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Abstract

k-center is one of the most popular clustering models. While
it admits a simple 2-approximation in polynomial time in gen-
eral metrics, the Euclidean version is NP-hard to approximate
within a factor of 1.93, even in the plane, if one insists the de-
pendence on k in the running time be polynomial. Without
this restriction, a classic algorithm yields a 2O((k log k)/ε)dn-
time (1 + ε)-approximation for Euclidean k-center, where d
is the dimension.
We give a faster algorithm for small dimensions: roughly
speaking an O∗(2O((1/ε)O(d)·k1−1/d·log k))-time (1 + ε)-
approximation. In particular, the running time is roughly
O∗(2O((1/ε)O(1)

√
k log k)) in the plane. We complement our

algorithmic result with a matching hardness lower bound.
We also consider a well-studied generalization of k-center,
called Non-uniform k-center (NUkC), where we allow dif-
ferent radii clusters. NUkC is NP-hard to approximate
within any factor, even in the Euclidean case. We design a
2O(k log k)n2 time 3-approximation for NUkC in general met-
rics, and a 2O((k log k)/ε)dn time (1 + ε)-approximation for
Euclidean NUkC. The latter time bound matches the bound
for k-center.

Introduction
Given n data points in a metric space, a clustering of the
data is a partition into a number of groups (or clusters),
such that points in each group are more similar compared
to points across multiple groups. The notion of similarity is
captured by the distances between the points, which form a
metric. The task of partitioning the data as above is referred
to also as clustering, which has numerous applications in the
areas of artificial intelligence (AI), machine learning (ML)
and data mining. For example, during the training process
of an AI/ML model, the training samples are clustered into
similar groups to enhance the expressive power of learning
methods. With the goal of retrieving the natural clustering
of the points, the task of partitioning is modeled as an opti-
mization problem where the goal is to find a clustering that
optimizes some objective function. For center-based objec-
tives, each cluster is represented by a point, which is called
the center of the cluster. The similarity (or dissimilarity) of
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a cluster is measured in terms of the deviation of the points
in the cluster from the center. Consequently, this deviation
is captured by the corresponding objective function, which
one needs to minimize. Arguably the most popular center-
based objectives are k-center, k-means, and k-median. All
of these problems ask to find k center points, where k > 0
is a given integer. The desired k clusters are formed by as-
signing each point to its closest center. For k-center, the de-
viation is defined as the maximum distance between a point
and its closest center, and for k-median, it is the sum of the
distances between points and their closest centers. k-means
is similar to k-median except here the deviation is the sum
of the square of the distances.

In this article, we limit our discussions to the Euclidean
version of the above clustering problems where the data
points and centers belong to a real space of dimension
d ≥ 2 and the distance measure is the Euclidean distance.
All of these problems are NP-hard even in the plane, i.e.,
when d = 2 (Mahajan, Nimbhorkar, and Varadarajan 2012;
Megiddo and Supowit 1984; Feder and Greene 1988). For
both k-median and k-means, (1 + ε)-approximation algo-
rithms (or approximation schemes) are known with running
time 2(f(ε))d−1

nlogd+6n (Kolliopoulos and Rao 2007) and
nk(log n)(d/ε)O(d)

(Cohen-Addad 2018), respectively, for
some function f . Note that for constant dimension and in
particular, for d = 2, these algorithms run in polynomial
time. In contrast, it is widely known that such an approxi-
mation scheme does not exist for k-center (Mentzer 1988;
Feder and Greene 1988; Chen 2021). Indeed, it is NP-hard
to approximate k-center in the plane up to a factor of 1.82
(Mentzer 1988; Chen 2021). On the positive side, several
polynomial-time 2-approximations are known for k-center
(Gonzalez 1985; Feder and Greene 1988). On the hardness
side of k-median and k-means, it is known that polynomial-
time approximation scheme is not possible for these prob-
lems (or are APX-hard) when the dimension is not necessar-
ily a constant (Awasthi et al. 2015; Bhattacharya, Goyal, and
Jaiswal 2020).

