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Abstract

Modern recommendation systems are mostly based on im-
plicit feedback data which can be quite noisy due to false
positives (FPs) caused by many reasons, such as misclicks or
quick curiosity. Numerous recommendation algorithms based
on collaborative filtering have leveraged post-click user be-
havior (e.g., skip) to identify false positives. They effectively
involved these false positives in the model supervision as
negative-like signals. Yet, false positives had not been con-
sidered in existing session-based recommendation systems
(SBRs) although they provide just as deleterious effects. To
resolve false positives in SBRs, we first introduce FP-Metric
model which reformulates the objective of the session-based
recommendation with FP constraints into metric learning reg-
ularization. In addition, we propose FP-AdaMetric that en-
hances the metric-learning regularization terms with an adap-
tive module that elaborately calculates the impact of FPs in-
side sequential patterns. We verify that FP-AdaMetric im-
proves several session-based recommendation models’ per-
formances in terms of Hit Rate (HR), MRR, and NDCG on
datasets from different domains including music, movie, and
game. Furthermore, we show that the adaptive module plays
a much more crucial role in FP-AdaMetric model than in
other baselines.

Introduction
Recommendation Systems based on collaborative filtering
have received great attention due to their outstanding per-
formance in numerous personalized services (Zhang et al.
2019). Although explicit feedback data such as user ratings
can give direct supervision regarding user preferences, they
are often expensive and lack in size in real world scenar-
ios (Rendle et al. 2012). Alternatively, implicit feedback data
have been widely adopted as the main resource for training
recommendation models (Hu, Koren, and Volinsky 2008;
Yi et al. 2014; He et al. 2017; Guo et al. 2017). They are
solely based on user behavior logs and thus much easier to
collect (Koren, Bell, and Volinsky 2009; Rendle et al. 2012).

However, in multimedia streaming services such as music
or movies, the user preference may not be revealed in the
click logs because users often make decisions after they try
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Figure 1: Example about Importance of False-Positive(FP)
on SBRs in Movie service. FPs depend on playtime of items,
and the user does not like “Teen” movie.

consuming an item to some degree. Users show their pref-
erence by either continuing or skipping in the early section.
This behavior is even stronger in subscription-based services
because users have full access of items at zero additional
cost. For example, 50% of positive signals are false positives
(FPs) in music streaming services, such as skips or backward
button clicks within 10 seconds, meaning that half of click
logs are triggered out of simple curiosity (Wen, Yang, and
Estrin 2019). Therefore, several works on collaborate filter-
ing dealt with how to consider FPs better by dwell-time (Yi
et al. 2014), skip (Wen, Yang, and Estrin 2019) or other
ways (Wu et al. 2020; Wang et al. 2021b).

Meanwhile, the sequential patterns in user feedbacks have
become a major factor of the recommendation problem, and
have been extensively studied in the field of session-based
recommendation system (SBRs) (Fang et al. 2020; Wang
et al. 2021a). Since gradual changes take place in user pref-
erences over time, SBRs splits each user’s entire log se-
quence into a number of session-level segments to conju-
gate both local and global preferences. Although the SBRs
models have been successful in capturing user preferences,
the noisiness or the underlying FPs of the implicit feedback
data are mostly neglected. We argue that they could be just as
harmful in SBRs tasks as in non-sequential cases (Yi et al.
2014; Wen, Yang, and Estrin 2019; Wu et al. 2020; Wang
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et al. 2021b). A few works have taken FPs into account
in certain sequential recommendation tasks (Zhao et al.
2018b,a; Xie et al. 2020; Wang and Cao 2021; Bian et al.
2021), however, to the best of our knowledge, no work has
been done towards the SBRs problems. As shown in Fig-
ure 1, FPs could play crucial roles especially in SBRs sce-
narios. Figure 1.(a) depicts a user scenario where FPs are
not considered. Session context contained “Hero” hurts by
“Teen” movie as in session #2 so that recommended item
can be “Teen” movie. However, as shown in Figure 1.(b),
we get better recommendation results when FPs are consid-
ered. A FP-aware method helps to avoid further FPs in the
sequential recommendation, resulting in “Hero” to be rec-
ommended, which better meets the true user preference.

