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Abstract

Graph Convolutional Network (GCN) has shown remark-
able potential of exploring graph representation. However,
the GCN aggregating mechanism fails to generalize to net-
works with heterophily where most nodes have neighbors
from different classes, which commonly exists in real-world
networks. In order to make the propagation and aggregation
mechanism of GCN suitable for both homophily and het-
erophily (or even their mixture), we introduce block model-
ing into the framework of GCN so that it can realize “block-
guided classified aggregation”, and automatically learn the
corresponding aggregation rules for neighbors of different
classes. By incorporating block modeling into the aggrega-
tion process, GCN is able to aggregate information from ho-
mophilic and heterophilic neighbors discriminately accord-
ing to their homophily degree. We compared our algorithm
with state-of-art methods which deal with the heterophily
problem. Empirical results demonstrate the superiority of our
new approach over existing methods in heterophilic datasets
while maintaining a competitive performance in homophilic
datasets.

Introduction
In recent years, graph-based information exploration has
been extensively studied in deep learning (Wu et al. 2021;
Scarselli et al. 2009; Cai, Zheng, and Chang 2018; Cui
et al. 2019; Jin et al. 2021b). Graph Convolutional Network
(GCN) (Kipf and Welling 2017), which is famous for its
effectiveness in graph representation learning, follows the
principal learning mechanism where adjacency nodes at-
tain similar representations through aggregating their neigh-
boring information. The representations support subsequent
downstream tasks such as node classification (Duvenaud
et al. 2015; Jin et al. 2021a; He et al. 2021; Hu et al. 2019)
and link prediction (Schlichtkrull et al. 2018; Zhang and
Chen 2018; Kipf and Welling 2016; Cao et al. 2021).

Despite its wide application, GCN and its variants (Wu
et al. 2019; Chen, Ma, and Xiao 2018) are typically limited
by the implicit homophily assumption where nodes within
the proximity have similar representations, that is, birds of a
feather flock together (Miller and Cook 2001). But this is not
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satisfied in many real-world heterophilic datasets, e.g., fraud
detection networks or the protein structure graphs, where
nodes from different classes tend to make connections due
to opposites attract. Some recent studies show that the per-
formance of GCN can be severely restricted in this type of
datasets, due to the fact that GCN’s aggregating mechanism
is not designed for heterophily settings.

Recently some methods aiming to solve the GCN ho-
mophily problems have been proposed. Based on the design-
ing methodologies, these algorithms can be mainly divided
into two types. 1) Aggregating higher-order neighborhoods,
such as H2GCN (Zhu et al. 2020) and MixHop (Abu-El-
Haija et al. 2019). These algorithms are based on the idea
that direct neighborhoods may be heterophily-dominant, but
the higher-order neighborhoods are homophily-dominant
and thereby provide more valuable information. Therefore,
by explicitly aggregating information from higher-order
neighborhood, the heterophily problem of GCN brought
by aggregating information from immediate neighborhoods
can be alleviated. 2) Passing signed messages between het-
erophilic neighbors, such as GGCN (Yan et al. 2021) and
GPR-GNN (Chien et al. 2021). These algorithms normally
assign a weight to every connected node based on the sim-
ilarity between them. As the nodes aggregate information
from neighbors, they get positive messages from neighbors
with the same class while negative messages from neighbors
with different classes. In this way, positive messages allow
neighbors of similar class to intensify their impact, while
negative messages prevent dissimilar neighbors from bring-
ing irrelevant information which may harm performance.

However, existing algorithms for heterophily have two
main drawbacks. The first is the damage of network topol-
ogy. Existing methods typically expand high-order nodes
as neighbors and try to find more homophilic information,
which will change the original topology of networks. But in
network science, network topology, even having heterophilic
connecting pattern, possess vital information which can be
preserved and fully utilized. The second is the limitation of
aggregating mechanism. Methods like MixHop and GPR-
GNN extend the same treatment to all neighbors in different
classes which is not satisfactory, while methods like GGCN
is an opposite extreme that gives every neighbor a weight
parameter which is highly computational expensive.

Then, an intuitive solution may be that we allow neigh-
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bors of the same class aggregated in the same way while
neighbors of different classes aggregated in different ways.
Block modeling which is to describe structural regularities
(including homophily, heterophily, or their mixture) of net-
works should have a big potential to address this problem.
But unfortunately, while block modeling depicts regular re-
lationships between classes via a so called block matrix
(which describes the possibility of nodes in two blocks con-
nected by an edge), it still cannot be used for guiding a clas-
sified aggregation in the graph convolutional framework.

