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Abstract

Recent developments in predictive modeling using marked
temporal point processes (MTPP) have enabled an accurate
characterization of several real-world applications involving
continuous-time event sequences (CTESs). However, the re-
trieval problem of such sequences remains largely unaddressed
in literature. To tackle this, we propose NEUROSEQRET which
learns to retrieve and rank a relevant set of continuous-time
event sequences for a given query sequence, from a large
corpus of sequences. More specifically, NEUROSEQRET first
applies a trainable unwarping function on the query sequence,
which makes it comparable with corpus sequences, especially
when a relevant query-corpus pair has individually different
attributes. Next, it feeds the unwarped query sequence and the
corpus sequence into MTPP guided neural relevance models.
We develop two variants of the relevance model which offer a
tradeoff between accuracy and efficiency. We also propose an
optimization framework to learn binary sequence embeddings
from the relevance scores, suitable for the locality-sensitive
hashing leading to a significant speedup in returning top-K re-
sults for a given query sequence. Our experiments with several
datasets show the significant accuracy boost of NEUROSE-
QRET beyond several baselines, as well as the efficacy of our
hashing mechanism.

Introduction
The recent developments in marked temporal point processes
(MTPP) has dramatically improved the predictive analytics in
several real world applications— from information diffusion
in social networks to healthcare— by characterizing them
with continuous-time event sequences (CTESs) (Tabibian
et al. 2019; Gupta et al. 2021a; Samanta et al. 2017; De et al.
2018; Valera et al. 2014; Rizoiu et al. 2017; Wang et al. 2017;
Daley and Vere-Jones 2007; Guo et al. 2018; Du et al. 2015;
Tabibian et al. 2019; Kumar et al. 2019; De et al. 2016; Zhang
et al. 2021; Du et al. 2016; Farajtabar et al. 2017; Jing and
Smola 2017; Saha et al. 2018; Gupta and Bedathur 2021;
Likhyani et al. 2020). In this context, given a query sequence,
retrieval of relevant CTESs from a corpus of sequences is a
challenging problem having a wide variety of search-based
applications. For example, in audio or music retrieval, one
may like to search sequences having different audio or music
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signatures; in social network, retrieval of trajectories of in-
formation diffusion, relevant to a given trajectory can assist
in viral marketing, fake news detection, etc. Despite having
a rich literature on searching similar time-series (Blondel
et al. 2021; Gogolou et al. 2020; Alaee et al. 2020; Yoon et al.
2019; Cai et al. 2019; Shen et al. 2018; Cuturi and Blondel
2017; Paparrizos and Gravano 2015), the problem of design-
ing retrieval models specifically for CTES has largely been
unaddressed in the past. Moreover, we show that the existing
search methods for time sequences are largely ineffective for
a CTES retrieval task, since the underlying characterization
of the sequences vary across these two domains.

Present Work
In this paper, we first introduce NEUROSEQRET, a family
of supervised retrieval models for continuous-time event se-
quences and then develop a trainable locality sensitive hash-
ing (LSH) based method for efficient retrieval over very large
datasets. Specifically, our contributions are as follows:
Query unwarping. The notion of relevance between two
sequences varies across applications. A relevant sequence
pair can share very different individual attributes, which can
mislead the retrieval model if the sequences are compared as-
it-is. In other words, an observed sequence may be a warped
transformation of a hidden sequence (Xu et al. 2018; Gervini
and Gasser 2004). To tackle this problem, NEUROSEQRET
first applies a trainable unwarping function on the query
sequence before the computation of a relevance score. Such
an unwarping function is a monotone transformation, which
ensures that the chronological order of events after unwarping
the observed sequence remains the same (Xu et al. 2018).
Neural relevance scoring model. In principle, the relevance
score between two sequences depends on their latent simi-
larity. We measure such similarity by comparing the gener-
ative distribution between the query-corpus sequence pairs.
In detail, we feed the unwarped query sequence and the cor-
pus sequence into a neural MTPP based relevance scoring
model, which computes the relevance score using a Fisher
kernel (Jaakkola et al. 1999) between the corpus and the un-
warped query sequences. Such a kernel offers two key bene-
fits over other distribution similarity measures, e.g., KL diver-
gence or Wasserstein distance: (i) it computes a natural simi-
larity score between query-corpus sequence pairs in terms of
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the underlying generative distributions; and, (ii) it computes
a dot product between the gradients of log-likelihoods of
the sequence pairs, which makes it compatible with locality-
sensitive hashing for certain design choices and facilitates
efficient retrieval. In this context, we provide two MTPP mod-
els, leading to two variants of NEUROSEQRET, which allows
a nice tradeoff between accuracy and efficiency similar to its
counterpart in other domain (Li et al. 2019).
SELFATTN-NEUROSEQRET: Here, we use transformer
Hawkes process (Zuo et al. 2020) which computes the like-
lihood of corpus sequences independently of the query se-
quence. Such a design admits precomputable corpus likeli-
hoods, which in turn allows for prior indexing of the corpus
sequences before observing the unseen queries. This setup
enables us to apply LSH for efficient retrieval.
CROSSATTN-NEUROSEQRET: Here, we propose a novel
cross attention based neural MTPP model to compute the
sequence likelihoods. Such a cross-attention mechanism ren-
ders the likelihood of corpus sequence dependent on the
query sequence, making it a more powerful retrieval model.
While CROSSATTN-NEUROSEQRET is not directly com-
patible with such a hashing based retrieval, it can be em-
ployed in a telescopic manner— where a smaller set of rel-
evant candidate set is first retrieved using LSH applied on
top of SELFATTN-NEUROSEQRET, and then reranked using
CROSSATTN-NEUROSEQRET.
Having computed the relevance scores, we learn the unwarp-
ing function and the MTPP model by minimizing a pairwise
ranking loss, based on the ground truth relevance labels.
Scalable retrieval. Next, we use the predictions made by
SELFATTN-NEUROSEQRET to develop a novel hashing
method that enables efficient sequence retrieval. More specifi-
cally, we propose an optimization framework that compresses
the learned sequence embeddings into binary hash vectors,
while simultaneously limiting the loss due to compression.
Then, we use locality-sensitive hashing (Gionis et al. 1999) to
bucketize the sequences into hash buckets, so that sequences
with similar hash representations share the same bucket. Fi-
nally, given a query sequence, we consider computing rele-
vance scores only with the sequences within its bucket. Such
a hashing mechanism combined with high-quality sequence
embeddings achieves fast sequence retrieval with no signifi-
cant loss in performance.