From the above discussion, it is evident that all these
problems are intractable when the dimension is arbitrary.
To cope with this hardness, researchers have designed fixed-
parameter tractable (FPT) (1 + ε)-approximations. Fixed-
parameter tractability is a notion in parameterized complex-
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Problem Algorithms/Upper
bounds

Hardness/Lower
bounds

k-center
2O((k log k)/ε)dn 1.82-factor in nO(1)

2O((1/ε)O(d)k1−1/d log k)

Thm. 0.10
O∗(22ε̄·δ·d·k1−δ

)
Thm. 0.3

k-median
2(f(ε))d−1

nlogd+6n APX-hard

2(k/ε)O(1)

nd

k-means
nk(log n)(d/ε)O(d)

APX-hard

2(k/ε)O(1)

nd

NUkC
3-approx. in

2O(k log k)n2 (metric)
Thm. 0.16

γ-hard ∀γ in nO(1)

2O((k log k)/ε)dn
Thm. 0.20

Table 1: A summary of previous and our work. Our results
are marked with theorem numbers.

ity (Cygan et al. 2015a) which allows running time to be
expressed as a function of a parameter p. In particular, an al-
gorithm has FPT running time parameterized by p if it runs
in f(p) · nO(1) time, where f is a function that solely de-
pends on p. For clustering problems, the most natural pa-
rameter is k, which is typically small in practice, and hence
an FPT (1 + ε)-approximation algorithm leads to an effi-
cient approximation scheme. Note, in particular, that now
the running time does not depend exponentially on d. Con-
sequently, Badoiu et al. (2002) designed an approximation
scheme for k-center that runs in time 2O((k log k)/ε2)dn, and
later Badoiu and Clarkson (2003) slightly improved the
time to 2O((k log k)/ε)dn. For k-median and k-means, sev-
eral FPT approximation schemes were designed in a series
of work (Badoiu, Har-Peled, and Indyk 2002; De La Vega
et al. 2003) culminating in a 2(k/ε)O(1)

nd time approxima-
tion scheme due to Kumar et al. (2010).

The study of sub-exponential algorithms is a popular re-
search direction in parameterized complexity. Here the goal
is to design a 2o(p)nO(1) time algorithm for restricted in-
stances of a problem that admits an f(p) · nO(1) time al-
gorithm (Demaine et al. 2005; Dorn et al. 2013). A central
theme of this subarea is to design 2O(

√
p·polylog(p))nO(1) time

algorithms for planar instances of the problems (Fomin et al.
2020, 2016; Nederlof 2020), e.g., planar vertex cover (Cy-
gan et al. 2015a). (polylog(p) is a constant power of log p.)
This theme is informally known as the “square root phe-
nomenon”.

Motivated by the above research directions, we study sub-
exponential algorithms for k-center when the dimension d is
small. In particular, we ask the following questions.

Does the planar version of k-center (d = 2) admit a
2O(
√
k·polylog(k))nO(1) time approximation scheme?

Does k-center admit a 2o(k)nO(1) time approxima-
tion scheme when d is a constant?

Note that for constant d, k-median and k-means already
admit even better polynomial-time approximation schemes.
Thus, the above questions are relevant only to k-center. Con-
sidering the above questions, we answer both of them in af-
firmative.

Theorem 0.1 (Informal). For any 0 < ε ≤ 1, there is
an O∗(2O((1/ε)O(1)

√
k log k))-time (1 + ε)-approximation al-

gorithm for 2-dimensional k-center. In general, there is an
O∗(2O((1/ε)O(d)·k1−1/d·log k))-time (1+ε)-approximation al-
gorithm for k-center in Rd.

In this informal statement, the O∗-notation suppresses
polynomial factors and a leading factor of dd in. Note that
for any constant d, this yields a sub-exponential O∗(2o(k))
time approximation scheme. One should compare these re-
sults with the earlier polynomial-time 1.82-factor hardness
of approximation for planar k-center, which motivated us to
design FPT algorithms. Theorem 0.1 is an informal version
of Theorem 0.10 which appears in Section .

In Section , we prove a new hardness bound for k-center
based on Exponential Time Hypothesis (ETH) (Impagli-
azzo, Paturi, and Zane 2001) that almost complements our
running time bound in the 2-dimensional case.

Theorem 0.2. There exists a constant α > 1 such that there
is no α-approximation algorithm for 2-dimensional k-center
in time 2o(k

1/4) · nO(1), unless ETH fails.

Note that in the above hardness bound, the power of k
is only 1/4, whereas in our upper bound it is 1/2. How-
ever, in the discrete case of k-center (popularly known as
k-supplier), where centers can only be chosen from a given
finite set of points, we obtain a tight lower bound based on
Randomized ETH (rETH) (Dell et al. 2014). We note that
the result of Theorem 0.1 also holds for k-supplier (Theorem
0.6) which is described in Section . Our hardness result ad-
dresses the double-exponential dependence on d in the run-
ning time by showing one cannot improve it substantially if
one hopes to have better-than-linear dependence on k in the
exponent.

