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Abstract
Online recommender systems should be always aligned with
users’ current interest to accurately suggest items that each
user would like. Since user interest usually evolves over time,
the update strategy should be flexible to quickly catch users’
current interest from continuously generated new user-item
interactions. Existing update strategies focus either on the im-
portance of each user-item interaction or the learning rate
for each recommender parameter, but such one-directional
flexibility is insufficient to adapt to varying relationships be-
tween interactions and parameters. In this paper, we propose
MeLON, a meta-learning based novel online recommender
update strategy that supports two-directional flexibility. It is
featured with an adaptive learning rate for each parameter-
interaction pair for inducing a recommender to quickly learn
users’ up-to-date interest. The procedure of MeLON is op-
timized following a meta-learning approach: it learns how a
recommender learns to generate the optimal learning rates for
future updates. Specifically, MeLON first enriches the mean-
ing of each interaction based on previous interactions and
identifies the role of each parameter for the interaction; and
then combines these two pieces of information to generate
an adaptive learning rate. Theoretical analysis and extensive
evaluation on three real-world online recommender datasets
validate the effectiveness of MeLON.

Introduction
The widespread of mobile devices enables a large number
of users to connect to a variety of online services, such as
video streaming (Davidson et al. 2010), shopping (Linden,
Smith, and York 2003), and news (Gulla et al. 2017), where
each user seeks only a few items out of a myriad of items
in services. To keep users involved, online services struggle
to meet each user’s needs accurately by deploying personal-
ized recommender systems (Koren 2008), which suggest the
items potentially interesting to him/her. In an online setting
where a user’s current interest changes constantly, the online
recommender should catch up each user’s up-to-date inter-
est to prevent its service from being stale (He et al. 2016).
To this end, recommender models are updated continuously
in response to new user-item interactions.

In modern online recommender systems, fine-tuning has
been widely employed to update models since it is infeasible
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(a) Importance Reweighting. (b) Meta-Optimization. (c) Ours: MeLON.

Figure 1: Flexibility comparison of adjusting a learning
rate w to update a parameter θ given a user-item inter-
action x. While (a) importance reweighting and (b) meta-
optimization support only one of the two learning perspec-
tives, (c) MeLON supports both of them.

to re-train the models from scratch whenever new user-item
interactions come in. Specifically, pre-trained models (i.e.,
snapshots trained on past user-item interactions) are fine-
tuned based only on new user-item interactions. Fine-tuning
not only requires less computational cost but also has suf-
ficient capability to reflect up-to-date information (Zhang
et al. 2020). However, because few-shot incoming user-item
interactions are very sparse in the user-item domain (Finn
et al. 2019), the standard fine-tuning scheme would not suit
online recommender systems to quickly adapt to up-to-date
user interest. Therefore, the key challenge is to overcome
this data sparsity for fine-tuning.

To cope with this challenge, previous researches have
been actively studied in two directions.
• Importance reweighting adjusts the importance of each

new user-item interaction (He et al. 2016; Shu et al. 2019).
These methods receive the loss of a new user-item interac-
tion from a recommender as a supervisory signal and then
determine how much the recommender should be fine-
tuned by each user-item interaction.

• Meta-optimization controls how much each recom-
mender parameter should be fine-tuned from new user-
item interactions (Zhang et al. 2020). These methods de-
termine a parameter-wise optimization strategy such as a
learning rate, given the loss of the new user-item interac-
tions and each parameter’s previous optimization history.
These two orthogonal approaches focus on different as-

pects on learning: importance reweighting focuses on the
impact of each user-item interaction, as shown in Figure
1(a), while meta-optimization focuses on that of each pa-
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Figure 2: Illustration of MeLON’s procedure. MeLON (i) represents the importance of a given user-item interaction for the
current update based on previous interactions, (ii) identifies the role of each parameter for the interaction, and (iii) adapts a
learning rate specific to each parameter-interaction pair.

rameter, as shown in Figure 1(b). That is, both approaches
support the one-directional flexibility in the either data or
parameter perspective. If we regard fine-tuning at each time
period as a distinct task (Zhang et al. 2020), the role of each
parameter in a recommender varies for different user-item
interactions, because it is well known that an explanatory
factor (i.e., parameter) in a neural network has different rel-
evance toward different tasks (Bengio, Courville, and Vin-
cent 2013). Thus, we contend that the flexibility in both data
and parameter perspectives should be achieved. However,
the two existing approaches lack this level of flexibility, pos-
sibly leading to sub-optimal recommendation quality.

In this paper, we propose MeLON (Meta-Learning for
ONline recommender update), a novel online recommender
update strategy that supports the flexibility in both data and
parameter perspectives. It learns to adaptively adjust the
learning rate of each parameter for each new user-item inter-
action, as illustrated in Figure 1(c). Because the optimality
of a learning rate depends on how much informative on both
perspectives and how to exploit them, we derive three re-
search objectives: (i) how to describe the importance of the
task with a new user-item interaction, (ii) how to identify the
role of each parameter for the task, then (iii) how to deter-
mine the optimal learning rate for each pair of interactions
and parameters based on their mutual relevance.

Corresponding to the three research questions, MeLON
goes through the following three steps, as shown in Fig-
ure 2. First, because exploiting the connections from the
new user-item interaction is very helpful to mitigate the
data sparsity issue, MeLON employs a graph attention net-
work (GAT) (Veličković et al. 2018) to represent the impor-
tance of each new user-item interaction along with previ-
ous user-item interactions. Then, an explicit neural mapper
dynamically captures the role of a parameter, assessing its
contribution to the new user-item interaction by the loss and
gradient. Last, the two representations—for an interaction
and a parameter—are jointly considered to generate the op-
timal learning rate specific to the interaction-parameter pair.
MeLON repeats the three steps for every online update, fol-
lowing the learning-to-learn philosophy of meta-learning.
That is, the meta-model MeLON learns to provide the learn-
ing rates such that the recommender model updated using
those learning rates quickly grasps what users want now.

