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Abstract

Octave Convolution (OctConv) is a generic convolutional unit
that has already achieved good performances in many com-
puter vision tasks. Recent studies also have shown the po-
tential of applying the OctConv in end-to-end image com-
pression. However, considering the characteristic of image
compression task, current works of OctConv may limit the
performance of the image compression network due to the
loss of spatial information caused by the sampling opera-
tions of inter-frequency communication. Besides, the corre-
lation between multi-frequency latents produced by OctCon-
v is not utilized in current architectures. In this paper, to
address these problems, we propose a novel Two-stage Oc-
tave Residual (ToRes) block which strips the sampling opera-
tion from OctConv to strengthen the capability of preserving
useful information. Moreover, to capture the redundancy be-
tween the multi-frequency latents, a context transfer module
is designed. The results show that both ToRes block and the
incorporation of context transfer module help to improve the
Rate-Distortion performance, and the combination of these
two strategies makes our model achieve the state-of-the-art
performance and outperform the latest compression standard
Versatile Video Coding (VVC) in terms of both PSNR and
MS-SSIM.

Introduction
Image compression is essential for image transmission and
storage, and has been studied for a long period. During the
passing decades, image coding standard, including JPEG
(Wallace 1992), JPEG 2000 (Rabbani and Joshi 2002),
HEVC/H.265 (Sullivan et al. 2012) and VVC/H.266 (Bross
et al. 2020) have been persistently developed to pursue a bet-
ter Rate-Distortion performance. However, the compression
rate is still proceeding slowly, and even the latest coding
standard is unable to meet the fast-growing image traffic.
Traditional compression codec is composed of several inde-
pendently optimized modules, namely, prediction, transfor-
m, quantization, entropy coding, and loop filters. Intuitively,
it is promising to achieve higher performance if the codec
can be optimized as a whole. Since neural network can ad-
just each module automatically under a unity of purpose, the
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end-to-end neural network based scheme has been a popular
and effective way to compress images.

The most common end-to-end image compression net-
work base on Convolutional Neural Network (CNN) is con-
sist of a nonlinear analysis transformation, a uniform quan-
tizer, and a nonlinear synthesis transformation (Ballé, La-
parra, and Simoncelli 2016). To pursue less coding bit rate
and higher quality of reconstructed images, lots of methods
have been raised and incorporated into the encoder-decoder
network in recent years. For reducing the coding rate of
bit stream, hyperprior model (Ballé et al. 2018) based on
variational autoencoder is introduced as a powerful entropy
model on the local scale parameters of the latent representa-
tion. 2D and 3D context model (Minnen, Ballé, and Toderici
2018; Lee, Cho, and Beack 2018) are developed to reduce
the redundancy of latents. Probabilistic generative models
(Ballé et al. 2018) are proposed to parameterize the distri-
bution of latents for the arithmetic encoding/decoding. At-
tention module (Li et al. 2018; Liu et al. 2019) is introduced
to this network for adapting bit allocation. In addition, for
enhancing the quality of reconstructed images, ResNet (He
et al. 2016) is incorporated into this network for prevent-
ing network degeneration. Based on these studies, the end-
to-end image compression has already outperformed most
classical standard codecs.

In the field of image compression, it is found that features
with high frequency differ from those with low frequency in
coding characteristics (Devore, Jawerth, and Lucier 1992).
High frequency features refer to the areas that gray value
changes rapidly, while low frequency features refer to the
areas that gray value changes smoothly. However, most end-
to-end methods omit the differences of multi-frequency, and
simply mix and process the different features using a set
of unified kernels. In recent years, octave convolution (Oct-
Conv) (Chen et al. 2019), which has achieved great success
in many computer vision tasks (Fan et al. 2019; Xu et al.
2020), shows great potential for solving this problem. It is
proposed to factorize feature maps into high and low fre-
quency groups (with different resolutions of feature maps),
and process them separately with different kernels. More-
over, a modified OctConv called generalized octave convolu-
tion (GoConv) (Akbari et al. 2020) is developed and applied
in the image compression model (Ballé et al. 2018), which
shows processing low- and high-frequency features sepa-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