To directly resolve the FPs in the SBRs problem, we first
define a general objective function with constraints where
the FP item embedding should necessarily be far away from
the current sequence embedding. This constraint can be ap-
plied due to our assumption 1 of FPs in SBRs. Then, we
show that this optimization is equivalent to learning an
embedding function that maps data into our desired met-
ric space by using a triplet loss objective (Kaya and Bilge
2019). We call this FP-Metric. In addition, we propose FP-
AdaMetric, a novel architecture which better represents FP
items during training by learning an additory function that
adapts the input and positive embeddings for applying de-
gree of FPs differently. We show that this adaptive module
improves the triplet loss-based metric learning procedure.

We evaluate our proposed method in the datasets from dif-
ferent multimedia streaming services, i.e., LastFM, Spotify,
Amazon Movies, and FUSER1. Then, we quantitatively ver-
ify that our proposed method can improve the SBRs’ perfor-
mance in terms of Hit Ratio, MRR and NDCG. In all four
datasets, FP-AdaMetric outperforms the baselines. In addi-
tion, by investigating the visualization of the learned embed-
ding space, we show that our proposed method better dis-
criminate FP embedding from the session embedding than
other baselines.

To sum up, our contributions are as follows:

• We highlight the importance of FPs in SBRs. We revisit
the FP constraints in the optimization problem by trans-
forming them into the metric-learning regularization.

• To better represent FPs, we propose an adaptive embed-
ding modules in our metric-learning architecture.

Related Works
Neural Session-Based Recommendation
Session-based recommendation, which aims at both se-
quential and session-aware recommendation, learns patterns
from consecutive item consumption logs in a certain pe-
riod of time defined as a session (Fang et al. 2020; Wang
et al. 2021a). GRU4REC and their variants (Hidasi et al.
2015; Hidasi and Karatzoglou 2018) introduce GRU (Chung
et al. 2014) to learn sequential patterns in sessions. A re-
cent work NARM (Li et al. 2017) introduces the attention
method in GRU4REC to aggregate global and local user

1This is a community-based music creation game service.

preferences. STAMP (Liu et al. 2018) uses attention and
memory networks to capture better long-term preferences.
With the improvement of GNN, SRGNN (Wu et al. 2019)
and TAGNN (Yu et al. 2020) try to model the sessions as
the graphs to improve performance. SASREC (Kang and
McAuley 2018) and BERT4REC (Sun et al. 2019) apply
the Transformer architecture (Vaswani et al. 2017) to effec-
tively catch long-term preferences although they don’t take
the concept of sessions into account. Most of these SBRs
models consider implicit click signals only as positive sig-
nals.

On the other hand, there are studies that involve the neg-
ative feedback to improve the sequential recommendation
problem. DEERS (Zhao et al. 2018b,a) tries formulating the
implicit feedback recommendation as a reinforcement learn-
ing problem that utilizes both positive and negative feed-
back. DFM (Xie et al. 2020) and DUMN (Bian et al. 2021)
tackle Click Through Rate (CTR) problem based on explicit
and implicit sequences. HAEM (Wang and Cao 2021) in-
troduce next basket prediction (NBP) learning by intra- and
inter-coupling of the baskets of clicked and uncliked items.
However, to our knowledge, our work is the first trial to di-
rectly apply FPs (e.g., skip) into the SBRs, especially in the
next-item prediction problem.

Deep Metric Learning in Recommendation
Deep metric learning is a method for learning a projec-
tion function that effectively separates positive and nega-
tive samples in the desired metric space (Hoffer and Ailon
2015). In the field of recommendation systems, metric learn-
ing is widely studied for collaborate filtering (CF) of im-
plicit feedback (Zhang et al. 2019). One of the most pro-
nounced works, CMF (Hsieh et al. 2017) first introduces
metric-learning approaches to learn user and item relations
by Mahalanobis distance in the collaborate filtering. To
improve geometric flexibility over Mahalanobis distance,
LRML (Tay, Anh Tuan, and Hui 2018) introduces latent re-
lational vectors to learn user and item embedding. To catch
better item user relationships, NGCF (Wang et al. 2019) ap-
plies Graph Neural Network (GNN) to learn better user and
item embedding. Several works (Wang et al. 2018; Tran et al.
2019) tries to improve sampling strategies of negative items
for training efficiency.