Theorem 0.3. Under rETH, there are constants ε̄ > 0 and
α > 1 such that there is no α-approximation algorithm for
d-dimensional Euclidean k-supplier in timeO∗(22ε̄·δ·d·k1−δ

)
for any 0 < δ < 1.

Next, we turn our attention to another clustering prob-
lem called Non-uniform k-center. It is a generalization of
k-center where it is possible to select clusters of different
radii.

Definition 0.4 (Non-Uniform k-center (NUkC)). Given two
sets of points C and F in a metric space (X, dist), an integer
k > 0, t ≤ k distinct integers (radii) r1 > r2 > . . . > rt >
0 and non-negative integers k1, . . . , kt such that

∑t
i=1 ki =
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k, the goal is to find a number (dilation) α and to choose ki
balls centered at the points of F with radius α · ri for all
1 ≤ i ≤ t, such that the union of the chosen balls contains
all the points of C and α is minimized.

Note that in the special case when t = 1, the problem is
basically k-center. NUkC was formulated by Chakrabarty et
al. (2020) who also described its applications in fine-tuned
clustering and vehicle routing. They showed that for any
γ ≥ 1, the problem in general metrics is NP-hard to approx-
imate within a factor of γ. The same hardness holds even
in the discrete (and hence in the continuous) Euclidean case
(Bandyapadhyay 2020). Consequently, we ask the following
questions.

Does NUkC in general metrics admit a constant-
factor approximation in FPT (f(k) · nO(1)) time?
Does Euclidean NUkC admit an approximation
scheme in FPT (f(k) · nO(1)) time?

In this work, we answer both of the questions in affirma-
tive.
Theorem 0.5 (Informal). A 3-approximation for NUkC can
be computed in time 2O(k log k)n2. Moreover, if C = F , the
approximation factor is 2. For Euclidean NUkC, a (1 + ε)-
approximation can be computed in time 2O((k log k)/ε)dn.

Note that the result for Euclidean NUkC is a strict gener-
alization of the result for Euclidean k-center due to Badoiu
and Clarkson (2003). Indeed, our algorithm is motivated by
their algorithm. Theorem 0.5 is an informal version of The-
orem 0.16 and 0.20 which appear in Section . See Table 1
for a summary of our results.

k-center
We begin by presenting our faster approximation scheme for
k-center. In fact, we give a faster approximation scheme for
the closely-related k-supplier problem, and then discuss how
this can be used to give a faster approximation for k-center.

k-supplier. We are given points C to be clustered and
given candidate centers F . The goal is to find F ⊆ F with
|F | = k minimizing cost(F ) := maxp∈C d(p, F ).

Throughout this section, O() will suppress only absolute
constants that are independent of d and ε.

We first prove the following.
Theorem 0.6. For any d ≥ 1 and 1 ≥ ε > 0, there is a
(1+ε)-approximation for instances of k-supplier in Rd with
running time O(|C| · |F|+ 2O((1/ε)O(d)·k1−1/d·log k+d log d)).

Note, if one simply regards d and ε as constants then
the exponential term in the running time simplifies to
2O(k1−1/d·log k). For the special case of R2, the exponen-
tial part of the running time is 2O(

√
k·log k). The doubly-

exponential dependence on d is clearly not desirable, but we
provide evidence in the next section suggesting this may not
be possible to improve.

The main idea behind our approach uses a somewhat-
recent result by Bhattiprolu and Har-Peled (2016) on

Voronoi separators. Intuitively, they show that for any n
points in Rd, one can insert an additional O(n1−1/d) points
such that in the Voronoi diagram of all points (original and
inserted), the two sets of original points can be partitioned
into two roughly-equal halves and these halves are separated
by the Voronoi cells of the new points.

We utilize such a Voronoi separator to help guess
O(k1−1/d · (1/ε)O(d)) centers of the optimum solution such
that if we serve all points near these centers, the remaining
problem naturally decomposes into two roughly equal-size
halves that can be treated independently (thus, bounding the
depth of recursion to be logarithmic). Naturally, to ensure we
are guessing these centers from a set of sizeO(k ·(1/ε)O(d))
rather than from a possibly-larger set O(|F|) we also have
to filter the input so points are not “close” to each other.