3922



rately has distinct advantages in image compression task.
In the image compression task, the network should down

sampling the feature maps and reduce the redundancy of la-
tent representations to save the bit rate of the stream, mean-
while the network also has to store useful information as
much as possible in the latent representations to reconstruct
the high quality images in the decoder. However, there are
two factors that may limit the performance of OctConv and
GoConv under this characteristic for image compression.
On one hand, both OctConv and GoConv mix the down-
sampling operation and inter-frequency communication op-
eration in one stage, thus the inter frequencies communicate
in an information-loss stage, which is inefficient. On the oth-
er hand, the correlation information between high and low
frequency latents is not utilized for arithmetic coding in the
architectures, which may limit the redundancy reduction in
the latent coding part. The detailed analysis of these factors
will be shown in the Section Problem Definition.

To address these problems above, we propose a Two-stage
Octave Residual block (ToRes block), which strips the sam-
pling operation from OctConv to solve the inter-frequency
issue and to strengthen the capability of preserving useful
information. Besides, a context transfer module is designed
to entirely use the correlation information between high and
low frequency latents.

The contributions of this paper are summarized as fol-
lows:

• We dig deeper into the advantages and limitations of Oct-
Conv in image compression task and design the ToRes
block which strips the sampling operation from OctConv
to strengthen the capability of preserving useful informa-
tion in the end-to-end image compression architecture.
The proposed module ToRes block can utilize the advan-
tages of OctConv and avoid the limitations in image com-
pression.
• We propose a context transfer module. It can utilize the

correlation between high and low frequency latents to re-
duce redundancy, which is significantly complementary
to the joint entropy model (Minnen, Ballé, and Toderici
2018).
• Extensive experiments demonstrate that our approach

achieves the state-of-the-art (SOTA) performance in
terms of both PSNR and MS-SSIM metrics (Wang, Si-
moncelli, and Bovik 2003) on common benchmarks. The
approach outperforms VVC (VTM10.0) (JVET 2020)
with as high as 0.5 dB in terms of the PSNR, which is
significant improvement in visual data compression field.

Related Work
Learning-based Image Compression
In recent years, a majority of deep learning-based image
compression models have been developed based on Con-
volutional Neural Networks (CNN) (Ballé, Laparra, and Si-
moncelli 2016; Ballé et al. 2018; Minnen, Ballé, and Toderi-
ci 2018) and Recurrent Neural Networks (RNN) (Toderici
et al. 2016; Minnen et al. 2018; Lin et al. 2020). In terms
of CNN, the well-known encoder-decoder architecture is

Figure 1: The architecture of the down-sampling OctConv
convolutions.

developed by Ballé (Ballé, Laparra, and Simoncelli 2016).
This architecture is composed of an analysis transform en-
coder, a uniform quantizer and a synthesis transform de-
coder. In this study, novel activation functions called gen-
eralized divisive normalization (GDN) and inverse GDN are
introduced. GDN/IGDN is inspired by models of neuron-
s in biological visual systems, and has proven effective in
Gaussianizing image densities. On the basis of this work, in
order to capture spatial redundancy in the latent represen-
tation produced by the encoder, a powerful entropy mod-
el, hyperprior, based on variational autoencoders (VAE) is
proposed (Ballé et al. 2018). This model allows evaluating
the standard deviations of latent representation and calculat-
ing their distribution by Gaussian Scale Model (GSM). To
exploit probabilistic structure in the latents and make fur-
ther improvement on bit reduction, the autoregressive model
of the latent representations is proposed and integrated with
hyperprior as a hierarchical entropy model (Minnen, Ballé,
and Toderici 2018). The hierarchical entropy model can re-
duce spatial redundancy using not only side information but
also neighboring elements in latents. This study is the first
learned method that outperforms BPG.