1. The first challenge is how to derive the block matrix in
GCN since it is only a statistical modeling for network
structural regularities. For getting block matrix, the block
class labels of all nodes must be known. GCN is a semi-
supervised learning model and only part of labels are
available. So in order to solve this problem, we introduce
a multilayer perception (MLP) into the whole learning
framework and use it to learn soft labels for all nodes us-
ing attribute information. And then we use the soft labels
to derive the block matrix.

2. The second and more important challenge is how to de-
rive the classified aggregation mechanism based on the
derived block matrix since this matrix (which depicts the
probability distribution for generating an edge between
nodes in any two blocks) cannot be used for guiding clas-
sified aggregation directly. For this problem, we propose
to create a new block similarity matrix based on the de-
rived block matrix, which can characterize the similarity
degree between different blocks in the connecting pat-
tern of blocks. By doing so, we can use this new matrix
as an aggregation indicator to construct the graph convo-
lutional operation and finally realize the classified aggre-
gation for both homophilic and heterophilic graphs.

Then, based on the above idea, we present a new
Graph Convolutional Network with Block Modelling-
guided-classified aggregation, namely BM-GCN, which is
suitable for both homophilic and heterophilic situations. In
the proposed BM-GCN, the MLP is applied to learn un-
known labels and then derive the block similarity matrix,
and the derived block similarity matrix as well as the learned
labels can co-guide attribute information propagating and
aggregating on network topology. The process of learning
block similarity matrix and block similarity-guided graph
convolutional operation are integrated into a unified frame-
work. In this way, the learning of unknown class labels can
help realize classified aggregation, and block-guided graph
convolutional operation can further help MLP improve its
performance on learning the unknown labels.

Preliminaries
Problem Setup. A attributed graph can be formulated as
G = (V, E , X), where V is the set of nodes, E the set of
edges and X the node attributes. Each row in X indicates
an attribute vector of a node. The edge set can also be rep-
resented by an adjacency matrix A ∈ {0, 1}n×n, where
n = |V|. For semi-supervised tasks, nodes in training set
(T V ) have ground truth labels. The labels are formulated as

Notations Explanations

G A graph
V The set of nodes in graph G
E The set of edges in graph G
TV Training node set
Ni The set of neighbor of node vi
A Adjacency matrix
X , Xi Attribute matrix, attribute vector of node vi
Y , Yi Label matrix, one-hot label vector of node vi
B, Bi Soft label matrix, soft label vector of node vi
H , hi,j Block matrix, an element in H
Q, qi,j Block similarity matrix, an element in Q
Z Node representations

Table 1: Notations and Explanations.

a label matrix Y ∈ Rn×c in which each row is a one-hot
label vector, where c is the number of classes.

Homophily Ratio. The homophily ratio (Pei et al. 2020)
can measure the overall homophily level in a graph. It counts
the ratio of same-class neighbor nodes to the total neighbor
nodes in a graph, defined as

h =
1

|V|
∑

vi∈V

|{vj |vj ∈ Ni, Yj = Yi}|
|Ni|

(1)

where Ni is the neighbor set of node vi. In this work, we
use homophily ratio h to determine whether a graph is ho-
mophilic or heterophilic.

Block Matrix. Given the labels Y ∈ Rn×c for all nodes
and the adjacency matrix A ∈ {0, 1}n×n, the block matrix
is defined as

H =
(
Y TAY

)
⊘

(
Y TAE

)
(2)

where E an all-ones matrix with the same size as Y , and ⊘
the Hadamard (element-wise) division operation. Block ma-
trix models the linked possibility of nodes in any two blocks.
In this work, blocks represent the classes of labels in a graph.
From the node-wise level, Hi,j is the probability that a node
in the i-th class connects with a node in the j-th class.

The notations are summarized in Table 1.

Methods
Here we show the proposed method, starting with an
overview, following the detail designs, and finally give illus-
trative examples to show the effectiveness of the core design.

