
of vertices S ⊆ V , define the triangle “volume” vol∆(S) :=∑
v∈S tv of S to be the sum of the weighted triangle counts

of the vertices that constitute S . Using a double counting ar-
gument, the triangle volume of any subset S ⊆ V can be
equivalently expressed as

vol∆(S) = t1(S) + 2t2(S) + 3t3(S), (14)

where t1(S), t2(S) and t3(S) denote the weighted sum of
triangles with one, two and three endpoints in S , respec-
tively. The above identity can be re-written as

t3(S) = (vol∆(S)− [2t2(S) + t1(S)])/3, ∀ S ⊆ V . (15)

Note that the term on the left hand side corresponds to the
objective function of TDkS. Hence, among subgraphs of a
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given size, those containing a large number of induced tri-
angles must exhibit a large triangle volume (the first term
on the right hand side) while simultaneously having few tri-
angles being cut as a result of crossing the boundary of S
(measured by the sum of the two terms subtracted from the
volume). To be precise, for any given subset, a severed trian-
gle with two endpoints {u, v} ∈ S affects the triangle counts
(tu, tv) of both respective vertices (and hence the−2 factor),
whereas a cut triangle with a single endpoint u ∈ S affects
the triangle count tu of only that vertex (and hence the −1
factor). The above equation asserts that for subgraphs with
high triangle density, these losses stemming from severed
triangles should be small compared to the triangle volume.

In order to establish the link with the form of the Lovász
extension established in Theorem 5, we re-write (15) as

−t3(S) = −(vol∆(S) + [2t2(S) + t1(S)])/3. (16)

Since we have already established that −t3(S) is a submod-
ular function and vol∆(S) is a modular (and thus submod-
ular) function, the remainder on the right hand side must
also be submodular, as submodularity is preserved under
addition. Furthermore, as the Lovász extension of the sum
of submodular functions equals the sum of the Lovász ex-
tensions of the component functions, inspecting the result
of Theorem 5 reveals that it corresponds to the sum of the
Lovász extensions of the terms on the right hand side of
(16). Hence, the extension preserves the first term, corre-
sponding to the triangle volume, whereas it uses a convex
surrogate for the second term to approximate the losses in
the volume stemming from severed triangles. In particular,
when solving the Lovász relaxation, each vertex is assigned
a soft score that indicates how likely it is to belong to the
triangle-densest-k subgraph. The formulation then assigns
the highest emphasis on those vertices which have large tri-
angle counts, but also exhibit small variation in scores across
triangles.

Algorithm: Mirror Descent
In this section, we describe our algorithm for efficiently
solving the Lovász relaxation (12), which is a convex prob-
lem. Since the Lovász extension is non-differentiable, this
suggests employing a Euclidean projected subgradient algo-
rithm for solving (12). The algorithm starts from an initial
feasible point x0 ∈ P and then proceeds in the following
iterative fashion

xr+1 = arg min
x∈P

{
(gr)Tx+

1

βr
‖x−xr‖22

}
, ∀ r ∈ N (17)

where gr ∈ ∂fL(xr) denotes a subgradient of the Lovász
extension fL(x) at the current iterate x = xr and βr > 0
is the learning rate. A standard result in convex optimiza-
tion states that if the subgradients of fL are bounded in the
Euclidean sense, i.e., there exists a constant G > 0 such that

‖g‖2 ≤ G, ∀ g ∈ ∂fL(x), ∀ x ∈ P , (18)

then using the learning rate schedule βr = O(1/(
√
r)) is

sufficient to guarantee convergence to the optimal cost of
(12) at a sublinear-rate of O(G/

√
r) (Bubeck 2015, Theo-

rem 3.2). From this result, one can hope that the iteration

complexity of the Euclidean subgradient algorithm is inde-
pendent of the problem dimension n, which is a desirable
trait for scaling up to large problem instances. However, the
above claim is true provided that the Lipschitz constant G
of the Lovász extension is independent of n. Unfortunately,
this is not the case for our problem, as it can be shown that
G varies like O(n). Consequently, the Euclidean subgradi-
ent method (17) applied to solve (12) attains a dimension-
dependent convergence rate of O(

√
n
r ), which has undesir-

able implications for large-scale instances.
Thus, the non-Euclidean geometry of the problem renders

the standard subgradient method (which measures distances
in the `2-sense) a poor fit. In order to correct for this “mis-
match” in geometry, we propose to employ the Mirror De-
scent algorithm (MDA) (Beck and Teboulle 2003), which
can be viewed as a generalization of the subgradient algo-
rithm to non-Euclidean spaces. To be specific, MDA is an
iterative first-order algorithm that starts from a point x0 ∈ P
and performs the following updates

xr+1 = arg min
x∈P

{
(gr)Tx +

1

βr
D(x,xr)

}
, ∀ r ∈ N (19)

whereD(., .) is an appropriate “proximity”-measuring func-
tion. For example, on choosing D(x,xr) = ‖x − xr‖22,
we obtain the standard subgradient algorithm. This proxi-
mal term can be viewed as the Bregman divergence associ-
ated with the function ‖x‖22, which is strongly convex w.r.t.
the `2 norm.