As a widely applied technique in natural language pro-
cessing tasks, the attention mechanism is also incorporat-
ed in the field of image compression. Liu et al. (Liu et al.
2019) introduce non-local attention into the VAE structure.
It can capture both local and global correlations and gen-
erate attention masks for adapting bit allocation to reduce
the rate of less important pixels. In addition to these meth-
ods, parameterized entropy models, such as Gaussian Mix-
ture Model (GMM) and discretized Gaussian Mixture Like-
lihoods (DGML), have also been studied and applied in the
field of image compression. Since single Gaussian Scale
Model (GSM) cannot achieve arbitrary likelihoods (Cheng
et al. 2020), DGML which is an accurate and flexible en-
tropy model, is proposed for compressing the remaining re-
dundancy.

Octave Convolution
In general, natural images contain two kinds of information,
namely high-frequency information and low-frequency in-
formation. High-frequency information refers to the infor-
mation that changes rapidly, such as the detailed information
like boundaries. Low-frequency information refers to the in-
formation that changes smoothly, such as the background
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Figure 2: The architecture of the down-sampling GoConv
convolution.
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Figure 3: Detailed architectures of the down-sampling
ToRes block. The resolutions of output tensors (Y H , Y L)
are reduced to half of the resolutions of their correspond-
ing input tensors (XH , XL). Dotted arrows refer to shortcut
connections which are sampling strided convolutions.

in images. In a recent study (Chen et al. 2019), OctConv
is proposed to processe high-frequency and low-frequency
features separately. This proposed multi-frequency feature
representation method stores and processes low-frequency
features by mapping them to low-resolution tensors for re-
ducing spatial redundancy.

The architectures of the OctConv are shown as Fig-
ure 1, where XH and XL denote the high-frequency
and low-frequency input tensors, respectively. Y H→H =
f(XH ; ΦH→H) and Y L→L = f(XL; ΦL→L) de-
note the output tensors of intra-frequency update, and
Y H→L = f(pool(XH , 2); ΦH→L) and Y L→H =
upsample(f(XL; ΦL→H), 2) denote the output tensors of
inter-frequency communication. pool(X,n) denotes aver-
age pooling with stride n. It is worth noting that unlike
the traditional method to separate different frequencies, the
high- and low-frequency feature maps refer to the feature
maps with different resolutions. With the intra-frequency
update and inter-frequency communication, the OctConv
network learns to separate two kinds of features into two
groups of feature maps by itself. The convolutional kernel Φ
is split into four groups: ΦH→H , ΦH→L, ΦL→H and ΦL→L,
for processing different input tensors to different output ten-
sors .

Since low-frequency feature maps are processed lower

resolution, OctConv can significantly save the usage of com-
putational resources, such as memory. This operation is also
reported to improve the performance of many computer vi-
sion tasks by replacing vanilla convolution. On image seg-
mentation task, Fan et al.(Fan et al. 2019) build an accurate
retinal vessel segmentation neural network using OctConv
and achieves comparable performance to other state-of-the-
art methods with a faster processing speed. On image classi-
fication task, Xu et al.(Xu et al. 2020) propose a multiscale
octave 3D CNN for hyperspectral image classification which
outperforms the state-of-the-art deep learning methods.

Problem Definition
The success of OctConv on image processing tasks indicates
that it also has the potential for contributing to image com-
pression field, because of the ability to reduce the spatial
redundancy of low-frequency feature maps and processing
different features separately. Due to the plug-and-play char-
acter, it is easy to incorporate OctConv into the architecture
of image compression as mentioned above.

However, there are two reasons that OctConv is unsuit-
able for replacing the down and up sampling convolutions
directly. In image compression task, keeping more mean-
ingful information in the limited bit stream is essential for
reconstructing high quality images. The first reason is that
all down sampling operations are achieved by average pool-
ing in OctConv, which may not preserve enough useful s-
patial information of the input. The second reason is that as
shown in Figure 1, when OctConv does down-sampling op-
eration to reduce the resolution of output feature maps to the
half of that of input feature maps, the stride length of inter-
frequency pooling has to be 4, which is too long to keep
enough spatial information and may lead to an astounding
increase of distortion.