Overview
To solve the problem that GCN is constrained by homophily
assumption, we introduce block modeling into GCN and de-
veloped a new graph convolutional network that is suitable
for both homophilic and heterophilic situations. This new
framework contains two parts: one is to learn the block ma-
trix and the other is to derive a new mechanism based on
block matrix and use it to conduct new propagation and ag-
gregation (which are key operations in GCN). For learning
block matrix, we need labels of all nodes, while GCN is typ-
ically a semi-supervised method (Li, Han, and Wu 2018),
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Figure 1: The structure of BM-GCN. It consists of two parts, the calculation of block similarity matrix and the block-guided
graph convolution. In the block similarity matrix calculating part, a MLP layer is first applied to generate soft labels B, then
block matrix H and block similarity matrix Q are computed based on soft labels B. In block-guided graph convolution part,
the graph convolutional operation is conducted under the guidance of block similarity matrix Q and soft labels B. Particularly,
BM-GCN achieves a classified aggregation mechanism in graph convolutional operation via BQBT optimization (different
color means different aggregation for different classes). Finally, two semi-supervised loss are combined to optimize BM-GCN
model in an end-to-end manner.

i.e., only part of labels is available. For solving this prob-
lem, we use a multi-layer perception (MLP) to learn soft
labels for nodes without class labels. After getting labels of
all nodes, we use a combination of the given and learned la-
bels as well as the topological structure of networks to com-
pute the block matrix. Block matrix denotes the probabil-
ity for generating an edge between nodes in any two blocks
(classes). Block matrix reflects homophily and heterophily
among parts of networks while it cannot be used directly
to conduct propagation and aggregation. So in this case,
we developed a new aggregation mechanism, i.e., block-
guided classified aggregation, by a smartly using of the
block matrix. In specific, we use the block matrix to define
a block similarity matrix which measures the similarity de-
gree of any two blocks based on connecting patterns among
blocks, and contains homophilic and heterophilic informa-
tion among blocks. Block similarity matrix provides poten-
tially valuable rules for information propagation in graph
convolutional layers, which can ignore the homophily or
heterophily of a graph and finally achieve a classified ag-
gregation. Then, we use this block similarity matrix and the
learned soft labels from MLP to redefine a new aggregation
operation in which class labels of nodes and the similarities
among blocks can co-guide the attribute information propa-
gating and aggregating on network topology. At last, these
two parts of BM-GCN, the learning of block matrix and the
block-guided propagation and aggregation, work together to
form a unified graph convolutional framework which is op-
timized jointly by back propagation.

Learning of Block Matrix
We first need to learn the block matrix. Indicated by Eq. (2),
computing block matrix requires complete labels. However,
graph convolutional networks are semi-supervised models,
in which a large number of labels are unknown. In order to
fill this gap, BM-GCN adopts the way of learning the un-
known labels (Nguyen, Valizadegan, and Hauskrecht 2014)
from the given data (the known labels and the attribute net-
work) to compute the block matrix. Considering that the
soft labels should come from the original data while the
topology may be not trustworthy in heterophilic graphs, here
BM-GCN uses node attributes alone to generate soft la-
bels. Specifically, BM-GCN adopts a multilayer perception
(MLP) to transform node attributes into soft labels

B̄ = σ (MLP (X)) (3)

where X is node attributes, B̄ the output of MLP, and σ (·)
an activation function. Then a softmax operation are applied
to B̄ for generating soft labels

B = softmax
(
B̄
)

(4)

In order to ensure the reliability of the soft label B,
BM-GCN first pre-trains the MLP layer with the training
ground-truth labels for several iterations. Specifically, the
pre-training process aims to minimize the loss function

LMLP =
∑

vi∈TV
f (Bi, Yi) (5)

where Bi is the soft label of node vi, Yi is the ground-truth
label of vi, TV is the nodes in training set, and f (·) is the
cross entropy.
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After the pre-training process, there are ground-truth la-
bels and soft labels available for nodes in training set, and
only soft labels available for the remaining nodes. BM-GCN
maximizes the use of available ground-truth labels by as-
sembling the two kinds of labels

Ys = {Yi, Bj |∀vi ∈ TV , ∀vj /∈ TV} (6)

where Ys is the assembled label matrix with each row being
an label vector of each node. Then the block matrix can be
computed via Eq. (2), which can be rewritten as

H =
(
Y T
s AYs

)
⊘
(
Y T
s AE

)
(7)

where A is the adjacency matrix, E is an all-ones matrix
with the same size as Ys, and ⊘ is the Hadamard (element-
wise) division operation. The block matrix H can represent
the connecting pattern between blocks (classes), which can
well reflect the homophily ratio of the graph. In particular,
the more frequently the nodes with the same soft label are
connected, the higher homophily ratio the graph has.