Finally, our experiments show that both variants of NEU-
ROSEQRET outperform several baselines. Moreover, we
observe that our hashing method applied on SELFATTN-
NEUROSEQRET can make a trade-off between the retrieval
accuracy and efficiency better than random hyperplanes.

Preliminaries
In this section, we first sketch an outline of marked tempo-
ral point processes (MTPP) and then setup our problem of
retrieving a set of continuous time event sequences relevant
to a given query sequence.

Marked Temporal Point Processes: Overview
Continuous time event sequences (CTESs). Marked tem-
poral point processes (MTPP) are stochastic processes which

capture the generative mechanism of a sequence of discrete
events localized in continuous time. Here, an event e is re-
alized using a tuple (t, x), where t ∈ R+ and x ∈ X are
the arrival time and the mark of the event e. Then, we use
H(t) to denote a continuous time event sequence (CTES)
where each event has arrived until and excluding time t,
i.e., H(t) := {ei = (ti, xi) | ti−1 < ti < t}. Moreover we
use T (t) andM(t) to denote the sequence of arrival times
{ti | ei ∈ H(t)} and the marks {xi | ei ∈ H(t)}. Finally, we
denote the counting process N(t) as counts of the number
of events happened until and excluding time t, encapsulating
the generative mechanism of the arrival times.
Generative model for CTES. The underlying MTPP model
consists of two components— (i) the dynamics of the ar-
rival times and (ii) the dynamics of the distribution of marks.
Most existing works (Du et al. 2016; Zhang et al. 2020;
Mei et al. 2019; Mei and Eisner 2017; Shelton et al. 2018;
Zuo et al. 2020) model the first component using an in-
tensity function which explicitly models the likelihood of
an event in the infinitesimal time window [t, t + dt), i.e.,
λ(t) = Pr(dN(t) = 1|H(t)). In contrast, we use an intensity
free approach following the proposal by Shchur et al. (2020),
where we explicitly model the distribution of the arrival time
t of the next event e. Specifically, we denote the density ρ
of the arrival time and the distribution m of the mark of the
next event as follows:

ρ(t)dt = Pr(e in [t, t+ dt) |H(t)), (1)
m(x) = Pr(x |H(t)) (2)

As discussed by Shchur et al. (2020), such an intensity free
MTPP model enjoys several benefits over the intensity based
counterparts, in terms of facilitating efficient training, scal-
able prediction, computation of expected arrival times, etc.
Given a sequence of observed eventsH(T ) collected during
the time interval (0, T ], the likelihood function is given by:

p(H(T )) =
∏
ei=(ti,xi)∈H(T ) ρ(ti)×m(xi) (3)

Problem Setup
Next, we setup our problem of retrieving a ranked list of
sequence from a corpus of continuous time event sequences
(CTESs) which are relevant to a given query CTES.
Query and corpus sequences, relevance labels. We op-
erate on a large corpus of sequences {Hc(Tc) | c ∈ C},
where Hc(Tc) = {(t(c)i , x

(c)
i ) | t(c)i < Tc}. We are given

a set of query sequences {Hq(Tq) | q ∈ Q} with Hq(Tq) =

{(t(q)i , x
(q)
i ) | t(q)i < Tq}, as well as a query-specific rele-

vance label for the set of corpus sequences. That is, for a
given query sequenceHq, we have: y(Hq,Hc) = +1 ifHc
is marked as relevant toHq and y(Hq,Hc) = −1 otherwise.

We define Cq+ = {c ∈ C | y(Hq,Hc) = +1}, and, Cq− =
{c ∈ C | y(Hq,Hc) = −1}, with C = Cq+∪Cq−. Finally, we
denote T = max{Tq, Tc | q ∈ Q, c ∈ C} as the maximum
time of the data collection.
Our goal. We aim to design an efficient CTES retrieval sys-
tem, which would return a list of sequences from a known
corpus of sequences, relevant to a given query sequenceHq .
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Therefore, we can view a sequence retrieval task as an in-
stance of ranking problem. Similar to other information re-
trieval algorithms, a CTES retrieval algorithm first computes
the estimated relevance s(Hq,Hc) of the corpus sequenceHc
for a given query sequenceHq and then provides a ranking
of C in the decreasing order of their scores.