However, only few studies have been conducted in en-
gaging the metric learning paradigm in the session-based or
sequential recommendation situations. SML (Twardowski,
Zawistowski, and Zaborowski 2021) is the first attempt to
apply a metric learning loss function in the SBRs. They
transform the original loss, such as BPR and TOP1 (Hi-
dasi et al. 2015; Hidasi and Karatzoglou 2018) into a metric
learning-based one. One that is the most related to our work
is XDM (Lv et al. 2020), which utilizes unclick behaviors
(implicit negatives) in the sequential recommendation prob-
lem using asymmetric metric learning model with a confi-
dence fusion layer that takes the unclick sequences as input.
Our model differs in that it considers FP items in SBRs. We
also provide theoretical insight into the metric-learning reg-
ularization and introduce the adaptive module to improve
our regularization term.
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Preliminaries
Problem Definition: Next Item Prediction at Each
Time-Step in a Session
Let U = {u1, ...u|U |} be the user set and I = {i1, ...i|I|}
be the item set where |U | and |I| is the number of users and
items respectively. In SBRs, a click sequence, which is an
item consumption sequence during a certain period of time
(session), can be defined as Su

k = {xl}
|Su

k |
l=1 , where xl ∈

I . Here, Su
k is the kth session sequence for user u and xl

is the lth item clicked in the session. Since each user have
multiple sessions, the sessions that belong to a single user u
are defined as follows: Su = {Su

k }
|Su|
k=1.

Simple Objective We now define the SBRs as a problem
of the next-item prediction in the corresponding session. The
objective of the SBRp at each time step is to find the most
probable item which follows the true next-item distribution
in the session. Following the recent works (Li et al. 2017;
Wu et al. 2019; Song et al. 2019; Kang and McAuley 2018;
Sun et al. 2019), we mathematically define the SBRp objec-
tive by negative log liklihood (NLL) loss (a.k.a Cross En-
tropy loss) as in (1).

min
θ

E
u

E
Su

|Su|∑
k=2

−log (puθ (x = xk|x1, . . . , xk−1))

 (1)

, where puθ (·|x1, . . . xk−1) is the target probability function
parameterized by θ with a given item sequence x1, . . . , xk−1

in Su.

Considering the FPs Objective For a given user click se-
quence Su

k , we sort out the true-positives and FPs using a
predefined criterion (e.g.total consumption time or skip but-
ton click) as follows: Su

k = Su,p
k ∪ Su,fp

k . We also define an
item click sequence of a single user u as Su = Su,p∪Su,fp,
where Su,p = {Su,p

k }|S
u,p|

k=1 and Su,fp = {Su,fp
k }|S

u,fp|
k=1 .

Since the goal of SBRp is to recommend only positive
items to users, we reformulate our objective as follows.

min
θ

E
u

 E
Su,p

|Su,p|∑
k=2

−log(puθ (x = xk|x1, . . . xk−1)

 (2)

General Session-Based Recommendation Model
In this section, we formulate a general SBRs’ model into an
equation with trainable parameters of θ. A SBRs’ model can
be divided into 1) an embedding layer with θe, 2) a sequen-
tial layer with θseq , and 3) a recommendation layer (Jang
et al. 2020; Lv et al. 2020). The trainable parameters are
consist of the followings: θ = {θe, θseq, θconcat(optional)},
where θe =

{
θie, θ

u
e

}
.

Embedding Layer In general, a unique integer id is given
to every item and user (if exists). The embedding layer trans-
forms each id into a d dimensional embedding vectors e, i.e.,
fθe : R → Rd. In this work, we use a lookup embedding

matrix fθe , following a commonly used technique in Natu-
ral Language Processing (NLP) domain. We define the item
and user (if exists) embedding matrix as fθi

e
and fθu

e
respec-

tively.