Therefore, Akbari et al.(Akbari et al. 2020) propose a
generalized octave convolution (GoConv), as shown in Fig-
ure 2. The adjustments are in two main aspects. Firstly, the
pooling operation in OctConv is replaced by the strided con-
volutions for preserving and reconstructing more informa-
tion. Secondly, the output tensors of intra-frequency convo-
lutions (Y H→H , Y L→L) are regarded as the input tensors of
inter-frequency convolutions for making a shorter length of
down-sampling stride.

Problems occur when GoConv is incorporated into the
image compression architecture. For convenience, down-
sampling GoConv with stride of 2 is taken as an example. As
shown in Figure 1, in OctConv, the output of intra-frequency
convolutions (Y H→H , Y L→L) only contribute to the corre-
sponding frequency features, which means that neurons of
these two convolutions only need to learn information of
one frequency features as much as possible. However, in Go-
Conv shown in Figure 2, the output of intra-frequency con-
volutions (Y H→H , Y L→L) are also the input of the inter-
frequency convolutions, which leads to a dilemma that neu-
rons for intra-frequency convolutions need to learn both
high-frequency information and low-frequency information.
This issue may make it challenging to train kernel parame-
ters and decrease the performance of the model. In addition,
when it comes to the low-to-high convolution in GoConv,
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a down-sampling operation fs2↓(·) is done on the low fre-
quency feature maps, and then followed by an up-sampling
operation fs2↑(·). This down-and-up operation is redundant
and may increase the distortion loss. Therefore, conducting
the down-sampling operation and inter-frequency communi-
cation operation in one stage is not effective for image com-
pression.

Proposed Method
ToRes Block
To address the aforementioned problems, we propose a
novel convolutional unit called Two-stage Octave Residu-
al block (ToRes block), which combines OctConv with the
structure of ResNet and strips the sampling operation from
inter-frequency communication operation with two stages.
As shown in Figure 3, ToRes block is composed of an
OctConv and two vanilla convolutions for two frequencies.
Down and up sampling operations are conducted by these
two strided vanilla convolutions instead of OctConv.

A down-sampling ToRes block is formulated as follows:

Y H
stage1 = fH→H(XH ; ΦH→H) + fL→H

(s2↑) (XL; ΦL→H)
(1)

Y L
stage1 = fL→L(XL; ΦL→L) + fH→L

(s2↓) (XH ; ΦH→L) (2)

Y H
stage2 = fH(s2↓)(Y

H
stage1; ΦH) (3)

Y L
stage2 = fL(s2↓)(Y

L
stage1; ΦL) (4)

Y H = Y H
stage2 + fshortcut(X

H) (5)

Y L = Y L
stage2 + fshortcut(X

L) (6)

where Y H
stage1, Y

L
stage1 denote the output tensors of OctCon-

v in the first stage, and Y H
stage2, Y

L
stage2 denote the output

tensors of vanilla convolutions in the second stage. f(·; Φ)
denotes a convolution operation with parameter Φ, and s2 ↓
and s2 ↑ denote the down and up sampling operations with
stride 2 correspondingly. fshortcut(·) denotes the skip con-
nection in ResNet, which is a down-sampling strided convo-
lution. With the analysis, it can be seen that the first stage
of the ToRes block can focus on the inter-frequency com-
munication with as much information as possible, and no
unnecessary down-sampling operation is introduced in this
stage. The down-sampling operation for certain frequency is
later conducted in the second stage to save coding bits.

In this ToRes block, all inter-frequency sampling opera-
tions are operated by strided convolutions, which can keep
more information and achieve better performance than av-
erage pooling. Moreover, referred to Eq.(3) and (4), strided
vanilla convolutions are used to conduct the sampling oper-
ations instead of OctConv in the whole convolutional unit
aspect, which means the resolution of output feature maps
of ToRes block is half of the resolution of input. Similarly,
the up-sampling ToRes block has the same structure but re-
places the down-sampling vanilla convolutions and shortcut
with up-sampling ones, respectively.