NEUROSEQRET Model
In this section, we describe NEUROSEQRET family of MTPP-
based models for the retrieval of CTES.

Components of NEUROSEQRET

NEUROSEQRET models the relevance scoring function be-
tween query and corpus sequence pairs. However the rele-
vance of a corpus sequence to the query is latent and varies
widely across applications. To accurately characterize this rel-
evance measure, NEUROSEQRET works in two steps. First,
it unwarps the query sequences to make them compatible
for comparing with the corpus sequences. Then, it computes
the pairwise relevance score between the query and corpus
sequences using neural MTPP models.
Unwarping query sequences. Direct comparison between
a query and a corpus sequence can provide misleading out-
comes, since they also contain their own individual idiosyn-
cratic factors in addition to sharing some common attributes.
In fact, a corpus sequence can be highly relevant to the query,
despite greatly varying in timescale, initial time, etc. In other
words, it may have been generated by applying a warping
transformation on a latent sequence (Xu et al. 2018; Gervini
and Gasser 2004). Thus, a direct comparison between a rele-
vant sequence pair may give poor relevance score.

To address this challenge, we first apply a trainable un-
warping function (Xu et al. 2018) U(·) on the arrival times
of a query sequence, which enhances its compatibility for
comparing it with the corpus sequences. More specifically,
we define U(Hq) := {(U(t

(q)
i ), x

(q)
i )}. In general, U sat-

isfies two properties (Xu et al. 2018; Gervini and Gasser
2004): unbiasedness, i.e., having a small value of ‖U(t)− t‖
and monotonicity, i.e., dU(t)/dt ≥ 0. These properties en-
sure that the chronological order of the events across both
the warped observed sequence and the unwarped sequence
remains same. Such a sequence transformation learns to cap-
ture the similarity between two sequences, even if it is not
apparent due to different individual factors, as we shall later
in our experiments (Figure 1).
Computation of relevance scores. Given a query sequence
Hq and a corpus sequence Hc, we compute the relevance
score s(Hq,Hc) using two similarity scores, e.g., (i) a model
independent sequence similarity score and (ii) a model based
sequence similarity score.
—Model independent similarity score: Computation of model
independent similarity score between two sequences is widely
studied in literature (Xiao et al. 2017; Mueen and Keogh
2016; Su et al. 2020; Abanda et al. 2019; Müller 2007). They
are computed using different distance measures between two
sequences, e.g., DTW, Wasserstein distance, etc. and there-
fore, can be immediately derived from data without using

the underlying MTPP model. In this work, we compute the
model independent similarity score, SIMU (Hq,Hc), between
Hq andHc as follows:

SIMU (Hq,Hc) = −∆t(U(Hq),Hc)−∆x(Hq,Hc) (4)

where, ∆t and ∆x are defined as:

∆t(U(Hq),Hc) =

Hmin∑
i=0

∣∣∣U(t
(q)
i )− t(c)i

∣∣∣+
∑

ti∈Hc∪Hq
i>|Hmin|

(T − ti),

∆x(Hq,Hc) =

Hmin∑
i=0

I[x(q)
i 6= x

(c)
i ] +

∣∣|Hc| − |Hq|∣∣.
Here, Hmin = min{|Hq|, |Hc|}, T = max{Tq, Tc} where
the events of Hq and Hc are gathered until time Tq and
Tc respectively; ∆t(U(Hq),Hc) is the Wasserstein distance
between the unwarped arrival time sequence U(Hq) and
the corpus sequence (Xiao et al. 2017) and, ∆x(Hq,Hc)
measures the matching error for the marks, wherein the last
term penalizes the marks of last |Hc| − |Hq| events of |Hc|.
—Model based similarity score using Fisher kernel: We hy-
pothesize that the relevance score s(Hq,Hc) also depends
on a latent similarity which may not be immediately evident
from the observed query and corpus sequences even after un-
warping. Such a similarity can be measured by comparing the
generative distributions of the query-corpus sequence pairs.
To this end, we first develop an MTPP based generative model
pθ(H) parameterized by θ and then compute a similarity
score using the Fisher similarity kernel between the unwarped
query and corpus sequence pairs (U(Hq),Hc) (Jaakkola
et al. 1999). Specifically, we compute the relevance score
between the unwarped query sequence U(Hq) and the cor-
pus sequenceHc as follows:

κpθ (Hq,Hc) = vpθ (U(Hq))>vpθ (Hc) (5)

where θ is the set of trainable parameters; vpθ (·) is given by

vp(H) = I
−1/2
θ ∇θ log pθ(H)/||I−1/2

θ ∇θ log pθ(H)||2,
Iθ is the Fisher information matrix (Jaakkola et al. 1999),
i.e., Iθ = EH∼pθ(•)

[
∇θ log pθ(H)∇θ log pθ(H)>

]
. We

would like to highlight that κpθ (Hq,Hc) in Eq. (5) is a
normalized version of Fisher kernel since ||vpθ (·)|| = 1.
Thus, κpθ (Hq,Hc) measures the cosine similarity between
vpθ (U(Hq)) and vpθ (Hc).