For our problem, the subgradients of the Lovász extension
have constant size in the `∞ sense (see Section H of sup-
plement), which motivates measuring distances using the `1
norm (which is the dual norm of the `∞ norm). This obser-
vation also suggests the choice of D(., .) in MDA to be the
un-normalized Kullback-Leibler (KL) divergence between
the points x and xr, which is defined as DKL(x,xr) =∑n
i=1 xi

(
log xi

xr
i
− 1

)
+ xri . Such a choice is based on the

fact that the KL divergence is the Bregman divergence asso-
ciated with the negative entropy function, which is strongly
convex w.r.t. `1 norm on the feasible set P . On performing
the MDA udpates (19) using KL divergence with the learn-
ing rate schedule βr = O(

√
log n/r), invoking a standard

result in convex optimization (Bubeck 2015, Theorem 4.2)
guarantees a convergence rate of O(G∞

√
log n/r), where

G∞ denotes the Lipschitz constant of fL w.r.t. the `1 norm.
Since this quantity is a constant, we obtain a convergence
rate that exhibits a significantly improved dependence on the
problem dimension n compared to that of the standard sub-
gradient algorithm. Hence, fixing the geometry mismatch
by employing the `1 norm to measure distances in MDA
pays substantial dividends in this case. Owing to space con-
straints, the details of deriving the MDA updates are omitted.
A full description of MDA is provided in Algorithm 1.

Since the computed solution xL is not guaranteed to be
integral in general, we perform a simple post-processing
rounding step in order to obtain a binary indicator vector cor-
responding to a candidate subgraph. This is accomplished by
simply projecting xL onto the discrete sum-to-k constraints,
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Algorithm 1: MIRROR DESCENT

Input: Triangle list ∆, triangle weights {wt}t∈∆, subgraph
size k, bisection tolerance ε > 0.
Initialize: x1 = (k/n)1, r = 1.

1: while Convergence criterion is not met do
2: Obtain gr ∈ ∂fL(xr).
3: Update step-size βr = c/

√
r.

4: yr := xr ~ exp(−βrgr).
5: xr+1 = BISECTION(yr, k, ε).
6: Update r = r + 1.
7: end while
8: return xL = (1/r)

∑r
i=1 x

i

Graph n m |∆|
PPI-HUMAN 21,557 342K 2.39M

FACEBOOK-B 63,731 817K 3.51M
CAIDA 192K 609K 455K

WEB-STANFORD 281K 2.31M 11.33M
WEB-GOOGLE 875K 5.10M 13.39M
WIKI-TOPCATS 1.8M 28.51M 52.11M

Table 2: Summary of graph statistics: the number of vertices
(n), the number of edges (m), and the number of triangles
(|∆|).

which is equivalent to identifying the support of the k-largest
entries in xL, and can be performed inO(n log k) time using
heaps.

Experiments
In this section, we test the effectiveness of our proposed
method in exploring the triangle density-size trade-off
across a collection of real-world graphs. Additionally, we
consider an application of TDkS to document summariza-
tion. Our results indicate that contrary to the worst-case sce-
nario, real-world instances of TDkS can be far from adver-
sarial, with the Lovász relaxation being effective at identify-
ing high-quality, sub-optimal solutions.

Baselines
To the best of our knowledge, we are unaware of any pre-
existing algorithms for the TDkS problem. Hence, we em-
ploy two state-of-the-art baselines for the (edge) densest-k-
subgraph DkS problem, and test their efficacy at discover-
ing triangle-dense subgraphs. These methods are described
in brief below - additional details can be found in Section K
of the supplement.
Lovász Relaxation for DkS (Konar and Sidiropoulos
2021): Similar to the approach considered herein (at a high
level), but applied to the edge-density based formulation.
Utilizes a variant of the Alternating Direction Method of
Multipliers (ADMM) (Condat 2013) to solve the relaxed
problem.
Low-rank Binary Matrix Principal Component (Papail-
iopoulos et al. 2014): Employs a rank-1 decomposition of
the graph adjacency matrix A, followed by solving the DkS

problem with the rank-1 approximation in place of A. The
resulting problem admits a simple solution in O(n) time
which also provides an instance-specific upper bound on the
optimal edge density for a given subgraph size. While not
attainable in general, this bound can serve as a useful per-
formance benchmark.
Triangle-density upper bound: The edge-density upper
bound for DkS obtained via the above approach can also
be converted into an upper bound on the optimal triangle
density for TDkS via the Kruskal-Katona theorem (Kruskal
1963; Katona 1972). However, such a bound is not attainable
in general for every choice of k as it is more loose compared
to the bound on the optimal edge-density. In spite of this, we
observed that on real-world graphs the Lovász relaxation for
TDkS can attain this upper bound, or capture a significant
fraction of it.