Block Similarity Matrix
The block matrix H describes the possibility distribution of
two nodes in any two blocks (classes) to be connected by
an edge. However, this matrix cannot directly guide GCN
to achieve a classified aggregation process. This is because
in a heterophilic graph where edges tend to connect nodes
in different classes, the possibility values between different
classes may be larger than that within the same class. So, in
order to realize the block-guided classified aggregation, it is
necessary to modify the element values in block matrix H so
that these elements can reflect potentially valuable informa-
tion on propagating rules between various classes of nodes
in the graph convolutional operation. With this purpose, we
innovatively propose a new block similarity matrix based on
block matrix, which is defined as

Q = HHT (8)

The similarity matrix Q measures the similarity degree of
different blocks in H , indicating that blocks (classes) with
similar structural connecting pattern will have more in-
formation propagation with each other. Furthermore, since
nodes within the same class should have more information
exchange, BM-GCN enhance the information propagating
ratio within the same class, i.e.,

Diag (Q)← α ·Diag (Q) (9)

where Diag (·) means the diagonal elements of a matrix, and
α the enhancement factor.

Block-Guided Graph Convolution
Based on the new created block similarity matrix Q, BM-
GCN can assign different information propagating rules for
different class-combinations. Furthermore, soft labels can
indicate which class-combination the two nodes belong to.
In this way, the information propagating process can be
jointly guided by soft label B and block similarity matrix
Q. Particularly, consider two nodes vi and vj with their soft
labels Bi = {b1i , b2i , ..., bci} and Bj = {b1j , b2j , ..., bcj}

respectively, where c is the number of classes. There are c2

candidate class-combinations for node pairs ⟨vi, vj⟩, each of
which can be probabilized as

p (φ(vi) = Yr, φ(vj) = Yt) = bri b
t
j (10)

where φ (·) is a function that maps a node to its class, and
r, t ∈ {1, 2, ..., c}. Meanwhile, the block similarity matrix Q
indicates information propagating probability between any
two classes, i.e., the more similar two classes, the more
information should be propagated. Therefore, propagating
probability between nodes vi and vj can be seen as the ex-
pectation of elements in Q, i.e.,

ωij =
c∑

r=1

c∑
t=1

qr,tb
r
i b

t
j (11)

where qr,t is an element in Q, indicating information propa-
gating probabicity between the r-th class and the t-th class.
Eq. (11) demonstrates that the propagation probability be-
tween nodes vi and vj are guided by their soft labels and
block similarity matrix Q simultaneously. Then, for all node
pairs in a graph, propagating probabilities along with these
pairs can be formulated as a weight matrix

Ω = BQBT (12)

Eq. (12) is the matrix-level expression of Eq. (11). Then, we
use weight matrix Ω to refine the topology

A′ = Ω⊙ (A+ βI) (13)

where I is the identity matrix, β a hyper-parameter, and
⊙ the Hadamard (element-wise) multiplication operation.
Then, BM-GCN normalizes the weights on edges by a soft-
max operation

ãi,j =
exp (a′i,j)∑

vs∈N exp (a′i,s)
(14)

where a′i,j is an element in A′. Here we name the nor-
malized topological matrix as Ã, and replace the normal-
ized graph laplacian used in GCN with our new Ã. In this
way, graph convolutional operation in BM-GCN can finally
realize a classified aggregation mechanism because the in-
formation propagation process is under the guidance of soft
labels and block similarity matrix Q. Node pairs belonging
to different soft label combinations will have different in-
formation exchange, and the information exchange ratio is
determined by Q. Then, the new graph convolutional layer
can be written as

Z(k) = Z(k−1)W
(k)
1 + ÃZ(k−1)W

(k)
2 (15)

where Z(k) denotes node representations in the k-th layer,
W

(k)
1 and W

(k)
2 are learnable parameters specific to the k-th

layer, and Z(0) = X .