Sequence Embedding Layer The sequence embedding
layer fθseq (ex1

, · · · , exk−1
) : Rd×k → Rd maps a se-

quence of item embeddings into a single vector, where ei
is the item embedding, d is the dimension of the embed-
ded vectors. The sequence embedding layer is a function
that can be approximated with deep neural network architec-
tures that are designed to capture sequential patterns, such as
RNN (Chung et al. 2014; Hidasi et al. 2015), GNN (Wu et al.
2019; Qiu et al. 2020) Transformer (Kang and McAuley
2018; Sun et al. 2019) and so on. In the case that the users
are also considered (Qiu et al. 2020), a concatenation layer
fθc : Rd×2 → Rd aggregates the output of sequence em-
bedding layer with the user embeddings. The final output of
sequential embedding eseq is represented as follows:

eseq =

{
fθc(fθseq (ex1

, · · · , exk−1
), eu), if u exists

fθseq (ex1
, · · · , exk−1

), if u not exists
(3)

Recommendation Layer The purpose of a recommenda-
tion layer is to calculate the relevance score of each item
ri given sequential embedding eseq as in (4). Among sev-
eral options for the similarity measure Dsim, we choose dot
product to calculate score of items due to its high perfor-
mance and low complexity (Rendle et al. 2020). The recom-
mendation score can be represented as follows:

ri = Dsim(eseq, ei) = eseq
T · ei (4)

, where ei is the embedding vector of item i and ri is the
final logit output.

To train this model using the equation (1), we define the
probability puθ (·|x1, . . . , xk−1) as in equation (5), i.e., a soft-
max layer.

puθ (i|x1, . . . xk−1) =
exp (ri)∑

x∈|I| exp (rx)
(5)

Methodology
Motivation: Direct Usage of FPs
Previous works (Li et al. 2017; Wu et al. 2019) consider FP
feedback in a passive way, i.e., only neglecting FPs. How-
ever, in the user scenarios of modern multimedia streaming
services which the SBRs’ models are mainly aimed at, users
often give new items a try because they are not charged with
any extra cost. Therefore, we argue that it is crucial to take
FPs into account more actively to improve the quality of rec-
ommendation in such situations. To address this challenge,
we introduce the FP-feedback constraint by using the com-
mon assumption 1 about FPs.

Assumption 1 (False-positive (FP) Characteristics). 1) FPs
are independent from the characteristics of the sequence. 2)
FPs get lower relevance score than true-positives in general.
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The assumption 1-1) means that the FPs are consistent
regardless of the characteristics of their corresponding se-
quences. Since FPs mean that the users do not prefer those
items, FP property does not change dynamically with respect
to other items in the sequence. The assumption 1-2) im-
plies that FPs reveal more elaborate preference information
of users by embracing their negative reaction towards cer-
tain items. Therefore, we need to set up a constraint where
the embedding vectors of FPs are distant from the session
embedding vector in terms of the given similarity measure.
With these two assumptions, we formulate a constraint as
shown in Definition 1:
Definition 1 (False-positive Constraint SBRp). For the user
set U and item set I , there exists a positive sequence set
Su,p = {Su,p

k }|S
p|

k=1 and a FP set Su,fp = {Su,fp
k }|S

u,fp|
k=1 .

From the assumption 1, we can consider FP item sets:
FPu = {xi|xi ∈ Su,fp} ⊂ I . Under these, the objective of
SBRp can be shown as below:

min
θ

E
u

 E
Su,p

|Su,p|∑
k=2

−log(puθ (xk|x1, . . . xk−1)

 (6)

s.t.E
u

 E
FPu,Su,p

|Su,p|∑
k=2

Dsim

(
fθi

e
(fp), eseq

) ≤ ϵ (7)

, where ϵ is a given margin and Dsim is a similarity mea-
sure (high is better), e.g., dot product.

Theoretical Analysis
We now analyze the problem setting in Definition 1. First,
we show that the additional constraint does not hurt the op-
timal value in (2).
Proposition 1 (Optimality Equivalence). Let the FPs be
fp ∈ FPu, fp /∈ Su,p, and θ∗ be the optimal parameter
of (2). Then, there exists ϵ

′
such that θ∗ also is an optimal

value in the problem defined in Definition 1.