The effectiveness of MeLON is extensively evaluated
on two famous recommender algorithms using three real-

world online service datasets in a comparison with six up-
date strategies. In short, the results show that MeLON suc-
cessfully improves the recommendation accuracy by up to
29.9% in term of HR@5. Such capability of MeLON is
empowered by two-directional flexibility under learning-to-
learn strategy, which is further supported by the theoretical
analysis and ablation study.

Preliminary and Related Work
Online recommenders build a pre-trained model using previ-
ous user-item interactions, and the pre-trained model is con-
tinuously updated in response to incoming user-item inter-
actions. A deep neural network (DNN) is widely used for a
recommender, and it is updated for each mini-batch (Ruder
2016) to quickly adapt to users’ up-to-date interest. Let
x = (t, u, i) denote a user-item interaction between a user u
and an item i at time t. Suppose that a mini-batch Bt consists
of n new user-item interactions at time t. Then, the recom-
mender at time t, parameterized by Θt = {θt,1, . . . , θt,M}
where M is the total number of parameters, is updated by

Θt+1 = Θt − η∇Θt

∑
x∈Bt

1

n
LΘt(x)

= Θt −∇Θt
LΘt

(Bt)>W .

(1)

Here, η is a learning rate, and LΘt
(Bt) ∈ Rn denotes the

loss of new user-item interactions in the mini-batch Bt by
the recommender model Θt under any objective function L
such as mean squared error (MSE) or Bayesian personalized
ranking (BPR) (Rendle et al. 2009). The learning rate ma-
trix W ∈ Rn×M is used to represent the learning rate for
a parameter θm in response to each user-item interaction x,
where all the learning rates (i.e., all elements of W ) are typ-
ically set equally to w = η

n . Then, the overall performance
is derived by evaluating each recommender snapshot for a
given mini-batch at each time step,

min
{Θt}Tt=1

T∑
t=1

∑
x∈Bt

LΘt(x) = min
{Θt}Tt=1

T∑
t=1

LΘt(Bt). (2)

The two directions—importance reweighting and meta-
optimization—for online recommender updates are charac-
terized by the construction of the learning rate matrix W .
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Importance Reweighting
Instead of assigning the equal importance 1/n to each user-
item interaction as in Eq. (1), importance reweighting (He
et al. 2016; Shu et al. 2019) assigns a different importance
determined by a reweighting function φI(·),

Θt+1 = Θt − η∇Θt

∑
x∈Bt

LΘt
(x) · φI

(
LΘt

(x)
)︸ ︷︷ ︸

interaction-wise

= Θt −∇ΘtLΘt(Bt)>W I ,

(3)

where φI(·) receives the loss of each user-item interaction as
its input. That is, W I ∈ Rn×M is constructed such that each
row has the same value returned by φI(·). The representative
methods differ in the detail of φI(·), as follows:

• eALS (He et al. 2016) applies a heuristic rule that assigns
a weight for each new user-item interaction. Typically, a
high weight is set to learn the current user interest.

• MWNet (Shu et al. 2019) maintains an external meta-
model that adaptively assesses the importance of a given
user-item interaction for model update that lets the up-
dated model minimize the loss on meta-data (e.g., next
recommendation in online update).

However, this scheme does not support the varying role of
a parameter for different tasks.

Meta-Optimization
On the other hand, meta-optimization (Ravi and Larochelle
2017; Li et al. 2017; Du et al. 2019; Zhang et al. 2020) aims
at adjusting the learning rate of each recommender parame-
ter θt,m via a learning rate function φP (·),

Θt+1 = Θt − φP
(
LΘt

(Bt),Θt

)
︸ ︷︷ ︸

parameter-wise

·∇Θt

∑
x∈Bt

1

n
LΘt

(x)

= Θt −∇ΘtLΘt(Bt)>W P ,

(4)

where the function φP (·) receives the training loss of a mini-
batch and the recommender parameters Θt as its input. That
is, W P ∈ Rn×M is constructed such that each column has
the same value returned by φP (·). Again, the representative
algorithms differ in the detail of φP (·), as follows:

• S2Meta (Du et al. 2019) exploits MetaLSTM (Ravi and
Larochelle 2017) to decide how much to forget a param-
eter’s previous knowledge and to learn new user-item in-
teractions via the gating mechanism of LSTM (Hochreiter
and Schmidhuber 1997).

• MetaSGD (Li et al. 2017) maintains one learnable param-
eter for each model parameter to adjust its learning rate
based on the loss.

• SML (Zhang et al. 2020) maintains a convolutional neu-
ral network (CNN)-based meta-model with pretrained and
fine-tuned parameters. It decides how much to combine
the knowledge for previous interactions and that for new
user-item interactions for each parameter.

Contrary to importance reweighting, this scheme does not
support the varying importance of user-item interactions.

t
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Figure 3: Online update procedure with the meta-model
MeLON involved.