Since the first two baselines do not aim to directly de-
tect triangle dense subgraphs, for fair comparison, we also
compare the efficacy of our proposed methods for TDkS at
detecting edge-dense subgraphs against the above baselines.

Datasets
We used a collection of graph datasets (summarized in Ta-
ble 2) from standard repositories (Leskovec and Krevl 2014;
Kunegis 2013) to test the performance of all methods. For
TDkS, we used the well-known NODEITERATOR++ algo-
rithm (Suri and Vassilvitskii 2011, Algorithm 2) to obtain a
list of triangles in the graph, which incurs a run-time com-
plexity of O(|E|3/2).

Results and Discussion
The outcomes of our experiments on the considered datasets
are depicted in Figure 1. Our main findings are:
• With regard to subgraph triangle density (left column in
Figure 1), solving the Lovász relaxation for TDkS via Mirror
Descent followed by rounding consistently yields the best
results across all considered graphs. In fact, for small sub-
graph sizes (≤ 100), it is the only method that attains, or
comes close to attaining the upper bound on the optimal tri-
angle density. Our results demonstrate that although TDkS
is NP–hard and difficult to approximate in the worst-case,
the Lovász relaxation can still prove to be an effective tool
for detecting triangle-dense subgraphs in real-world graphs.
•Although the Mirror Descent algorithm aims to detect sub-
graphs with high triangle density, it turns in a commendable
performance in terms of edge density as well (right column
in Figure 1). In fact, for subgraph sizes ≤ 200, it outper-
forms the dedicated edge based formulations, often by a sig-
nificant margin and comes closest to attaining the edge den-
sity upper bound. This can be viewed as a consequence of
the Kruskal-Katona theorem which formalizes the follow-
ing intuitive notion: if a subgraph has high triangle density,
then it must possess high edge density as well. Looking at
Figure 1 (right column) confirms this observation.
• For large subgraph sizes, the edge density obtained by Mir-
ror Descent / TDkS is often second (although by a small
margin) to that obtained by applying the Lovász relaxation
for DkS. Empirically, we note that this occurs (i.e., the blue
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Figure 1: Left column: Triangle density (on a log-scale) vs
size. Right column: Edge density vs size. Red (Rank-1 least-
squares matrix principal component) and blue (ADMM)
curves are methods for DkS while the magenta curve (MD)
is for TDkS. The black curve in the right column depicts
the edge density upper bound for DkS. This bound com-
bined with the Kruskal-Katona theorem also yields an upper
bound on TDkS (black curve in the left column).

curve “overtakes” the magenta curve) when the edge density
falls below the 50% threshold. A possible explanation is as
follows. Turán’s theorem (Turán 1941) states that a graph
can exhibit an edge density at most 0.5 without harboring
any triangles. In other words, below this threshold, there do
exist graphs with edge density up to 50% while contain-
ing very few triangles. Consequently, in the regime where
the densest subgraph of a given size has edge density up-
per bounded by 0.5, employing a density measure based on
edges may prove to be more beneficial as opposed to using
triangles, if one cares more about edge density.

Conclusions
We considered the triangle-densest-k-subgraph problem
(TDkS) which aims to compute the size k subgraph with
the largest number of induced triangles. Unfortunately, not
only is the problem NP–hard, but it is also difficult to ap-
proximate in polynomial-time, in the worst-case sense. With
the aim of computing high-quality, sub-optimal solutions on
real-world instances, we exploited the fact that the cost func-
tion of TDkS is submodular to construct a convex relaxation
of the problem based on the Lovász extension of submod-
ular functions. As we derived an analytical functional form
for the extension, this enabled us to devise a Mirror Descent
algorithm for efficiently solving the problem at scale. Our re-
sults on real-world graphs showcased that our approach can
effectively exploit triangle motifs to attain state-of-the-art
performance, and can provide a more effective means of ex-
ploring the density-size trade-off compared to baselines that
only use edges for density maximization. Additionally, we
utilized the problem of document summarization to show-
case that TDkS can generate more informative word sum-
maries compared to DkS.
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