Proof. Proof by contradiction. Detailed in Appendix.

From Prop.1, we now conclude that the problem defined
in 1 is applicable to SBRp as well. Also, the constraint re-
stricts the search space of θ, making it easier to compute
the optimal value in real world situations. After this Propo-
sition, we need to change the form of Definition 1 properly
in practice. Prop. 2 provides the evidence about it.
Proposition 2 (Metric-learning View). If there exists an op-
timal Lagrange multiplier λ > 0, the problem which is de-
fined in Definition 1 is identical to objective as in the equa-
tion 8.

min
θ

E
u

 E
Su,p

|Su,p|∑
k=2

−log(puθ (xk|x1, . . . xk−1)

 (8)

+ λ

E
u

 E
FPu,Su,p

|Su,p|∑
k=2

Lmet(xk, fp, seq; θ)


(9)

, where Lmet(xk, fp, seq; θ) =
max (−Dsim(p, seq) +Dsim(fp, seq) +m, 0),
and Dsim(p, seq) = Dsim

(
fθi

e
(xk), eseq

)
and

Dsim(fp, seq) = Dsim

(
Efp∼p(FPu)

[
fθi

e
(fp)

]
, eseq

)
.

Proof. Base on KKT conditions (Boyd, Boyd, and Van-
denberghe 2004) in convex optimization. Detailed in Ap-
pendix.

Consequently, we introduce metric-learning regulariza-
tion terms in the original problem (equation (6)), which
we call FP-Metric. Metric-learning (Hoffer and Ailon
2015; Kaya and Bilge 2019) is well-known approach to
learn appropriate representation via FP and positive sam-
ples in computer vision (Karpusha, Yun, and Fehervari
2020; Venkataramanan et al. 2021) and audio (Chung et al.
2020; Xu et al. 2020) domains. Also, metric-learning is
getting great attention recently due to high-performance in
self-supervised and unsupervised approaches (Jaiswal et al.
2021). Unlike the previous works that conjugate metric-
learning directly for training objectives, we use it for the
regularization of the original loss highlighting the effect of
the FP items. We leave the proofs on other types of metric-
learning loss (Sohn 2016; Chen et al. 2020) for future works.

Proposed Method: FP-AdaMetric

From the finding in the Proposition 2, we now propose the
metric-learning regularization method to actively involve the
FP items in the SBRs as shown in equation 8. We show its
effectiveness in the experiment part.

Although this regularization shows effectiveness in both
mathematical and experimental aspects, there are still limi-
tations. Each of the FP items differs in the level of impact
to the users. For example, when certain users have negative
preference about scary movies, the level of scariness in each
movie will decide how large of an impact the FP item would
have. This property is summarized as in the remark 1.

Remark 1 (Degree of Dislike). The level of impact that each
FP item has on the sequence varies. We call this property the
degree of dislike.

This property is not considered in the equation 8 . There-
fore, we propose an addtional module that computes the dif-
ferent level of impact each FP has in an adaptive way. We in-
clude this adaptive module in the metric learning loss func-
tion in the remark 2. The summary of our proposed method
is shown in Figure 2. We call this FP-AdaMetric, a False-
positive-aware Adaptive Metric Learning model.

Remark 2 (FP-AdaMetric). Let us define the adaptive
module for all FPs as follows: fθFPA

(eu, efp, eseq) :
Rd×3 → R, where efp = fθi

e
(fp). Base on this, we propose

FP-AdaMetric which computes the FP part of the embed-
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(a) OverallFramework (b) Adaptive False-Positive module details

Figure 2: Proposed framework that involves FP items in SBRs. (a) Overall framework for FP-AdaMetric, (b) Adaptive FP
embedding aggregation module details.

ding in an adaptive fashion.

min
θ

E
u

 E
Su,p

|Su,p|∑
k=2

−log(puθ (xk|x1, . . . xk−1)

 (10)

+ λ

E
u

 E
FPu,Su,p

|Su,p|∑
k=2

Lada(xk, fp, seq; θ)


(11)

, where the proposed adaptive metric-learning
loss function is defined as Lada(xk, fp, seq; θ) =
max (−Dsim(p, seq) +Dsim(fp, seq) +m, 0)
and the similarity measures are Dsim(p, seq) =
Dsim

(
fθi

e
(xk), eseq

)
and Dsim(fp, seq) =

Dsim

(
Efp∼p(FPu) [fθ(eu, efp, eseq)× efp] , eseq

)
.