Difference from Previous Work
While previous update strategies achieve only one-
directional flexibility, i.e., φ1D ∈ {φI , φP }, we aim at de-
veloping an online update strategy φ2D that provides two-
directional flexibility for the learning rates to be adaptive in
both data and parameter perspectives,

Θt+1 = Θt −∇Θt

∑
x∈Bt

LΘt
(x) · φ2D

(
x,LΘt

(x),Θt

)︸ ︷︷ ︸
interaction-/parameter-wise

= Θt −∇Θt
LΘt

(Bt)>W 2D,

(5)

where the function receives an individual user-item inter-
action, the training loss of the interaction, and the recom-
mender parameters Θt as its input, which are essential in-
gredients to be adaptive to both user-item interactions and
parameters. That is, W 2D ∈ Rn×M is constructed such that
each entry can be filled with a different value returned by
φ2D(·) even when either a user-item interaction or parame-
ter is identical to other entries as in Figure 1(c),

(x = x′) ∧ (θm6=θm′)

;φ2D
(
x,LΘt

(x), θm
)

= φ2D
(
x′,LΘt

(x′), θm′
)
, (6)

(x 6= x′) ∧ (θm=θm′)

;φ2D
(
x,LΘt(x), θm

)
= φ2D

(
x′,LΘt(x

′), θm′
)
. (7)

Methodology: MeLON
MeLON is a meta-model that determines the optimal learn-
ing rate for each recommender parameter regarding a user-
item interaction. Figure 3 shows the collaboration between a
recommender model and the meta-model MeLON. For each
iteration of online update, a recommender model provides its
parameters Θt and the loss LΘt

(Bt) of the current batch Bt
to MeLON; then, additionally using the previous interaction
history, MeLON provides the learning rate matrix W 2D,
which is learned to reduce LΘt

(Bt) as much as possible,
to the recommender model; finally, the recommender model
is updated using W 2D for Bt. Please refer to “Online Rec-
ommender Training” of the appendix for more details. The
internal procedure of MeLON is described according to the
three research questions: (i) representing the relevance be-
tween a user and an item for each user-item interaction, (ii)
representing the role of each parameter for a user-item inter-
action, and (iii) determining the learning rate for each pair
of user-item interactions and parameters.
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Step I: Representing User-Item Interaction
Because a single user-item interaction may not contain suf-
ficient information, we utilize the information from the pre-
vious interaction history by adding the users and items con-
nected to the user-item interaction. More specifically, the la-
tent representation of the user-item interaction is derived us-
ing a graph attention network (GAT) on the bipartite graph
that represents the interactions between users and items re-
ceived until the current time. The bipartite graph for a user-
item interaction x is constructed from the users and items in
the interaction history in Definition 1.
Definition 1. (INTERACTION HISTORY) Given a user-item
interaction x = (t, u, i), the user interaction history of u is
the set of items interacted with u before t, Huser(x) = {i′ |
∃(t′, u, i′) ∈ X s.t. t′ < t}, whereX is the entire set of user-
item interactions; similarly, the item interaction history of i
is the set of users interacted with i before t, Hitem(x) =
{u′ | ∃(t′, u′, i) ∈ X s.t. t′ < t}. �

For the bipartite graph, the items in Huser(x) constitute
the item side, and the users in Hitem(x) constitute the user
side. Here, each user (or item) node is represented by the
user (or item) embedding used in the recommender model.
An edge is created for each of the previous user-item inter-
actions, and its weight is determined by the attention score
between them. Then, a user (or item) embedding is extended
using the connections to the other side on the bipartite graph,
as specified in Definition 2.
Definition 2. (EXTENDED EMBEDDING) Given a user-
item interaction x = (t, u, i), let eu and ei′ be the embed-
dings of u and i′ ∈ Huser(x). Then, the extended embed-
ding of u, ẽu, is defined as

ẽu = ReLU(Wuser · [eu,
∑

i′∈Huser(x)

αui′ ei′ ] + buser), (8)

where Wuser and buser are a learnable weight matrix and
a bias vector. Here, αui′ indicates the attention score for i′
and is derived by the GAT, as follows:

αui′ = softmax
(
LeakyReLU

(
[eu, ei′ ]

>aU
))
, (9)

where aU is a learnable attention vector. In addition, the
extended embedding of an item i, ẽi, is defined in the same
way to the opposite direction. �

Last, the two extended embeddings, ẽu and ẽi, are con-
catenated and gone through a linear mapping to learn the
relevance between the user and the item, as specified in Def-
inition 3. As a result, the interaction representation contains
not only the rich information about a user and an item but
also the relevance between them.
Definition 3. (INTERACTION REPRESENTATION) Given a
user-item interaction x = (t, u, i), let ẽu and ẽi be the ex-
tended embeddings of u and i, respectively. The interaction
representation of x, hx, is defined by

hx = ReLU
(
Wx · [ẽu, ẽi] + bx

)
, (10)

whereWx and bx are a learnable weight matrix and a learn-
able bias vector. �

Step II: Representing Parameter Role
Because it is well known that a parameter in a neural net-
work has different relevance toward different tasks (user-
item interactions in our study) (Bengio, Courville, and Vin-
cent 2013), we contend that a parameter has a different role
for each user-item interaction. The role of a parameter can
be roughly defined as its degree of impact on users (or items)
of common characteristics. For example, a specific parame-
ter may have a high impact on action films, while another
parameter may have a high impact on romance films.

To help find a parameter role, the latent representation of
a parameter is derived using three types of information: the
current value of a parameter θt,m, the loss LΘt

(x) of a rec-
ommender model for a given user-item interaction x, and the
gradient∇θt,mLΘt

(x) of the loss with respect to the param-
eter. The loss represents how much the recommender model
parameterized by Θt has not learned that user-item interac-
tion. Each gradient represents how much the corresponding
parameter needs to react to that loss; we expect that rele-
vant parameters usually have higher gradients than irrelevant
ones. Thus, putting them together, they can serve as useful
information for determining a parameter role.