Note that, KL divergence or Wasserstein distance could
also serve our purpose of computing the latent similarity
between the generative distributions. However, we choose
Fisher similarity kernel because of two reasons: (i) it is known
to be a natural similarity measure which allows us to use
the underlying generative model in a discriminative learn-
ing task (Jaakkola et al. 1999; Sewell 2011); and, (ii) un-
like KL divergence or other distribution (dis)similarities, it
computes the cosine similarity between vpθ (U(Hq)) and
vpθ (Hc), which makes it compatible with locality sensitive
hashing (Charikar 2002).

Finally, we compute the relevance score as

sp,U (Hq,Hc) = κp (Hq,Hc) + γSIMU (Hq,Hc) (6)

where γ is a hyperparameter.
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Neural Parameterization of NEUROSEQRET
Here, we first present the neural architecture of the un-
warping function and then describe the MTPP models used
to compute the model based similarity score in Eq. (5).
As we describe later, we use two MTPP models with dif-
ferent levels of modeling sophistication, viz., SELFATTN-
NEUROSEQRET and CROSSATTN-NEUROSEQRET. In
SELFATTN-NEUROSEQRET, the likelihood of a corpus se-
quence is computed independently of the query sequence
using a self attention based MTPP model, e.g., Trans-
former Hawkes Process (Zuo et al. 2020). As a result, we
can employ a locality sensitive hashing based efficient re-
trieval based SELFATTN-NEUROSEQRET. In CROSSATTN-
NEUROSEQRET, on the other hand, we propose a more ex-
pressive and novel cross attention MTPP model, where the
likelihood of a corpus sequence is dependent on the query
sequence. Thus, our models can effectively tradeoff between
accuracy and efficiency.
Neural architecture of U(·). As discussed in Section , the
unwarping function U(·) should be unbiased and mono-
tonic. To this end, we model U(·) ≈ Uφ(·) using a nonlin-
ear function via an unconstrained monotone neural network
(UMNN) (Wehenkel and Louppe 2019), i.e.,

Uφ(t) =

∫ t

0

uφ(τ)dτ + η, (7)

where φ is the parameter of the underlying neural network
uφ(·), η ∈ N (0, σ) and uφ : R → R+ is a non-negative
nonlinear function. Since the underlying monotonicity can
be achieved only by enforcing non-negativity of the inte-
grand uφ, UMNN admits an unconstrained, highly expres-
sive parameterization of monotonic functions. Therefore, any
complex unwarping function Uφ(·) can be captured using
Eq. (7), by integrating a suitable neural model augmented
with ReLU(·) in the final layer. In other words, if uφ is a
universal approximator for positive function, then Uφ can
capture any differentiable unwarping function. We impose an
additional regularizer 1

σ2

∫ T
0
‖uφ(t)− 1‖2 dt on our training

loss which ensures that ‖U(t)− t‖ remains small.
Neural architecture of MTPP model pθ(·). We provide two
variants of pθ(·), thus, two retrieval models, viz., SELFATTN-
NEUROSEQRET and CROSSATTN-NEUROSEQRET.
SELFATTN-NEUROSEQRET: Here, we use Transformer
Hawkes process (Zuo et al. 2020) which applies a self
attention mechanism to model the underlying generative
process. In this model, the gradient of corpus sequences
vθ(Hc) = ∇θ log pθ(Hc) are computed independently of
the query sequence Hq. Once we train the retrieval model,
vθ(Hc) can be pre-computed and bucketized before observ-
ing the test query. Such a model, together with the Fisher
kernel based cosine similarity scoring model, allows us to
apply locality sensitive hashing for efficient retrieval.
CROSSATTN-NEUROSEQRET: The above self attention
based mechanism models a query agnostic likelihood of
the corpus sequences. Next, we introduce a cross atten-
tion based MTPP model which explicitly takes into ac-
count of the underlying query sequence while modeling

the likelihood of the corpus sequence. Specifically, we mea-
sure the latent relevance score between Hq and Hc via
a query-induced MTPP model built using the cross atten-
tion between the generative process of both the sequences.
Given a query sequence Hq and the first r events of the
corpus sequenceHc, we parameterize the generative model
for (r + 1)-th event, i.e., p(e(c)

r+1 |H(tr)) as pθ(·), where
pθ(e

(c)
r+1) = ρθ(t

(c)
r+1)mθ(x

(c)
r+1), where ρ and m are the den-

sity and distribution functions for the arrival time and the
mark respectively, as described in Eq. (1).

—Input Layer: For each event e(q)
i in the query sequenceHq

and each event e(c)
j in the first r events in the corpus sequence

Hc, the input layer computes the initial embeddings y(q)
i and

y
(c)
j as follows:

y
(q)
i = wy,xx

(q)
i +wy,tU(t

(q)
i )

+wy,∆t

(
U(t

(q)
i )− U(t

(q)
i−1)

)
+ by, ∀i ∈ [|Hq|]

y
(c)
j = wy,xx

(c)
j +wy,tt

(c)
j

+wy,∆t

(
t
(c)
j − t

(c)
j−1

)
+ by, ∀j ∈ [|Hc(tr)| − 1]

where w•,• and by are trainable parameters.
—Attention layer: The second layer models the interaction
between all the query events and the past corpus events,
i.e., Hq and Hc(tr) using an attention mechanism. Specifi-
cally, following the existing attention models (Vaswani et al.
2017; Kang and McAuley 2018; Li et al. 2020) it first adds
a trainable position embedding p with y— the output from
the previous layer. More specifically, we have the updates:
y

(q)
i ← y

(q)
i + pi and y(c)

j ← y
(c)
j + pj . where, p• ∈ RD.