This structure can merge the advantages of OctConv in-
to the image compression architecture as well as avoid the

drawbacks analyzed in Section Problem Definition. Further-
more, the structure of the residual block is adopted for im-
proving the rate-distortion performance and preventing net-
work degeneration.

Context Transfer Module
To compress the information in latent representations and
reduce the coding bit rate, the hierarchical entropy mod-
el called joint entropy model (Minnen, Ballé, and Toderi-
ci 2018) is proposed to estimate the entropy parameter-
s for arithmetic coding. Since in our proposed ToRes net-
work, the latents are separated into high- and low-frequency
groups, thus there are still correlation between these two la-
tents, which would be redundancy that joint entropy model
is unable to capture. Therefore, we propose a context trans-
fer module for further reducing the redundancy between
these two latents. In the encoding/decoding procedure, high-
frequency latents are first encoded/decoded. Then the high-
frequency latents are processed by our context transfer mod-
ule to extract useful information, which is used for estima-
tion of low-frequency latents entropy parameters and reduc-
ing the bit rate of low-frequency bit stream.

The context transfer module is composed of a down-
sampling strided convolution and two residual blocks. It al-
lows reducing the resolution of high-frequency latent rep-
resentation to the same resolution of low-frequency latents.
The location of context transfer module is shown in Figure
4. The input of the context transfer model is the quantized
high-frequency latents, and the output is concatenated with
low-frequency outputs of context model and hyperprior, and
then the concatenated tensors are adopted as the input of en-
tropy parameter layers.

Network Structure
As shown in Figure 4, the proposed network architecture
adopts an improved VAE network as the backbone. The
overall network can be divided into core network (left part)
and sub-network (right part) according to their functions.

The core network aims to generate latent representations
of input images, and then reconstruct images based on these
latents. The core network is mainly formed by two part-
s: an analysis transform encoder and a synthesis transform
decoder. Then ToRes blocks are adopted in this encoder-
decoder architecture for improving the performance of the
compression model.

The sub-network aims to estimate the parameters of prob-
abilistic models over quantized latent representations for
arithmetic coding and decoding. It contains one hyperprior
(hyper-analysis transform and hyper-synthesis transform), t-
wo context models (for two frequency latents), one context
transfer module and entropy parameter layers. The convolu-
tion layers in the hyperprior are also replaced by OctConv
for processing multi-frequency latents together. In context
models, 5x5 masked convolution is implemented for captur-
ing the correlation with the neighboring elements.

Moreover, DGML (Cheng et al. 2020) is adopted as the
probabilistic model. Parameters of the probabilistic model
are estimated by the output of the hyperprior, the context
model and the context transfer module. The data from these
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Figure 4: The network architecture of our proposed model. The suffix D2 and U2 denote down and up sampling operations
with stride of 2, respectively. And the suffix S1 represents no resolution change. The analysis transform encoder (top left parts)
contains an input OctConv which divides the input images into multi-frequency feature maps, four down-sampling ToRes
blocks, and four original ToRes blocks which do not operate sampling. The synthesis transform decoder (bottom left parts) is
symmetric. It contains four up-sampling ToRes blocks, four original ToRes blocks, and an output OctConv which combines
multi-frequency feature maps together and builds the output images. There are three 5x5 OctConv layers in hyper-analysis
transform and hyper-synthesis transform, respectively. Q represents the additive uniform noise for training, or uniform quantizer
for the test. AE and AD denote arithmetic encoder and decoder, respectively. EPL represents entropy parameter layers.

three parts is concatenated as the input of entropy parameter
layers for calculating K groups of mean, scale and weight of
Gaussian entropy models. In our network, the value of K is
set to 3 for the entropy model.