Experiment Setting
Datasets
To verify our proposed method on the various data types, we
evaluate the model on four different datasets: LastFM, Spo-
tify, AmazonMovie and FUSER. The detailed statistics of
each dataset are summarized in table 1. We split each dataset
into 80% of train, 10% of validation, and 10% of test sets.
The more detailed information is provided in the appendix.

Statistics LastFM Spotify Amazon
Movie FUSER

Num. Users 0.5 K None None 8 K
Consumption

cost Low Low High High

Num. Items 18 K 136 K 35 K 18 K
Num. Sess 84 K 125 K 8 K 59 K

False-positive
(FP) decision skip skip low score skip

FP ratio (%) 10 50 30 20

Table 1: Statistics on the datasets used in the experiments

Baseline 2 and Metric

Model We choose the following recent SBRs models as
baselines: NARM (Li et al. 2017), SRGNN (Wu et al. 2019),
STAMP (Liu et al. 2018), and GRU4REC (Hidasi et al.
2015). NARM introduces attention layer to learn global
and local preference of user preference in the sessions.
SRGNN proposes a Graph Neural Network (GNN) archi-
tecture to capture complex item consumption in the sessions.
STAMP utilizes the short-term attention and memory prior-
ity to capture users’ general interests and current interests
better. We specifically report the results from using NARM
and SRGNN to show how our proposed method overcome
their limitations. More experimental results (e.g. STAMP,
GRU4REC) are reported in the appendix. Due to the low
performance of the traditional non-deep learning methods
(Jang et al. 2020; Qiu et al. 2020) - Sequence Popularity (S-
POP) or First-order Markov Chain (FOMC)- are excluded in
the baseline.

Method We set up two baseline methods as follows:

• Vanilla: FP items are not removed as in the equation (1).
All click signals are regarded as implicit positive signals.

• FP-Simple: FP items are simply removed as in the equa-
tion (2). FPs are selected by skip (for LastFM, Spotify
and FUSER) or scores below than 2 (for AmazonMovie).

Evaluation Metric We choose HR@K (Hit Ratio),
MRR@K (Mean Reciprocal Rank) and NDCG@K (Nor-
malized Discounted Cumulative Gain) for our evaluation
metrics. These metrics are widely used in many of previous
works (Jang et al. 2020; Lv et al. 2020). We also compare
the results using different K ∈ {10, 50, 100} to verify ro-
bustness in various scenarios.

2All implementations of the experiments are available in https:
//github.com/jongwonJeong/FPAdaMetric. It will be appeared after
company’s permission
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Dataset Base
Model Method HR@K (%) MRR@K (%) NDCG@K (%)

10 50 100 10 50 100 10 50 100

LastFM

NARM
Vanilla 37.69 48.02 53.03 29.44 29.94 30.01 31.39 33.68 34.49

FP-Simple 37.69 48.07 53.04 29.48 29.97 30.04 31.41 33.70 34.51
FP-AdaMetric 37.86 48.24 53.17 29.50 29.99 30.06 31.47 33.77 34.56

SRGNN
Vanilla 38.21 48.37 53.30 30.06 30.54 30.61 31.98 34.23 35.03

FP-Simple 38.17 48.44 53.35 30.03 30.52 30.59 31.95 34.21 35.01
FP-AdaMetric 38.25 48.49 53.38 30.09 30.57 30.64 32.02 34.27 35.07

Spotify

NARM
Vanilla 29.93 43.11 47.58 15.70 16.38 16.44 19.06 22.04 22.77

FP-Simple 82.09 83.80 84.45 79.54 79.63 79.64 80.16 80.55 80.65
FP-AdaMetric 82.22 83.90 84.54 79.97 80.06 80.06 80.52 80.89 81.00