Next, we apply two linear transformations on the vectors
[y

(q)
i ]i∈[|Hq|] and one linear transformation on [y

(c)
j ]j∈[r],

i.e., sj = W Sy
(c)
j ,ki = WKy

(q)
i ,vi = W V y

(q)
i . The

state-of-the-art works on attention models (Vaswani et al.
2017; Zuo et al. 2020; Kang and McAuley 2018; Li et al.
2020) often refer s•, k• and v• as query, key and value
vectors respectively. Similarly, we call the trainable weights
W S ,WK and W V as the Query, Key and Value ma-
trices, respectively. Finally, we use the standard attention
recipe (Vaswani et al. 2017) to compute the final embedding
vector h(c,q)

j for the event e(c)
j , induced by queryHq . Such a

recipe adds the values weighted by the outputs of a softmax
function induced by the query and key, i.e.,

h
(c,q)
j =

∑
i∈[|Hq|]

exp
(
s>j ki/

√
D
)

∑
i′∈[|Hq|] exp

(
s>j ki′/

√
D
)vi, (8)

—Output layer: Given the vectors h(c,q)
j provided by the at-

tention mechanism (8), we first apply a feed-forward neural
network on them to compute h

(c,q)

r as follows:

h
(c,q)

r =
r∑
j=1

[
wh � ReLU(h

(c,q)
j �wh,f + bh,o) + bh

]
,
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where w•,•, w• and bv. Finally, we use these vectors to
compute the probability density of the arrival time of the
next event e(c)

r+1, i.e., ρθ(tr+1) and the mark distribution
mθ(xr+1). In particular, we realize ρθ(tr+1) using a log
normal distribution of inter-arrival times, i.e.,

t
(c)
r+1 − t(c)r ∼ LOGNORMAL

(
µe

(
h

(c,q)

r

)
, σ2
e

(
h

(c,q)

r

))
,

where,
[
µe

(
h

(c,q)

r

)
, σe

(
h

(c,q)

r

)]
= Wt,qh

(c,q)

r + bt,q . Sim-
ilarly, we model the mark distribution as,

mθ(xr+1) =
exp

(
w>x,mh

(c,q)
+ bx,m

)
∑
x′∈X exp

(
w>x′,mh

(c,q)
+ bx′,m

) , (9)

where W•,• are the trainable parameters. Therefore the set
of trainable parameters for the underlying MTPP models is
θ = {W •,W•,•,w•,w•,•, b•, b•,•}.

Parameter Estimation
Given the query sequences {Hq}, the corpus sequences {Hc}
along with their relevance labels {y(Hq,Hc)}, we seek to
find θ and φ which ensure that:
spθ,Uφ(Hq,Hc+)� spθ,Uφ(Hq,Hc−) ∀ c± ∈ Cq±. (10)

To this aim, we minimize the following pairwise ranking
loss (Joachims 2002) to estimate the parameters θ, φ:

min
θ,φ

∑
q∈Q

∑
c+∈Cq+,
c−∈Cq−

[
spθ,Uφ(Hq,Hc−)− spθ,Uφ(Hq,Hc+) + δ

]
+
,

where, δ is a tunable margin.

Scalable Retrieval with Hashing
Once we learn the model parameters θ and φ, we can rank
the set of corpus sequences Hc in the decreasing order of
spθ,Uφ(Hq′ ,Hc) for a new queryHq′ and return top−K se-
quences. This requires |C| comparisons for each test query,
which can expensive for applications where |C| is high. How-
ever, for most query sequences, the number of relevant se-
quences is a very small fraction of the entire corpus. There-
fore, the number of comparisons between query-corpus se-
quence pairs can be reduced without significantly impacting
the retrieval quality by selecting a small set of corpus se-
quences that are likely to be relevant to a query sequence.

Trainable Hashing for Retrieval
Computation of a trainable hash code. We first apply a
trainable nonlinear transformation Λψ with parameter ψ on
the gradients vc = vpθ (Hc) and then learn the binary hash
vectors ζc = sign (Λψ (vc)) by solving the following opti-
mization, where we use tanh (Λψ(·)) as a smooth approxi-
mation of sign (Λψ(·)).

min
ψ

η1

|C|
∑
c∈C

∣∣1> tanh (Λψ (vc))
∣∣

+
η2

|C|
∑
c∈C
‖|tanh (Λψ (vc))| − 1‖1 (11)

+
2η3(
D
2

) · ∣∣∣∣ ∑
c∈C

i6=j∈[D]

tanh (Λψ (vc) [i]) · tanh (Λψ (vc) [j])

∣∣∣∣

Algorithm 1: Efficient retrieval with hashing

Require: Trained corpus embeddings {vc = vpθ (Hc)} using
SELFATTN-NEUROSEQRET; new query sequences {Hq′}, K:
# of corpus sequences to return; trained models for SELFATTN-
NEUROSEQRET and CROSSATTN-NEUROSEQRET.