Symmetric to the interaction representation in Definition
3, the role representation is obtained through a multi-layer
perceptron (MLP), as specified in Definition 4. Because the
magnitude of the loss and gradient varies across the pair of
interactions and parameters, we apply a preprocessing tech-
nique (Ravi and Larochelle 2017; Andrychowicz et al. 2016)
to adjust the scale of the loss and gradient as well as to sep-
arate their magnitude and sign. As a result, the output of the
MLP, hθt,m , is regarded to represent the role of θt,m with
respect to the given user-item interaction x.

Definition 4. (ROLE REPRESENTATION) Given a parame-
ter θt,m and a user-item interaction x, the role representa-
tion of θt,m, hθt,m is defined by

hθt,m = MLP(
[
θt,m, LΘt

(x), ∇θt,mLΘt
(x)
]
), (11)

where the MLP consists of L linear mapping layers each
followed by the ReLU activation function. �

Step III: Adapting Learning Rate
The resulting two representations, hx and hθt,m , respec-
tively, contain rich information about the importance of the
user-item interaction x and the role of the parameter θt,m.
Hence, we employ a linear mapping layer which fuses the
two representations and adapts the learning rate wlrx,θt,m to
the given interaction-parameter pair, as follows:

wlrx,θt,m = σ(Wlr · [hx,hθt,m ] + blr), (12)

where σ is a sigmoid function. The learning rate is likely to
be high if the user-item interaction is important while the pa-
rameter plays a key role to the interaction, so that the param-
eter is quickly adapted to the interaction. Then, the learning
rate is used to update the current parameter θt,m for the user-
item interaction x, as follows:

θt+1,m = θt,m − wlrx,θt,m · ∇θt,mLΘt
(x). (13)
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Theoretical Analysis on Update Flexibility
Our suggested online update strategy MeLON, φ2D, leaves
a question of how much benefit it can bring compared with
the previous two strategies φI and φP . As an effort to re-
solve it, we present a theoretical analysis of the advantage
of flexible update in terms of a rank, which is defined as
the number of linearly independent rows or columns in the
matrix. The rank of a learning rate matrix rank(W ) demon-
strates how flexible an update can be via W . That is, when
its rank can be higher, W can support more flexible updates
of parameters in response to new interactions. The previous
strategies limit the rank to 1 since, as discussed, they provide
an identical learning rate either to every interaction or to ev-
ery parameter. In MeLON, the rank can be higher since the
learning rates are adapted to each interaction-parameter pair.
In this regard, we show that previous strategies may suffer
from large optimality gap with an optimal learning rate ma-
trix W ∗, while the gap can be reduced by MeLON.

We denote the recommender parameters updated by W

as Θ̂ and the optimal parameters as Θ∗. Then, the optimal-
ity gap between the two sets of parameters ‖Θ∗ − Θ̂‖2 is
dependent on the gap between the learning rate matrices
‖W ∗ −W ‖2 in terms of spectral norm as follows:

‖Θ∗− Θ̂‖2 = ‖(Θ−∇ΘL ·W ∗)− (Θ−∇ΘL ·W )‖2
= ‖ − (∇ΘL ·W ∗)− (−∇ΘL ·W )‖2
= ‖∇ΘL · (W ∗ −W )‖2
≤ ‖∇ΘL‖2 · ‖(W ∗ −W )‖2.

Then, a lower bound of ‖W ∗ −W ‖2 is obtained from the
singular values σ of W ∗, as formalized in Lemma 1.
Lemma 1. (Eckart and Young 1936) Given W ∗ with
its singular value decomposition UΣV and k ∈
{1, · · · , rank(W ∗)− 1}, let W ∗

k =
∑k
r=1 σrUrVr, where

σr is the r-th largest singular value. Then, W ∗
k is the best

rank-k approximation of W ∗ in terms of spectral norm,
min

W :rank(W )=k
‖W ∗−W ‖2 = ‖W ∗−W ∗

k ‖2 = σk+1.

Proof. See Eckart and Young (1936).
Based on Lemma 1, we show that a flexible update strat-

egy φ2D can enjoy smaller optimality gap than the previous
strategies, which are one-directionally flexible.
Lemma 2. For W I and W P (see Eq. (3) and Eq. (4)),
rank(W I) = rank(W P ) = 1 holds.
Proof. Every column of W I equals to φI

(
LΘt

(x)
)
∈ Rn,

and every row of W P equals to φP
(
LΘt(Bt),Θt

)
∈ RM .

Hence, rank(W I) = rank(W P ) = 1 holds.
Theorem 3. For W 1D ∈ {W I ,W P } (see Eq. (3) and Eq.
(4)) and W 2D (see Eq. (5)), the following inequality holds:

min
W 1D

‖W ∗ −W 1D‖2 ≥ min
W 2D

‖W ∗ −W 2D‖2.

Proof. Lemma 1, Lemma 3, and W 1D ∈ {W I ,W P } im-
ply minW 1D ‖W ∗ − W 1D‖ = σ2. On the other hand,
rank(W 2D) ≥ 1,1 Thus, by Lemma 1, minW 2D ‖W ∗ −
W 2D‖ ≤ σ2, which concludes the proof, holds.

1Specifically, by Eq. (6) and Eq. (7), rank(W 2D) is not nec-
essarily one and can be greater than one.

Dataset Users Items Interactions

Adressa 29,589 1,457 1,191,114
Amazon 91,013 118,031 3,625,349

Yelp 60,543 74,249 2,880,520

Table 1: Summary of the three real-world datasets.