SRGNN
Vanilla 63.81 72.14 74.78 35.14 35.56 35.60 42.30 44.19 44.62

FP-Simple 82.25 84.14 84.83 79.27 79.36 79.37 80.00 80.45 80.54
FP-AdaMetric 82.49 84.41 85.11 79.46 79.56 79.57 80.21 80.64 80.75

Amazon
Movie

NARM
Vanilla 7.42 13.08 16.91 4.57 4.82 4.87 5.24 6.46 7.08

FP-Simple 9.33 14.61 20.16 7.37 7.55 7.60 7.82 8.74 9.23
FP-AdaMetric 9.38 14.85 20.51 7.51 7.69 7.73 7.94 8.83 9.32

SRGNN
Vanilla 7.35 12.36 15.89 5.05 5.27 5.32 5.58 6.67 7.24

FP-Simple 9.25 14.26 19.79 7.49 7.66 7.70 7.89 8.75 9.22
FP-AdaMetric 9.24 14.44 20.24 7.47 7.64 7.69 7.88 8.75 9.23

FUSER

NARM
Vanilla 4.16 14.19 22.04 1.40 1.82 1.93 2.04 4.18 5.44

FP-Simple 5.31 17.35 26.05 1.71 2.22 2.35 2.54 5.12 6.52
FP-AdaMetric 5.48 17.81 26.75 1.80 2.33 2.45 2.64 5.28 6.72

SRGNN
Vanilla 3.43 12.05 19.67 1.09 1.45 1.55 1.63 3.46 4.68

FP-Simple 4.36 14.90 23.48 1.43 1.88 2.00 2.10 4.35 5.74
FP-AdaMetric 4.54 15.49 24.19 1.49 1.95 2.07 2.18 4.51 5.92

Table 2: Overall performance comparison on various datasets in terms of Hit Ratio, MRR, and NDCG@K where K∈
{10, 50, 100}. The highest and second-highest scores are highlighted as bold and underline respectively.

Experimental Result
Our experiments are designed to verify the following re-
search questions:

• RQ1 (Performance): Can FP-AdaMetric improve the
performance of SBRs by considering FPs?

• RQ2 (Domain Difference): Are there differences in the
effect of FPs across different data domains?

• RQ3 (Ablation Study): What is the impact of the each
module?

• RQ4 (Embedding Analysis): Do users who are close to
each other in the embedding space have similar prefer-
ences?

Dataset Method Metric@100
HR MRR NDCG

Spotify

FP-AdaMetric 84.54 80.06 81.00
w/o Adaptive 84.84 79.95 80.97
w/o Metric 84.45 79.64 80.65

Vanilla 47.58 16.44 22.77

Amazon
Movie

FP-AdaMetric 20.51 7.73 9.32
w/o Adaptive 20.21 7.69 9.27
w/o Metric 20.16 7.60 9.23

Vanilla 16.91 4.87 7.08

Table 3: Results on the ablation studies of FP-Metric and
FP-Simple using NARM model.

Overall Performance

Overall results on all four benchmark datasets are presented
in Table 2. Compared to Vanilla , FP-Simple shows higher
HR, MRR, and NDCG by 22%, 101%, and 65% on the
average. Especially, FP-Simple significantly improves the
performance on the metrics regarding the ranking of true-
positive items (i.e., MRR and NDCG) than HR. From the
results in general, we find that FP items in a session con-
taminate the true preference of items and eventually degrade
the recommendation quality. It proves our claim that taking
false positives into account is essential for SBRs. Also, we
find a trend that the performance gain is larger on datasets
with higher FP ratios, such as Spotify and Amazon Movie.

Next, from the comparison between all three methods, we
verify that our proposed FP-AdaMetric outperforms all the
other baselines in every evaluation metric across all data do-
mains. This gives the answer to our RQ1.