1: Output: {Lq′}: top-K relevant sequences from {Hc}.
2: ψ ← TRAINHASHNET (Λψ, [v

c]c∈C)
3: INITHASHBUCKETS(·)
4: for c ∈ C do
5: ζc ← COMPUTEHASHCODE (vc; Λψ)
6: B ← ASSIGNBUCKET(ζc)
7: end for
8: for each new queryHq′ do
9: vq

′
← SELFATTN-NEUROSEQRET(Hq′)

10: ζq
′
← COMPUTEHASHCODE(vq

′
; Λψ)

11: B ← ASSIGNBUCKET(ζq
′
)

12: for c ∈ B do
13: vq

′
cross,v

c
cross ← CROSSATTN-NEUROSEQRET(Hq′ ,Hc)

14: spθ,Uφ(Hq′ ,Hc)← SCORE(vq
′

cross,v
c
cross,Hq,Hc)

15: end for
16: Lq′ ← RANK(

{
spθ,Uφ(Hq′ ,Hc)

}
,K)

17: end for
18: Return {Lq′}

Here
∑3
i=1 ηi = 1. Moreover, different terms in Eq. (11) al-

low the hash codes ζc to have a set of four desired properties:
(i) the first term ensures that the numbers of +1 and −1 are
evenly distributed in the hash vectors ζc = tanh (Λψ (vc));
(ii) the second term encourages the entries of ζc become
as close to ±1 as possible so that tanh(·) gives an accurate
approximation of sign(·) ; (iii) the third term ensures that the
entries of the hash codes ζc contain independent informa-
tion and therefore they have no redundant entries. Trainable
hashing has been used for retrieval in graphs (Liu et al. 2014;
Qin et al. 2020; Roy et al. 2020), documents (Zhang et al.
2010; Salakhutdinov and Hinton 2009; Zamani Dadaneh et al.
2020). However, to the best of our knowledge, such an ap-
proach has never been proposed for CTES retrieval.

Outline of our retrieval method. We summarize our re-
trieval procedure in Algorithm 1. We are given gradient
vectors vc = vpθ (Hc) obtained by training SELFATTN-
NEUROSEQRET. Next, we train an additional neural network
Λψ parameterized by ψ (TRAINHASHNET(), line 2), which
is used to learn a binary hash vector ζc for each sequenceHc.
Then these hash codes are used to arrange corpus sequences
in different hash buckets (for-loop in lines 4–7) using the
algorithm proposed by Gionis et al. (1999), so that two se-
quences Hc,Hc′ lying in the same hash bucket have very
high value of cosine similarity cos(vc,vc

′
) (bucketization

details are in Appendix B). Finally, once a new query Hq′
comes, we first compute vq

′
using the trained SELFATTN-

NEUROSEQRET model and then compute the binary hash
codes ζq

′
using the trained hash network Λψ (lines 9–10).

Next, we assign an appropriate bucket B to it (line 11) and
finally compare it with only the corpus sequences in the same
bucket, i.e.,Hc ∈ B (lines 12–15) using our model.

Recall that we must use SELFATTN-NEUROSEQRET to
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compute gradient vectors for subsequent hash code gener-
ation (in lines 9–10). However, at the last stage for final
score computation and ranking, we can use any variant
of NEUROSEQRET (in line 13), preferably CROSSATTN-
NEUROSEQRET, since the corpus sequences have already
been indexed by our LSH method.

Experiments
In this section, we provide a comprehensive evalu-
ation of NEUROSEQRET and our hashing method.
Our implementation and datasets are available at
https://github.com/data-iitd/neuroseqret/.

Experimental Setup
Datasets. We evaluate NEUROSEQRET and other methods
across large-scale datasets with up to 60 million events. The
statistics of all datasets are given in Appendix (Gupta et al.
2021b). Across all datasets, |Hq| = 5K and |Hc| = 200K.

(1) Audio: The dataset (Coucke et al. 2018) contains au-
dio files for spoken commands to a smart-light system. Here,
a query corpus sequence pair is relevant if they are from an
audio file with a common speaker.

(2) Sports: The dataset (Yeung et al. 2017) contains ac-
tions (e.g., run, pass, shoot) taken while playing different
sports. We consider the time of action and action class as
time and mark of sequence respectively. Here, a query corpus
sequence pair is relevant if they are from a common sport.

(3) Celebrity: In this dataset (Nagrani et al. 2017), we
consider the series of frames extracted from videos of multi-
ple celebrities where event-time denotes the video-time and
mark is decided upon the coordinates of the frame where the
celebrity is located. Here, relevance is a common celebrity.

(4) Electricity: This dataset (Murray et al. 2017) contains
the power-consumption records of different devices across
smart-homes in the UK. We consider the records for each de-
vice as a sequence with event mark as the normalized change
in the power consumed by the device and the recording time
as event time. Here, relevance is a common appliance.

(5) Health: The dataset (Baim et al. 1986) contains ECG
records for patients suffering from heart-related problems.
Since the length of the ECG record for a single patient can
be up to 10 million, we generate smaller sequences of length
10,000 and consider each as an independent sequence. Other
procedures are similar as in Electricity. A query corpus se-
quence pair is relevant if they are from a common patient.

For Health, Celebrity and Electricity, we lack the true
ground-truth relevance between sequences. Therefore, we
adopt a heuristic where, given a dataset D, from each se-
quence seqq ∈ D with q ∈ [|D|], we first sample a set of sub-
sequences Uq =

{
H ⊂ seqq

}
with |Uq| ∼ Unif [200, 300].