The rank of the weight matrix from the previous update
strategies is restricted to 1 (Lemma 2), while the rank can be
higher in MeLON. Assuming that the optimal weight matrix
W ∗ exists, thanks to this flexibility, MeLON can approxi-
mate W ∗ better than the previous update strategies, as The-
orem 3 states. In the experiments, we empirically validate
the advantage of the two-directional flexibility of W 2D.

Evaluation
Our evaluation was conducted to support the following:
• The performance improvement by MeLON is consistent

for various datasets and recommenders.
• MeLON helps recommenders quickly adapt to users’ up-

to-date interest over time.
• The two-directional flexibility in MeLON is very effec-

tive for recommendation.
• The training overhead of MeLON is affordable.

Experiment Settings
Datasets. We used three real-world online recommenda-
tion benchmark datasets: Adressa (Gulla et al. 2017), Ama-
zon (Ni, Li, and McAuley 2019), and Yelp2, as summa-
rized in Table 1. The duration that a user’s interest persists
varies across datasets; relatively short duration for news in
Adressa, typically longer duration for locations in Yelp, and
in-between them for products in Amazon.

Algorithms and Implementation Details. For the base
recommender, we used two popular personalized recom-
mender algorithms: BPR (Koren, Bell, and Volinsky 2009;
Rendle et al. 2009) and NCF (He et al. 2017). For the
online training strategy, we compared MeLON with six
update methods, namely Default, eALS (He et al. 2016),
MWNet (Shu et al. 2019), MetaSGD (Li et al. 2017),
S2Meta (Du et al. 2019), and SML (Zhang et al. 2020). “De-
fault” is the standard fine-tuning strategy, and the remain-
ing methods are based on either importance reweighting or
meta-optimization. Hence, 14 combinations of two recom-
menders and seven update strategies were considered for
evaluation. The experiment setting was exactly the same
for all the combinations. Our source code is available at
https://github.com/kaist-dmlab/MeLON.

Evaluation Metrics. We used two widely-used evaluation
metrics, hit rate (HR) and normalized discounted cumulative
gain (NDCG). Given a recommendation list, HR measures
the rate of true user-interacted items in the list, while NDCG
additionally considers the ranking of the user-interacted
items. The two metrics were calculated for top@5, top@10,
and top@20 items, respectively. For each mini-batch on pre-
quential evaluation, a recommender estimates the rank of

2https://www.kaggle.com/yelp-dataset/yelp-dataset
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Dataset Method NCF BPR
HR@5 HR@10 HR@20 NDCG@5 NDCG@10 NDCG@20 HR@5 HR@10 HR@20 NDCG@5 NDCG@10 NDCG@20

A
dr

es
sa

Default 0.334 0.407 0.502 0.283 0.306 0.330 0.292 0.359 0.422 0.250 0.272 0.288
eALS 0.664 0.750 0.826 0.542 0.570 0.589 0.443 0.520 0.613 0.371 0.396 0.419
MWNet 0.325 0.392 0.480 0.276 0.297 0.319 0.289 0.356 0.421 0.248 0.269 0.285
MetaSGD 0.275 0.406 0.686 0.229 0.270 0.340 0.276 0.405 0.686 0.230 0.271 0.340
S2Meta 0.276 0.396 0.548 0.221 0.260 0.298 0.278 0.401 0.559 0.223 0.262 0.302
SML N/A N/A N/A N/A N/A N/A 0.270 0.330 0.399 0.235 0.255 0.272
MeLON 0.863 0.954 0.982 0.626 0.656 0.664 0.877 0.958 0.983 0.671 0.698 0.705

A
m

az
on

Default 0.168 0.244 0.359 0.115 0.140 0.168 0.246 0.339 0.457 0.172 0.202 0.231
eALS 0.219 0.323 0.462 0.148 0.182 0.216 0.327 0.425 0.542 0.238 0.270 0.299
MWNet 0.169 0.247 0.366 0.116 0.142 0.171 0.244 0.339 0.456 0.171 0.201 0.231
MetaSGD 0.151 0.214 0.317 0.104 0.125 0.150 0.148 0.214 0.314 0.103 0.123 0.148
S2Meta 0.292 0.390 0.497 0.192 0.224 0.250 0.270 0.367 0.474 0.178 0.209 0.237
SML N/A N/A N/A N/A N/A N/A 0.220 0.307 0.409 0.153 0.181 0.207
MeLON 0.324 0.519 0.807 0.225 0.287 0.360 0.363 0.506 0.650 0.248 0.294 0.330

Y
el

p

Default 0.659 0.816 0.923 0.477 0.528 0.555 0.600 0.766 0.883 0.426 0.480 0.509
eALS 0.618 0.781 0.901 0.438 0.491 0.521 0.677 0.831 0.922 0.488 0.538 0.562
MWNet 0.658 0.818 0.926 0.475 0.527 0.555 0.603 0.771 0.890 0.428 0.483 0.513
MetaSGD 0.207 0.309 0.433 0.136 0.169 0.200 0.209 0.321 0.451 0.137 0.174 0.206
S2Meta 0.393 0.525 0.654 0.277 0.320 0.351 0.208 0.323 0.471 0.137 0.174 0.211
SML N/A N/A N/A N/A N/A N/A 0.478 0.614 0.720 0.338 0.382 0.409
MeLON 0.779 0.923 0.980 0.563 0.610 0.624 0.619 0.779 0.886 0.439 0.491 0.519

Table 2: Overall online recommendation performance.3 The average of five executions are reported. The best results are marked
in bold, and the second best results are underlined. See the appendix for statistical significance tests.

each user’s 1 interacted item and randomly-sampled 99 non-
interacted items, and this technique is widely used in the
literature (He et al. 2016; Du et al. 2019) because it is time-
consuming to rank all non-interacted items.