Experiments

Implementation Details

We filter the images in ImageNet database (Deng et al. 2009)
by size from 500× 500 to 1000× 1000, and crop them ran-
domly to the size of 256 × 256 for training our model. The
training batch size is set to 8. Each model is trained up to
106 iterations for each λ to achieve a stable performance.
During training, the models are optimized using Adam op-
timizer (Kingma and Ba 2014). The learning rate is set to
10−4 for the first 900k iterations, and reduced to 10−5 for
the last 100k iterations. The models are optimized for mean
square error (MSE) or MS-SSIM metrics.

The process of image compression can be formulated as
follows:

yh, yl = ga(x;φ) (7)

ŷh, ŷl = Q(yh, yl) (8)

x̂ = gs(ŷh, ŷl; θ) (9)

where x and x̂ denote input raw images and output recon-
structed images. yh, yl, ŷh and ŷl denote high and low fre-
quency latent representations before and after quantization
Q(·). ga(·;φ) and gs(·; θ) refer to the analysis transform and
the synthesis transform with parameters φ and θ. Then the

loss function are shown as follow:

L =λ ·D(x, x̂) +Ryh
+Ryl

+Rzh +Rzl

=λ ·D(x, x̂) + E[−log2pŷh
(ŷh)] + E[−log2pŷl

(ŷl)]

+ E[−log2pẑh(ẑh)] + E[−log2pẑl(ẑl)]
(10)

where λ is the Lagrange multiplier to control the rate-
distortion tradeoff. D(·) refers to the distortion between o-
riginal input image x and reconstructed output image x̂.
Ryh

, Ryl
, Rzh and Rzl represent the estimated bit rates

of high-frequency and low-frequency latent representation
and side information of hyperprior, respectively. When op-
timized for MSE, λ belongs to the set {0.002, 0.003, 0.007,
0.015, 0.02, 0.03, 0.035}. When optimized for MS-SSIM,
distortion is defined by D(·) = 100× (1−MS-SSIM(x, x̂)),
and λ belongs to the set {0.025, 0.04, 0.07, 0.2, 0.4, 0.5}.

Other parameters of our proposed models are given in Ta-
ble 1. Ratio of low-frequency feature maps is set to αin =
αout = α throughout the network, except the input Oct-
Conv and the output OctConv where αin = 0, αout = α
and αin = α, αout = 0. Since the models at higher bit
rates need more high-frequency information and higher net-
work capacity, the ratio of low-frequency feature maps α is
changed with λ.

Evaluation
For evaluating the model, Kodak lossless image database
(Franzen 1999) with 24 uncompressed 768 x 512 images
and CVPR2018 Workshop and Challenge on Learned Im-
age Compression (CLIC) validation dataset P (professional)
(CLIC 2018) with 41 high resolution images are used. Rate-
Distortion is used to evaluate the model at different bit rate.
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Figure 5: Rate-distortion curves on Kodak dataset and CLIC dataset. (a) PSNR (dB) on Kodak dataset. (b) MS-SSIM (dB) on
Kodak dataset. (c) PSNR (dB) on CLIC dataset. (d) MS-SSIM (dB) on CLIC dataset.

λ α N M
0.003 0.75 192 192
0.005 0.5 256 256
0.01 0.25 256 256
0.02 0.25 320 320

Table 1: Parameters of our proposed models. M denotes the
numbers of the output convolutions of analysis transform en-
coder and hypersynthesis transform, and N denotes the num-
bers of channels of all other convolutions in our architecture.

Distortion loss is measured by either PSNR or MS-SSIM
between original input images and output reconstructed im-
ages, corresponding to marks “opt. for MSE” and “opt. for
MS-SSIM” (as shown in the legends of Figure 5), respec-
tively.

Rate-Distortion Performance
we compare the rate-distortion performance of our mod-
el with some previous learning-based methods and tradi-

tional compression standards. Learning-based methods in-
clude Ballé (Ballé et al. 2018), Lee (Lee, Cho, and Beack
2018), Minnen (Minnen, Ballé, and Toderici 2018) and
Cheng (Cheng et al. 2020), and traditional compression s-
tandards include HEVC intra-frame coding and VVC intra-
frame coding. MS-SSIM values are converted into decibels
(−10log10(1−MS-SSIM)).