Model Optimization
Similar to the MLP layer (Eq. 5), BM-GCN adopts a semi-
supervised loss as

LGCN =
∑

vi∈TV
f (Zi, Yi) (16)
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Figure 2: Visualization of (a) block matrix H̄ calculated
based on ground truth, (b) block matrix H learned by our
approach, and (c) the new block similarity matrix Q cre-
ated based on H . The left column is the result on ho-
mophilic graph Cora and the right is that on heterophilic
graph Chameleon. x-axis (and y-axis) denotes the id of the
block (class). The lager the brighter for elements in each ma-
trix.

where Z is the output of the last graph convolutional layer.
Here, BM-GCN also optimizes pre-trained MLP layer in a
fine-tune manner (Lu et al. 2021). Specifically, BM-GCN
integrates the process of block similarity learning and the
process of block guided graph convolutional operation into
a unified framework. Incorporating the loss function in MLP
layer and in graph convolutional operation, the final loss
function can be written as

Lfinal = λLGCN + (1− λ)LMLP (17)

where λ is the balance parameter (with the default value
0.5). By minimize Lfinal, BM-GCN trains all modules in
an end-to-end manner.

Illustration on Why Block Modeling Effective
The proposed BM-GCN aims to realize a block-guided clas-
sified aggregation so that nodes sharing the same or simi-
lar classes will have more information exchange. In order

Datasets |V| |E| c d h

texas 183 295 5 1703 0.11
squirrel 5,201 198,493 5 2,089 0.22
chameleon 2,277 31,421 5 2.325 0.23
cora 3,327 4,676 7 3,703 0.74
pubmed 19,717 44,327 6 500 0.80
citeseer 2,708 5,278 3 1,433 0.81

Table 2: Statistics of datasets. |V|, |E|, c, d, h are the number
of nodes, edges, classes, and features, and homophily ratio,
respectively.

to achieve this goal, block matrix is introduced into BM-
GCN to model the relationships between classes. The ele-
ments in the block matrix H indicates the connecting pos-
sibility between various classes of nodes. Here we take a
homophilic graph Cora (Bojchevski and Günnemann 2017)
and a heterophilic graph Chameleon (Rozemberczki, Allen,
and Sarkar 2021) as examples to show how BM-GCN works.

Fig. 2(a) show the block matrix H̄ of Cora (or
Chameleon) calculated based on the ground truth. As shown,
the distribution of these two matrices have different patterns.
The connecting possibility of nodes within the same class
is larger in the homophilic graph Cora, while the connect-
ing possibility of nodes between different classes is larger
in the heterophilic graph Chameleon. Fig. 2(b) shows the
block matrix H of Cora (or Chameleon) learned based on
the soft labels calculated via Eq. (4). As shown, our H is al-
ways close to H̄ on either Cora or Chameleon, which partly
shows the strong learning ability of our new approach.

However, in this case the learned block matrix H can only
help aggregate more same-class information on homophilic
graphs rather than heterophilic graphs. That means, the off-
diagonal elements with big values in H of the heterophilic
graph (right in Fig. 2b) will still cause nodes receiving
too many noises during graph convolution and thus lead to
performance degradation. But fortunately, we create a new
block similarity matrix Q based on H using Eq. (8), which
can well measure the relationship between two classes from
a new perspective. That is, if two classes have the similar
connected value distributions with all kinds of classes in a
graph, the two classes should be more similar. The visual-
izations of Q are shown in Fig. 2(c). As shown, the values of
diagonal elements in this new matrix Q are then always big-
ger than off-diagonal elements, on both homophilic and het-
erophilic graphs. It successfully achieved the role of block-
guided classified aggregation on heterophilic graphs (right
in Fig. 2c), and meanwhile, preserved the original distribu-
tions of block matrix on homophilic graphs (left in Fig. 2c),
ensuring the stable performance on both homophilic and het-
erophilic graphs.