Please see “Details of Experiment Settings” of the ap-
pendix for more information.

Overall Performance Comparison
Table 2 shows the top-k recommendation performance with
varying update strategies for the three datasets. Overall,
MeLON greatly boosts the recommendation performance
compared with the other update strategies in general. It out-
performs the other update strategies with NCF in terms of
HR@5 by up to 29.9%, 10.9%, and 18.2% in Adressa, Ama-
zon, and Yelp, respectively. This benefit is attributed to the
two-directional flexibility of MeLON, which successfully
adapts learning rates on each interaction-parameter pair.
That is, MeLON considers the importance of the user-item
interaction as well as the role of the parameter, while the
compared strategies consider only either of them.
Flexibility Gap. Figure 4 displays the learning rate matrix
of all interaction-parameter pairs in MeLON when trained
on Adressa and Yelp. Here, each square matrix displays
the two-directional learning rates (W 2D) for all interaction-
parameter pairs. On the other hand, the top and right bars
are the averages along one axis, which can be considered
as the one-directional learning rates (W 1D). The learning
rates in the square matrix are flexibly determined for each
interaction-parameter pair, and high learning rates are as-
signed when the loss or gradient is high. A row or column

3SML cannot be implemented on NCF because the transfer net-
work of SML is intended to work on embedding parameters but not
MLP layers in NCF.
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Figure 4: Learning rates obtained by MeLON for
interaction-parameter pairs. MeLON tends to provide higher
learning rates for the pairs with large losses and gradients.

does not stick to the same learning rate, and this visualiza-
tion clearly demonstrates the necessity of the two-directional
flexibility. The gap between the learning rate in W 2D and
that in W 1D in Figure 4 is directly related to how quickly
a recommender adapts to up-to-date user interests, which in
turn leads to the performance difference between MeLON
and the previous update strategies.
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Figure 5: Recommendation performance over each online batch in the Adressa and Yelp datasets.

In-Depth Comparison. We provide interesting observa-
tions for the online update strategies:
• Importance reweighting works well for datasets where a

user’s interest changes slowly (e.g., Yelp);
• Meta-optimization works well for datasets where a user’s

interest changes quickly (e.g., Adressa);
• MeLON works well for both types of datasets.

Specifically, in terms of HR@20, an importance reweight-
ing strategy, MWNet, enhances the recommendation perfor-
mance in Yelp, but shows worse performance in Adressa
than Default. In contrast, an opposite trend is observed
for the two meta-optimization strategies, MetaSGD and
S2Meta. Thus, we conjecture that, for time-sensitive user
interest, such as news in Adressa, it is more important to
focus on the parameter roles, which could be associated
with the topics in this dataset. On the other hand, for time-
insensitive user interest, such as places in Yelp, it would be
better to focus on the interaction itself. This claim can be
further supported by the different trends in Figure 4, where
horizontal (i.e., parameter-wise) lines are more visible in the
Adressa dataset, but vertical (i.e., interaction-wise) lines are
more visible in the Yelp dataset.

Performance Trend over Time
Figure 5 shows the NDCG@10 performance trend of seven
update strategies over each online test batch of the Adressa
and Yelp datasets. Overall, only MeLON consistently ad-
heres to the highest performance (close to the highest in Fig-
ure 5(d)) compared with other update strategies during the
entire test period. The performance gap between MeLON
and the others widens especially in Addressa because its
news data becomes quickly outdated and needs more aggres-
sive adaptation for better recommendation. In this regard,
eALS also shows better performance than others since it al-
ways assigns high weights for new user-item interactions.
On the other hand, in the Yelp dataset where the user’s in-
terest may not change quickly, all the update strategies show
small performance fluctuations.

Ablation Study on Two-Directional Flexibility
We conduct an ablation study to examine the two-directional
flexibility of MeLON by using its two variants with partial
flexibility: (i) MeLONI , an importance reweighting variant
without parameter-wise inputs and (ii) MeLONP , a meta-
optimization variant without interaction-wise inputs. Table

Dataset MeLONI MeLONP MeLON

Adressa 0.293 ± 0.003 0.278 ± 0.015 0.877 ± 0.004
Amazon 0.248 ± 0.002 0.269 ± 0.029 0.363 ± 0.016

Yelp 0.605 ± 0.001 0.208 ± 0.000 0.619 ± 0.017

Table 3: Ablation on MeLON components. HR@5 and
its standard error for BPR are reported. MeLONI and
MeLONP are the variants with only importance reweight-
ing and meta-optimization, respectively.

Dataset Model Default MWNet MetaSGD SML S2Meta MeLON/eALS

Adressa NCF 0.011 0.023 0.022 N/A 0.317 0.257
BPR 0.011 0.012 0.014 0.163 0.112 0.076

Amazon NCF 0.010 0.026 0.022 N/A 2.922 0.263
BPR 0.009 0.014 0.012 0.130 1.630 0.072

Yelp NCF 0.008 0.016 0.018 N/A 3.345 0.258
BPR 0.007 0.008 0.011 0.051 0.431 0.041

Table 4: Elapsed time (sec) of seven update strategies per
online batch.

3 shows the performance of the two variants along with the
original MeLON on the three datasets. Of course, MeLON
is far better than the variants. In addition, the performance of
MeLONI is similar to those of the importance reweighting
strategies (e.g., MWNet) in Table 2, while MeLONP shows
the results similar to the meta-optimization strategies (e.g.,
S2Meta). Therefore, the power of MeLON is attained when
the two-directional flexibility is accompanied.