The results shown in Figure 5 demonstrate that our pro-
posed method outperforms other learning-based works and
achieves the state-of-the-art in terms of both PSNR and MS-
SSIM. Specially, on the most frequently used database for
image compression (Kodak database), the proposed method
outperforms VVC (VTM10.0) with as high as 0.5 dB in
terms of the PSNR, which is significant improvement nowa-
days. On CLIC dataset, the performance of our model stil-
l outperforms other learning-based work and VVC, which
would help to verify the robustness of our models on high
resolution images.

Figure 6 shows the subjective quality performance of our
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(a) (b) (c) (d)

Figure 6: Visual examples kodim06 from Kodak dataset. (a) Ours opt. for MSE (0.4971bpp, PSNR: 33.19dB, MS-SSIM:
0.9767). (b) Ours opt. for MS-SSIM (0.5098bpp, PSNR: 29.14dB, MS-SSIM: 0.9899). (c) VTM10.0 (0.4783bpp, PSNR:
31.88dB, MS-SSIM: 0.9707). (d) Ground truth.
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Figure 7: Ablation studies.

model and VTM10.0 on kodim 24. Compared with VT-
M10.0, our reconstructed images optimized by MSE and
our reconstructed images optimized by MS-SSIM both show
better visual quality and keep more details, such as the de-
tails of the ripple.

Ablation Studies
To demonstrate the performance of our proposed compo-
nents, ablation studies are performed as follows.

ToRes block vs. OctConv and GoConv In this part,
the performance of OctConv, GoConv and proposed ToRes
block are compared. We train two models, the first one re-
places all ToRes blocks with OctConv in our proposed net-
work, and the second replaces all ToRes block with GoCon-
v. The R-D curves of these two models and our proposed
model are shown in Figure 7. Compared with OctConv, our
proposed ToRes block achieves about 0.2∼0.5 dB PSNR
increase. Moreover, compared with GoConv, ToRes block
can still achieve about 0.2∼0.3 dB PSNR increase at the
same bit rate. It can be observed that the ToRes block can
bring significant coding gain than the previously proposed
structures, which fully demonstrates the effectiveness of the
ToRes block.

Context Transfer Module In order to evaluate the perfor-
mance of the context transfer module, we retrain the same
image compression networks without this module. As shown
in Figure 7, the modified model has about 0.02∼0.05 bpp
bit-rate increase (about 10%) at the same distortion without
this module. This result shows that context transfer module
can evidently reduce the rate of bit stream and improve the
performance for our model.

Complexity
OctConv has less computational complexity than vanilla
convolution, and it has the same number of parameters with
vanilla convolution (Chen et al. 2019). Considering the w-
hole model, our ToRes network has less complexity than
Cheng (Cheng et al. 2020) including FLOPs and the number
of parameters. In terms of FLOPs (with the input image size
1920*1080, channel number 192 for Cheng (Cheng et al.
2020) and 256 for our model), our encoder and decoder are
about 1.80T (when α=0.5), while encoder and decoder mod-
els in Cheng (Cheng et al. 2020) are about 1.92T. In addi-
tion, the parameter numbers of our encoder and decoder are
about 9.65M and 8.66M, respectively, while the parameter
numbers of Cheng (Cheng et al. 2020) encoder and decoder
are about 12.01M and 10.36M, respectively.

Conclusion
In this paper, we address the problem that both OctConv and
GoConv have limitations when applied in image compres-
sion model, and propose an effective ToRes network with
context transfer module. ToRes block is developed for intro-
ducing the advantages of OctConv for image compression
task and avoiding its limitations by stripping the sampling
operation from it with two-stage design. Context transfer
module is incorporated into our network for capturing the re-
dundancy between multi-frequency latents produced by the
ToRes block. The results of experiments show that our pro-
posed method outperforms existing learning-based methods
and well-known traditional compression standards including
VVC intra coding, and achieves the state-of-the-art perfor-
mance in terms of both PSNR and MS-SSIM.
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