Preliminary Step: Reducing to a feasibility check In
O(|C| · |F|) time, we can find a solution F ⊆ F with
cost(F ) ≤ 3 · OPT (Hochbaum and Shmoys 1986). We
then know OPT ≤ cost(F ) ≤ 3 · OPT . In the remain-
ing steps, we will describe a binary search algorithm that for
some valueR > 0, will either find a k-supplier solution with
value (1 + ε) ·R or will (correctly) declare there is no solu-
tion with value ≤ R. We then use a binary search to find a
valueR in the range [cost(F )/3, cost(F )] such that usingR
produces an infeasible solution whereas using (1+ε)·R will
return a solution with cost (1+ ε) · (1+ ε) ·R ≤ (1+3ε) ·R.
Scaling ε by a constant factor gives the desired result. The
number of iterations of the binary search will be at most
log2

3
ε .

By scaling the point set, it suffices to give such an algo-
rithm for R = 1. That is, from this point forward we present
an algorithm that will either find a solution with cost at most
1+ε or correctly declare there is no solution with value≤ 1.

Step 1: Reducing the input size We perform standard fil-
tering. Initially let C′ = ∅ and F ′ = ∅. Then we process
p ∈ C one at a time: if d(p, C′) > ε then we add p to
C′. Also process i ∈ F one at a time: if d(i,F ′) > ε yet
d(i, C′) ≤ 1 + ε, then add i to F ′.
Lemma 0.7. If there is a solution with cost at most 1, we
have |C′|, |F ′| ≤ k · (1/ε)O(d) and the k-supplier instance
(C′,F ′, k) has optimum value at most 1 + 2 · ε. Conversely,
given a solution F ′ ⊆ F ′ with cost at most α in the new
instance, its cost in the original instance is at most α+ ε.

Proof. Suppose there is a solution with cost at most 1 in
the original instance. Let F ∗ ⊆ F be the optimum centers.
Notice d(p, p′) > ε for distinct p, p′ ∈ C′. So for each i ∈
F ∗, the number of points p ∈ C′ with d(i, p) ≤ 1 is at
most (1/ε)O(d). Since cost(F ∗) ≤ 1, all p ∈ C′ lie within
distance 1 from some i ∈ F ∗. So the total number of points
in C′ is at most |F ∗| · (1/ε)O(d) = k · (1/ε)O(d).

Similarly, note d(i, i′) > ε for distinct i, i′ ∈ F ′ but each
i ∈ F ′ lies within distance at most 1 + ε from some p ∈ C′.
Therefore, |F ′| ≤ |C′| · (1/ε)O(d) ≤ k · (1/ε)O(d).

Next, let F
′∗ denote the solution obtained from F ∗ as fol-

lows. Consider each i ∈ F ∗ that is actually covering a point
in C′ (i.e. d(i, C′) ≤ 1)). If i ∈ F ′, add i to F

′∗. Otherwise
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let i′ ∈ F ′ satisfy d(i, i′) ≤ ε. Add i′ to F
′∗. Since each

p ∈ C′ had distance at most 1 from F ∗, it then has distance
at most 1 + ε from F

′∗.
Conversely, let F ′ ⊆ F ′ be a solution with cost α in the

new instance. Consider any p ∈ C. Since d(p, p′) ≤ ε for
some p′ ∈ C′ (it could be p = p′) then d(p, F ′) ≤ d(p, p′) +
d(p′, F ′) ≤ ε+ α.

In our algorithm, if |C′| or |F ′| exceeds k · (1/ε)O(d) then
we declare this instance is a no instance and terminate. In
fact, if we terminate in the middle of this step once |C′| or
|F ′| becomes too large then a simple implementation runs
in time O((|C|+ |F|) · k · (1/ε)O(d)).

Also, if k ≤ d · log 1/ε we simply solve the problem using
brute force within the desired time by trying all subsets ofF ′
of size at most k (there are (1/ε)O(d2 log 1/ε) such subsets to
try).

Step 2: Identifying a sparse separator We use the fol-
lowing result about separators in Euclidean spaces that mim-
ics the planar separator theorem.
Theorem 0.8 ((Bhattiprolu and Har-Peled 2016)). Let X ⊆
Rd be a set of n points and let cd := d2

√
ded + 1. In ex-

pected O(n) time, one can compute a set of Z ⊆ Rd with
|Z| ≤ O(n1−1/d) and a partition X1,X2 of X such that: a)
In the Voronoi diagram of X ∪Z , the Voronoi cells of points
p ∈ X1 and q ∈ X2 do not share any common point and b)
|X1|, |X2| ≤ n · (1− 1/cd).

Note this is a randomized algorithm, but it is guaranteed
to produce such a structure. It is only the running time that
is a random variable.

Let Z be the Voronoi separator computed for point set
X := C′∪F ′ and let X1,X2 be the two parts of the partition
of X .