Elapsed Time for Online Update

Table 4 shows the average elapsed time of the seven up-
date strategies per online batch update. Overall, all the up-
date strategies including MeLON show affordable update
time except S2Meta which consumes even seconds in Yelp
and Amazon. That is, MeLON is still capable of handling
multiple recommender updates within a second, which is
fast enough for online recommender training. The speed of
MeLON is improved by its selective parameter update; given
a user-item interaction, MeLON updates only the parame-
ters involved with the recommender’s computation for the
interaction. This technique helps MeLON maintain its com-
petitive update speed, despite the use of a meta-model which
is believed to be time-consuming.
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Conclusion
In this paper, we proposed MeLON, a meta-learning-based
highly flexible update strategy for online recommender sys-
tems. MeLON provides learning rates adaptively to each
parameter-interaction pair to help recommender systems be
aligned with up-to-date user interests. To this end, MeLON
first represents the meaning of a user-item interaction and
the role of a parameter using a GAT and a neural mapper.
Then, the adaptation layer exploits the two representations
to determine the optimal learning rate. Extensive experi-
ments were conducted using three real-world online service
datasets, and the results confirmed the higher accuracy of
MeLON by virtue of its two-directional flexibility as vali-
dated in the ablation study and theoretical analysis.

Appendix
Online Recommender Training

While an online recommender can be trained on new user-
item interactions with adaptive learning rates by the meta-
model MeLON, the optimality condition varies with time.
Therefore, MeLON should be continuously updated along
with the recommender to avoid being stale. To this end, as
shown in Figure 6, for every incoming mini-batch Bt, we
first conduct two steps to train the meta-model φ2D before
updating the recommender model Θ, following the com-
mon update procedure of meta-learning (Ren et al. 2018;
Shu et al. 2019; Kim et al. 2021). Figure 6 is made more
detailed by clarifying the two steps for φ2D of Figure 3.
1. Recommender model preliminary update: For the users

and items in the new mini-batch Bt at each iteration, we
first derive their last interactions Blastt before the current
interaction. Then, using the current meta-model φ2D

t , the
parameter Θt of the recommender model is updated on
the latest interactions Blastt to create a model with Θ̃ by

Θ̃=Θt−∇Θt

∑
x∈Blast

t

LΘt
(x)·φ2D

t

(
x,LΘt(x),Θt

)
. (14)

2. Meta-model update: Because Θ̃ obtained by Eq. (14) is
widely known as an inspection on the efficacy of the cur-
rent meta-model (Ren et al. 2018; Shu et al. 2019), the
feedback from Θ̃ is exploited to update the meta-model
on the incoming mini-batch Bt by

φ2D
t+1 = φ2D

t − η∇φ2D
t

∑
x∈Bt

1

n
LΘ̃(x), (15)

where η is a learning rate for meta-model.
3. Recommender model update: Finally, the parameter Θt

of the recommender model is updated using the updated
meta-model φ2D

t+1 on the mini-batch Bt by

Θt+1 =Θt−∇Θt

∑
x∈Bt

LΘt
(x)·φ2D

t+1

(
x,LΘt

(x),Θt

)
. (16)

The online training procedure of MeLON is described in
Algorithm 1. When a recommender is deployed online, the
algorithm conducts the three steps for every new incoming
mini-batch of user-item interactions: (1) a preliminary up-
date of the recommender model (Lines 5–6) on the last in-
teractions of the users and items in the current mini-batch,

t

Interactions

MeLON

Recommender

history

Generate
𝑾2𝐷

𝜙𝑡
2𝐷

𝚯𝑡
Preliminary recommender update

Loss ℒΘ𝑡 ℬ𝑡
𝑙𝑎𝑠𝑡 ,

parameters 𝚯𝑡

Interaction history ℋ ℬ𝑡
𝑙𝑎𝑠𝑡

෩𝚯

time
ℬ𝑡ℬ𝑡

𝑙𝑎𝑠𝑡

𝜙𝑡+1
2𝐷Update MeLON

Figure 6: MeLON update procedure. For the users and items
in every new mini-batch Bt, we retrieve their last interaction
Blastt to conduct a preliminary update of the recommender
model with MeLON. Then, we update MeLON based on the
loss of the updated model Θ̃ on the new mini-batch Bt.

Algorithm 1: Online Training via MeLON

INPUT: Θt: recommender model, φ2D
t : meta-model

1: t← 1; Θt, φ
2D
t ← Load pretrained models;

2: while user-item interactions are coming do
3: Bt ← Get current mini-batch;
4: /* Meta-model update */
5: /* (1) Preliminary update by Eq. (14) */
6: Θ̃ = Θt −∇Θt

∑
x∈Blast

t
LΘt(x) · φ2D

t

(
x,LΘt(x),Θt

)
;

7: /* (2) Meta-model update by Eq. (15) */
8: φ2D

t+1 = φ2D
t − η∇φ2D

t

∑
x∈Bt

1
nLΘ̃(x);

9: /* Recommender update */
10: /* (3) Recommender model update by Eq. (16) */
11: Θt+1 =Θt−∇Θt

∑
x∈Bt
LΘt(x) · φ2D

t+1

(
x,LΘt(x),Θt

)
;

12: t← t+ 1;

(2) an update of the meta-model on a new mini-batch (Lines
7–8), and (3) an update of the recommender model on the
new mini-batch (Lines 10–11). We additionally learn a for-
getting rate for the current parameter to help quick adapta-
tion by forgetting previous outdated information (Ravi and
Larochelle 2017).