For each Uq, we draw exactly one query Hq uniformly at
random from Uq, i.e., Hq ∼ Uq. Then, we define C =
∪q∈[|D|]Uq\Hq , Cq+ = Uq\Hq and Cq− = ∪c6=q

(
Uc\Hc

)
.

Baselines. We consider three continuous time-series retrieval
models: (i) MASS (Mueen et al. 2017), (ii) UDTW (Rak-
thanmanon et al. 2012) and (iii) Sharp (Blondel et al. 2021);
and, three MTPP models (iv) RMTPP (Du et al. 2016), (v)
SAHP (Zhang et al. 2020), and (vi) THP (Zuo et al. 2020).

For sequence retrieval with MTPP models, we first train them
across all the sequences using maximum likelihood estima-
tion. Then, given a test queryHq′ , this MTPP method ranks
the corpus sequences {Hc} in decreasing order of their cosine
similarity CosSim(emb(q′),emb(c)), where emb(•) is the
corresponding sequence embedding provided by the underly-
ing MTPP model. In addition, we build supervised ranking
models over these approaches, viz., Rank-RMTPP, Rank-
SAHP and Rank-THP corresponding to RMTPP, SAHP, and
THP. Specifically, Rank-MTPP formulates a ranking loss on
the query-corpus pairs based on the cosine similarity scores
along with the likelihood function to get the final training
objective. Thus, vanilla MTPP and the corresponding Rank-
MTPP work as unsupervised and supervised respectively.
Evaluation protocol. We partition the set of queries Q into
50% training, 10% validation and rest as test sets. First, we
train a retrieval model using the set of training queries. Then,
for each test query q′, we use the trained model to obtain a top-
K ranked list from the corpus sequences. We compute the av-
erage precision (AP) and discounted cumulative gain (DCG)
of each top-K list, based on the ground truth. Finally, we
compute the mean average precision (MAP) and NDCG@K,
by averaging AP and DCG values. We set K = 10.

Results on Retrieval Accuracy
Comparison with baselines. First, we compare our model
against the baselines in terms of MAP and NDCG.
Table 1 summarizes the results, which shows that
(i) both CROSSATTN-NEUROSEQRET and SELFATTN-
NEUROSEQRET outperform all the baselines by a substan-
tial margin; (ii) CROSSATTN-NEUROSEQRET outperforms
SELFATTN-NEUROSEQRET, since the former has a higher
expressive power; (iii) the variants of baseline MTPP mod-
els trained for sequence retrieval, i.e., Rank-RMTPP, Rank-
SAHP, and Rank-THP outperform the vanilla MTPP models;
(iv) the performances of vanilla MTPPs and the time series
retrieval models (MASS, UDTW and Sharp) are comparable.
Ablation study. Next, we compare the retrieval performance
across four model variants: (i) our model with only model-
independent score i.e., spθ,Uφ(Hq,Hc) = −∆x(Hq,Hc)−
∆t(Uφ(Hq),Hc); (ii) our model with only model-dependent
score, i.e., spθ,Uφ(Hq,Hc) = κpθ (Hq,Hc); (iii) our
model without any model independent time similarity i.e.,
spθ,Uφ(Hq,Hc) = κpθ (Hq,Hc) − γ∆x(Hq,Hc); (iv) our
model without any model independent mark similarity
i.e., spθ,Uφ(Hq,Hc) = κpθ (Hq,Hc) − γ∆t(Uφ(Hq),Hc);
(v) our model without unwarping function Uφ(·); and
(vi) the complete design of our model. In all cases, we used
CROSSATTN-NEUROSEQRET.

Table 2 shows that the complete design of our model (vari-
ant (vi)) achieves the best performance. We further note that
removing κpθ from the score (variant (i)) leads to signifi-
cantly poor performance. Interestingly, our model without
any mark based similarity (variant (iv)) leads to better perfor-
mance than the model without time similarity (variant (iii))—
this could be attributed to the larger variance in query-corpus
time distribution than the distribution of marks. Finally, we
observe that the performance deteriorates if we do not use an
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Mean Average Precision (MAP) in % NDCG@10 in %
Audio Celebrity Electricity Health Sports Audio Celebrity Electricity Health Sports