Experiments
We first discuss the experiment setup, including datasets,
baselines, and parameter settings. We then evaluate the
proposed methods on node classification and visualization
tasks, and finally give the parameter analysis.
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Method/
Accuracy (%)

heterophilic graphs homophilic graphs
Texas Squirrel Chameleon Cora Citeseer Pubmed

h = 0.09 h = 0.23 h = 0.22 h = 0.81 h = 0.74 h = 0.8

MLP 82.70±6.19 33.35±1.24 48.20±2.63 74.14±1.40 69.58±2.31 86.38±0.61
GCN 55.41±3.47 44.07±1.95 67.04±2.23 86.48±1.12 72.67±1.99 87.39±0.68
H2GCN 82.16±8.21 28.91±1.78 51.58±1.51 87.69±1.37 75.95±2.18 88.78±0.53
GPR-GNN 84.59±4.37 29.45±1.27 69.78±1.97 86.70±1.03 75.12±1.98 87.38±0.63
CPGNN-MLP 77.09±4.22 28.65±1.50 52.63±1.79 85.23±1.71 74.29±2.41 86.83±0.78
CPGNN-Cheby 77.03±5.83 30.95±1.24 54.05±4.67 86.82±1.11 75.42±1.85 89.08±0.67
BM-GCN(Ours) 85.13±4.64 51.41±1.10 69.58±2.90 87.99±1.29 76.13±1.92 90.25±0.75

Table 3: Node classification accuracy on six datasets. The best results are in bold and the second best results are underlined.

Experiment Setup
Datasets. We conduct experiments on six real-world
datasets with different homophily ratio. Among them, Cora,
Citeseer and Pubmed (Bojchevski and Günnemann 2017;
Sen et al. 2008; Namata et al. 2012) are three citation
networks with high homophily ratios. Texas, Chameleon
and Squirrel (Rozemberczki, Allen, and Sarkar 2021) are
three webpage datasets collected from university websites
or Wikipedia, having low homophily ratios. The number of
nodes, edges, classes, and features, as well as homophily ra-
tios of the above datasets, are summarized in Table 2.

Baselines. We compare our model with six baselines in-
cluding a classic GCN (Kipf and Welling 2017), an attribute-
only based MLP, and four GNN-based SOTA methods aim-
ing to analyze heterophilic graphs (i.e., H2GCN (Zhu et al.
2020), GPR-GNN (Chien et al. 2021), CPGNN-MLP, and
CPGNN-Cheby (Zhu et al. 2019)). Among them, H2GCN
aggregated more homophilic information by considering
higher order neighborhoods. GPR-GNN tried to distill
more valuable homophilic information by assigning signed
weights to connected nodes. CPGNN propagated soft la-
bels under the guidance of a compatibility matrix. CPGNN-
MLP and CPGNN-Cheby are two variants of CPGNN with
different soft label learning methods, i.e., MLP and GCN-
Cheby (Defferrard, Bresson, and Vandergheynst 2016).

Parameters. For the baselines, we use their default pa-
rameter settings as they often lead to the best results. For
our proposed method, we set the number of GCN layers k to
2 for Texas and 3 for the other five datasets. We set the bal-
ance parameter of loss λ to 0.5, dropout ratio to 0.5, learning
rate to 0.001, and weight decay to 0.0005. We search on the
enhancement factor α and self-loop coefficient β from 0 to
4 for datasets. For all datasets, we use the same splits with
Geom-GCN (Pei et al. 2020) and measure the performance
of all models on the test sets over 10 random splits.

Node Classification
The results are shown in Table 3 where the best results are
in bold fonts and the second-best results are underlined. The
newly proposed method achieved the best performance on
five of the six datasets while the second best performance on
the remaining dataset. Considering the six datasets, our BM-
GCN is on average 11.03%, 7.91%, 7.58%, 4.58%, 9.30%,

and 7.86% more accurate than MLP, GCN, H2GCN, GPR-
GNN, CPGNN-MLP, and CPGNN-Cheby respectively. To
be specific, for the three datasets with heterophily (left in
Table 3), it is obvious that BM-GCN, H2GNN, CPGNN
and GPR-GNN have higher mean accuracy than GCN and
MLP. This indicates that special designs for heterophily
are necessary when analyzing heterophilic graphs. Among
these methods, our BM-GCN have the best performance,
which demonstrates that our new idea of block-guided clas-
sified aggregation is sound and more useful for heterophilic
graphs. For three datasets with homophily (right in Table 3),
the classic GCN has a good performance since it is de-
signed under a strict homophily assumption and can be natu-
rally applied to homophilic graphs. Other baselines can also
achieve competitive performance. Despite these, our BM-
GCN steadily outperforms all baselines, which demonstrates
its generality.