Before a recommender is deployed online, both the rec-
ommender and the meta-model are typically pre-trained on
the past user-item interactions in an offline manner. Differ-
ently from the online training, we first randomly sample a
mini-batch B of user-item interactions to derive the interac-
tions Blast. Then, in each iteration, the recommender and
the meta-model are updated in the same way as in the online
learning. The model is trained for a fixed number of epochs,
100 in our experiments. Once the offline training completes,
we can deploy the recommender and the meta-model in the
online recommendation environment.

Details of Experiment Settings
Datasets
The explicit user ratings in the Yelp dataset and three Ama-
zon datasets are converted into implicit ones, following the
relevant researches (Koren 2008; He et al. 2017); that is,
if a user rated an item, then the rating is considered as a
positive user-item interaction. For prequential evaluation on
online recommendation scenarios, we follow a commonly-
used approach (He et al. 2016); we sort the interactions in
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Dataset Users Items Interactions Cold user

Adressa 29,589 1,457 1,191,114 0%
Book 80,464 98,663 3,357,109 18%

Electronics 9,316 17,935 238,458 1%
Grocery 1,233 1,433 29,782 1%

Yelp 60,543 74,249 2,880,520 0%

Table 5: Summary of the five real-world datasets. A cold
user refers to the users who do not exist in the pre-training
data but in the online test data.

the dataset in chronological order, and divide them into three
parts—offline pre-training data, online validation data, and
online test data. Online validation data is exploited to search
the hyperparameter setting of the recommenders and update
strategies and takes up 10% of test data. Because user-item
interactions are very sparse, we preprocess the datasets, fol-
lowing the previous approaches (He et al. 2017; Zhang et al.
2020); for all datasets, users and items involved with less
than 20 interactions are filtered out.

Table 5 summarizes the profiles of the five datasets used
in the experiments, where the details are as follows.

Adressa news dataset (Gulla et al. 2017) contains user in-
teractions with news articles for one week. We use the first
95% of data as offline pre-training data, the next 0.5% as
online validation data, and the last 4.5% as online test data.

Amazon review dataset (Ni, Li, and McAuley 2019) con-
tains user reviews for the products purchased in Amazon.
Among various categories, we adopt three frequently-used
categories, Book (Wang et al. 2019), Electronics (Zhou et al.
2018), and Grocery and Gourmet Food (Wang et al. 2020),
which vary in the size of interactions and the number of
users and items. Because there exists almost no overlap
among the categories, we perform evaluation on each cat-
egory and report the average. Due to the difference in size,
we apply different data split ratios for each category.
• Book: 95% (pre-training): 0.5% (validation): 4.5% (test)
• Electronics: 90% (pre-training):1% (validation):9% (test)
• Grocery: 80% (pre-training): 2% (validation): 18% (test)

Yelp review dataset4 contains user reviews for venues,
such as bars, cafes, and restaurants. We use the first 95%
of data as offline pre-training data, the next 0.5% as online
validation data, and the last 4.5% as online test data.

Recommender Baseline Models
For online recommenders, we use two famous personalized
recommender algorithms: BPR (Koren, Bell, and Volinsky
2009; Rendle et al. 2009) and NCF (He et al. 2017).
• BPR: Bayesian personalized ranking (BPR) uses the ID

of a user and an item to estimate the user’s interest on the
item by multiplying the user embedding vector eu and
the item embedding vector ei.

• NCF: Neural collaborative filtering (NCF) maintains a
generalized BPR and a multi-layer perceptron that have
user and item vectors respectively. The results of these
two components are later fused by a neural layer to pre-
dict a user’s interest on an item.
4https://www.kaggle.com/yelp-dataset/yelp-dataset

Model Metric Dataset
Adressa Amazon Yelp

BPR HR@5 2.2e-27 0 0
NDCG@5 0 0 0

NCF HR@5 0 1.9e-133 8.9e-60
NDCG@5 0 0 2.4e-4

Table 6: The p-values between MeLON and Default at
HR@5 and NDCG@5 in the three datasets.

To train these recommender algorithms based on im-
plicit feedback data, we employ a ranking loss (Rendle et al.
2009); for a positive item in a user-item interaction, we ran-
domly sample another negative item that the user has not
interacted before, and train a recommender algorithm to pri-
oritize the positive item over the negative item.

Configuration
For fair comparison, we follow the optimal hyperparame-
ter settings of the baselines as reported in the original pa-
pers, and optimize uncharted ones using HR@5 on valida-
tion data. All the experiments are performed with a batch
size 256 and trained for 100 epochs. The number of updates
on the default update strategy is fixed to be 1 to align with
other compared strategies. The experiments are repeated 5
times varying random seeds, and we report the average as
well as the standard error. For the graph attention in the first
component of MeLON, we randomly sample 10 neighbors
per target user or item. Besides, for the MLP which learns
the parameter roles, the number of hidden layers (L) is set
to be 2. To optimize a recommender under the default and
sample reweighting strategies, we use Adam (Kingma and
Ba 2015) with a learning rate η = 0.001 and a weight de-
cay 0.001. Note that a recommender trained with the meta-
optimization strategies is optimized by a meta-model, while
the meta-model is optimized with Adam during the meta-
update in Eqs. (14) and (15). Our implementation is written
in PyTorch, and the experiments were conducted on Nvidia
Titan RTX and Intel i9-9900KS.

Statistical Test
We perform a paired t-test (Walpole et al. 1993) with the
null hypothesis that there was no difference in HR@5 and
NDCG@5 between MeLON and Default. Table 6 shows
the p-values in each dataset, and the null hypothesis is re-
jected with a level of significance of 0.05. Therefore, the
performance improvement of MeLON over Default in terms
of HR@5 and NDCG@5 is statistically significant.
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