MASS 51.1±0.0 58.2±0.0 19.3±0.0 26.4±0.0 54.7±0.0 20.7±0.0 38.7±0.0 9.1±0.0 13.6±0.0 22.3±0.0
UDTW 50.7±0.0 58.7±0.0 20.3±0.0 28.1±0.0 54.5±0.0 21.3±0.0 39.6±0.0 9.7±0.0 14.7±0.0 22.9±0.0
Sharp 52.4±0.2 59.8±0.5 22.8±0.2 28.6±0.2 56.8±0.3 21.9±0.2 40.6±0.5 11.7±0.1 16.8±0.1 23.7±0.2
RMTPP 48.9±2.3 57.6±1.8 18.7±0.8 24.8±1.2 50.3±2.5 20.1±1.9 39.4±2.1 8.3±0.8 12.3±0.5 19.1±1.8
Rank-RMTPP 52.6±2.0 60.3±1.7 23.4±0.7 29.3±0.6 55.8±2.1 22.4±1.3 41.2±1.3 11.4±0.4 15.5±0.5 23.9±1.4
SAHP 49.4±3.2 57.2±2.9 19.0±1.8 26.0±2.1 53.9±3.6 20.4±2.3 39.0±3.1 8.7±1.2 13.2±1.4 22.6±2.5
Rank-SAHP 52.9±1.8 61.8±2.3 26.5±1.2 31.6±1.1 55.1±2.3 23.3±1.4 42.1±1.7 13.3±0.7 17.5±0.9 25.4±1.8
THP 51.8±2.3 60.3±1.9 21.3±0.9 27.9±0.9 54.2±2.1 22.1±1.1 40.3±1.2 10.4±0.6 14.4±0.3 22.9±1.1
Rank-THP 54.3±1.7 63.1±2.1 29.4±0.9 33.6±1.3 56.3±1.9 25.4±0.9 44.2±1.0 15.3±0.4 19.7±0.4 26.5±0.9
SELFATTN-NSR 55.8±1.8 64.4±1.9 30.7±0.7 35.9±0.9 57.6±1.9 25.9±1.1 45.8±1.0 16.5±0.5 20.4±0.4 27.8±1.1
CROSSATTN-NSR 56.2±2.1† 65.1±1.9† 32.4±0.8† 37.4±0.9† 58.7±2.1 28.3±1.1† 46.9±1.2† 18.1±0.7† 22.0±0.4† 27.9±1.2

Table 1: Retrieval accuracy in terms of MAP and NDCG@10 (both in %) of all the methods across five datasets on the test set.
Numbers with bold font (underline) indicate best (second best) performer. Boxes indicate best performing baseline. NSR refers
to NEUROSEQRET. Results marked † are statistically significant (two-sided Fisher’s test with p ≤ 0.05) over the best baseline.

Variant Audio Celebrity
(i) −∆x(Hq,Hc)−∆t(Uφ(Hq),Hc) 36.1±0.0 43.7±0.0
(ii) κpθ (Hq,Hc) 53.9±1.9 62.5±1.3
(iii) κpθ (Hq,Hc)− γ∆x(Hq,Hc) 54.6±1.9 63.1±1.4
(iv) κpθ (Hq,Hc)− γ∆t(Uφ(Hq),Hc) 55.7±2.0 63.7±1.8
(v) CROSSATTN-NSR Without Uφ(·) 55.2±2.2 62.9±2.0
(vi) CROSSATTN-NSR 56.2±2.1 65.1±1.9

Table 2: Ablation study and the performance across different
similarity metrics in NEUROSEQRET.
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Figure 1: Effect of unwarping on a relevant query-corpus pair
in Audio. Uφ(·) learns to transformHq in order to capture a
high value of its latent similarity withHc.

unwarping function Uφ(·) (variant (v)). Figure 1 illustrates
the effect ofUφ(·). It shows thatUφ(·) is able to learn suitable
transformation of the query sequence, which encapsulates
the high value of latent similarity with the corpus sequence.

Results on Retrieval Efficiency
We compare our efficient sequence retrieval method given
in Algorithm 1 against random hyperplane (RH) method
(Appendix B in (Gupta et al. 2021b)) and three variants of
our proposed training problem in Eq. (11). (i) Our(η2, η3)
which sets η1 = 0 and thus does not enforce even distribution
of±1 in ζc; (ii) Our(η1, η3) which sets η2 = 0 and thus tanh
does not accurately approximate sign; (iii) Our(η1, η2) which
sets η3 = 0 and thus does not enforce ζc to be compact and
free of redundancy. Our(η1, η2, η3) is the complete design
for our hashing with all trainable components.
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Our(η1, η2, η3)

RH

Our(η2, η3)

Our(η1, η3)

Our(η1, η2)

0 25 50 75 (%)
Reduction Factor→

6

12

18

24
30

N
D

C
G

@
1
0

(%
)

Audio

0 25 50 75 (%)
Reduction Factor→

18

24

30

42
48

N
D

C
G

@
1
0

(%
)

Celebrity

Figure 2: Tradeoff between NDCG@10 vs. Reduction factor,
i.e., % reduction in number of comparisons between query-
corpus pairs. The point marked as red star indicates the case
with exhaustive comparisons on the corpus sequences.

Comparison with random hyperplane. Figure 2 shows that
our method (Our(η1, η2, η3)) demonstrates better Pareto effi-
ciency than RH. This is because RH generates hash code in a
data oblivious manner whereas our method learns the hash
code on top of the trained embeddings.
Ablation study on different components of Eq. (11). Fig-
ure 2 summarizes the results, which shows that (i) the first
three variants are outperformed by Our(η1, η2, η3); (ii) the
first term having η1 6= 0, which enforces an even distri-
bution of ±1, is the most crucial component for the loss
function— as its removal causes significant deterioration
of the retrieval performance. We also note that the ablation
variants of NEUROSEQRET perform competitively with a
random-hyperplane model.

Conclusions
We proposed a novel supervised continuous time event se-
quence retrieval system called NEUROSEQRET using neural
MTPP models. To achieve efficient retrieval over a large cor-
pus of sequences, we also propose a trainable hash-coding
of corpus sequences which can be used to narrow down the
number of sequences to be considered for similarity score
computation. Our experiments show that our retrieval and
hashing methods are more effective than several baselines.
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