Visualization
In order to show the effectiveness of our proposed model in
a more intuitive way, we further conduct visualization task
on a heterophilic network Chameleon as an example. We
extract the output embedding in the final layer of our BM-
GCN as well as three SOTA baselines (CPGNN, GPR-GNN,
and H2GCN) and present the learned embedding using t-
SNE (van der Maaten and Hinton 2008). The result is shown
in Fig. 3, in which nodes are colored by ground-truth labels.

From Fig. 3 we can find that, the results of CPGNN, GPR-
GNN and H2GCN are not so satisfactory as many nodes
with different labels are mixed together. The performance
of our proposed model is apparently the best, because the
visualization of learned embeddings has a more compact
structure, the highest intra-class tightness and the clearest
boundaries among different classes. This further validate the
effectiveness of our new idea of block-guided classified ag-
gregation.

Parameter Analysis
We choose two datasets, i.e., a homophilic graph Cora and
a heterophilic graph Chameleon to analyze some impor-
tant hyper-parameters in BM-GCN, including the number
of GCN layers k, the enhancement factor α in aggregating
weight matrix Q, and the loss balancing parameter λ.
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(a) H2GCN (b) CPGNN (c) GPR-GNN (d) BM-GCN

Figure 3: Visualization results on Chameleon dataset. Different colors correspond to different ground truth classes.

Datasets/
Accuracy (%)

The number of graph convolutional layers k

1 2 3 4 5 6

Cora 81.27 86.92 87.99 87.30 60.10 40.16
Chameleon 58.71 67.74 69.58 65.00 49.28 34.69

Table 4: Node classification accuracy of BM-GCN with
graph convolutional layers k varying from 1 to 6.

Number of GCN layers k. We test the node classifica-
tion accuracy of BM-GCN with GCN layers k varying from
1 to 6. The result are reported in Table 4. Results on the
two datasets have the same trend. BM-GCN has a good and
stable performance when k = 2, 3, 4 and will have a perfor-
mance degradation when k is too large. This is a manifesta-
tion of the over-smoothing problem of GCN-based models.
Even though, our BM-GCN can achieve competitive perfor-
mance when k = 4 while the classic GCN typically limits
k = 2. This is because BM-GCN uses aggregating weight
matrix Q to further optimized the topology so that noise
information can be filtered to alleviate the over-smoothing
problem.

Enhancement factor α in Q. We test the node classi-
fication accuracy of BM-GCN with enhancement factor α
varying from 1 to 4. The results are reported in Fig. 4. BM-
GCN achieves the best performance when α is around to
2, which means that properly enhancing the diagonal ele-
ments of aggregating weight matrix Q is effective since it
can make nodes of the same class more closely connected.
Even the performance will decrease when α is too large or
too small, the performance changes is within 1%. Empiri-
cally, it is feasible to set α around to 2, which demonstrates
the easy selectivity of the enhancement factor α.

Loss balance parameter λ. We test the node classifica-
tion accuracy of BM-GCN with loss balancing parameter λ
varying from 0 to 1, and the result are reported in Fig. 5.
When λ = 0, BM-GCN has a poor performance. This is be-
cause the parameters in GCN layers will not be optimized.
When λ > 0, BM-GCN has a stable and competitive perfor-
mance. This demonstrates the robustness of loss balancing
parameter in our proposed model.

Conclusion
In this paper, in order to develop a better graph convolutional
operation universally suitable for both heterophily and ho-
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Figure 4: Parameter analysis of enhancement factor α in
Q on Cora and Chameleon datasets. We report the average
node classification accuracy over 10 random splits.
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Figure 5: Parameter analysis of loss balancing parameter
λ on Cora and Chameleon datasets. We report the average
node classification accuracy over 10 random splits.

mophily we propose a novel framework BM-GCN. The pro-
posed BM-GCN introduces block modeling into graph con-
volutional operation in order to realize the principle of block
guided classified aggregation, which aggregates more infor-
mation from neighbors of the same class while less from dif-
ferent classes. Specifically, BM-GCN consists of two main
parts: one learns the similarity between classes according to
the learned block matrix, and the other conducts graph con-
volutional operation with the guidance of block (class) sim-
ilarity. Based on these two parts, we obtain a unified frame-
work that achieves mutual optimization. We evaluate BM-
GCN on both homogeneous and heterogeneous datasets. Ex-
perimental results on six real-world datasets verify the supe-
riority of BM-GCN over the-state-of-art methods including
those methods designed for heterophily.
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