When comparing the performance gain between FP-
Simple and FP-AdaMetric in different datasets, the im-
provement in Amazon Movie and FUSER is larger than in
LastFM and Spotify in general. We argue that this is because
the item consumption cost in Movie and Game services is
higher than in music streaming services, as shown in Ta-
ble 1. Considering the FPs leads to a larger performance gain
in such cases where users are more focused on the item con-
tents and actively consume the items of their interests. This
answers our RQ2.
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(a) NARM + Vanilla (b) NARM + FP-Simple (c) NARM + FP-AdaMetric

(d) SRGNN + Vanilla (e) SRGNN + FP-Simple (f) SRGNN + FP-AdaMetric

Figure 3: Comparison of embedding spaces trained with Vanilla, FP-Simple and FP-AdaMetric (proposed method) using
NARM and SRGNN on the Amazon Movie Test Dataset. Dimensions are reduced via PCA initilization and T-SNE. (blue:
session-embeddings, green: true-positive embeddings, red: FP embeddings)

Ablation Study
We verify the effectiveness of each module in FP-
AdaMetric in this section. FP-AdaMetric consists of 1)
the metric learning module and 2) the adaptive module. To
measure each module’s effectiveness, we compare our orig-
inal model FP-AdaMetric with a version without the met-
ric learning module, FP-Simple, and a version without the
adaptive module, FP-Metric. FP-Simple and FP-Metric
are denoted as “w/o Adaptive” and “w/o Metric” respec-
tively in Table 3. We report the performance of each set-
ting on NARM in terms of HR, MRR, and NDCG@100 on
Amazon Movie and Spotify. Table 3 shows that each module
of our proposed method affects the performance differently.
It can resolve RQ3 as follows. The metric-learning module
helps in every evaluation metric, especially in the Hit Ratio
(HR). The constraint in the Definition 1 contributes to mak-
ing FP embeddings far away from the sequential embedding,
while not being concerned in attracting the positives. There-
fore, it helps keeping the probability of FP in the top-k rank-
ing low, resulting higher HR. On the other hand, the adap-
tive module (FP-AdaMetric) improves the performance in
MRR and NDCG more than in HR. It means that the adap-
tive module helps to keep the rankings of true-positive items
higher. We leave showing this relationship for future works.

Visualization Result
To qualitatively analyze the learned embedding spaces,
we plot the embeddings of three different types (se-
quence, true-positive item, and FPs item) by T-SNE (Van
Der Maaten 2014) with PCA initialization (Abdi and
Williams 2010), which is a simple and high-quality visu-
alization method widely used for the analysis of the embed-
ding spaces (Kobak and Linderman 2021). Figure 3 shows

the learned embedding space from three methods explained
in table 2: Vanilla FP-Simple and FP-AdaMetric (pro-
posed) on Amazon Movie dataset. Although the embeddings
are not separated in Vanilla and FP-Simple method, we
can see that FP-AdaMetric pushes away the FP embed-
dings (green) from true-positive and sequence embeddings.
True-positive and sequence embeddings are placed very
closely, and are not mixed with FPs. Therefore, the proba-
bility of recommending FPs in FP-AdaMetric is lower than
in Vanilla or FP-Simple case. This answers RQ4 that sim-
ilar preference results in embeddings that are close to each
other in our proposed method.

Conclusion
We study the impact of false positives on the SBRs, by
carefully deriving the metric learning objective from the
next-item prediction problem. We introduce the constraint
optimization equation for SBRs and show that this equa-
tion can be transformed into a metric-learning regularization
term. From the assumption that the degree of dislike in each
false positive item differs, we propose the adaptive modules
for false positives to improve our regularization effect. Di-
verse experiments show our proposed regularization includ-
ing FP-Metric and FP-AdaMetric is effective in terms of
several performance metrics, and our method plays a more
crucial role in certain domains, such as Movie and Game.

Potential future research directions are as follows. Find-
ing a proper criterion of false positives will contribute to a
better results on methods that take false positives into ac-
count Wang et al. (2021b). Moreover, we can extend our the-
oretical analysis in N-pairs (Sohn 2016) or contrastive loss
(Chen et al. 2020). Also, we can further explore the impact
of false positives on other data domains (e.g.news).
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