Step 3: Guessing and recursing Here, we guess a small
set of centers in the optimum solution that lie near the
Voronoi separator and recurse on both sides.

For each point q in the Voronoi separator Z , we guess all
points in F

′∗ (the optimum solution for (C′,F ′, k)) that lie
within distance at most 2 · (1 + ε) of q. Recall d(i, i′) > ε
for distinct i, i′ ∈ F ′, so there are at most (1/ε)O(d) points
to guess for this point q.

Let G be the union of these guesses for all q ∈ Z , so
|G| ≤ ζ := O(k1−1/d · (1/ε)O(d)). Using standard esimates
on binomial coefficients, the number of such guesses to enu-
merate is at most

(|F ′|
ζ

)
≤ 2O((1/ε)d·k1−1/d·log k).

For each such guess G, we remove all points in C′ that
are within distance at most 1 + ε from G. Say the remaining
points are C ′′. Also let F ′′ := F ′ − G.
Lemma 0.9. Suppose G ⊆ F ′ is the proper guess. For j =
1, 2, every point in C′′ ∩ Xj is within distance at most 1 + ε

from F
′∗ ∩ (Xj − G).

Proof. Let p ∈ C′′ ∩ Xj and suppose i ∈ F
′∗ satisfies

d(p, i) ≤ 1 + ε. Since p ∈ C′′, it must be that i /∈ G. If
i /∈ Xj , then the straight line connecting i to p must touch
the Voronoi cell for some q ∈ Z .

Let t be the first point along the p−i segment that touches
the Voronoi cell for q. As this is a Voronoi diagram, we have
d(t, q) ≤ d(t, i). So,

d(q, i) ≤ d(q, t) + d(t, i) ≤ 2 · d(t, i) ≤ 2 · (1 + ε)

since d(t, i) ≤ d(p, i) ≤ 1 + ε. But then i would have been
included in G, a contradiction. So i ∈ Xj − G.

Finally, we guess kj := |F ′′ ∩ F ′∗| for both j = 1, 2 and
independently recurse starting at step 2 on each of the two
instances (C′′ ∩ Xj ,F ′′ ∩ Xj , kj), j = 1, 2. For the appro-
priate guess G, each of the two subproblems has a feasible
solution of cost at most 1 + ε.

The base case is when we recurse with an empty subprob-
lem (i.e. C′′ ∩ Xj = ∅) in which case there are no centers
to select. If a subproblem we ever recurse on has C′ 6= ∅
yet F ′ = ∅, we declare this subproblem to be infeasible and
return no solution.

If some guess for G and k1, k2 has both recursive calls
returning a feasible solution (i.e. of cost 1 + ε), then adding
the centers to G produces a feasible solution for this instance
(C′,F ′, k) and we return it. Otherwise, if all guesses have at
least one of the two recursive calls returning no solution, we
return no solution.

Analysis We argued throughout the presentation of the al-
gorithm that if there is a feasible solution F

′∗ (of size ≤ k
and cost ≤ 1 + ε), it would correctly find a solution of cost
1 + ε for the original (filtered) instance (C′,F ′, k) for the
branches of recursion that properly guessed G and k1, k2.
One should also note d(i, i′) > ε for distinct i, i′ ∈ F ′ holds
throughout all recursive calls because it holds after step 1
and we only recurse with subsets of F ′.

Let ∆ := k · (1/ε)O(d), a bound on the initial size of
|F ∪ C|. At depth i of the recursion, the size of |F ′ ∪
C′| is bounded by (1 − 1/cd)

i · ∆. The number of re-
cursive calls spawned from a depth i recursive call is at
most 2 · |F ′|(1/ε)O(d)·|Z| ≤ ∆(1/ε)O(d)·(1−1/cd)i/2·∆1−1/d

(using 1 − 1/d ≥ 1/2). By summing a geometric series
in the exponent and recalling cd = dO(d) we see the to-
tal number of recursive calls reaching depth i is at most
2i · ∆O((1/ε)O(d)·dO(d)·∆1−1/d). Noting the depth of recur-
sion is at most log1/(1−1/cd) ∆ = O(cd · log ∆) and time
taken between subsequent recursive calls is polynomial in
|F|, we have that the total running time of steps 1 through 3
is 2O((1/ε)O(d)·k1−1/d·log k+d log d)

From k-Supplier to k-Center
We now turn to classic k-center in Euclidean spaces. Here,
we are given points C and a value k. The goal is to find k
points F ⊆ Rd minimizing maxp∈C .

Theorem 0.10. For any d ≥ 1 and ε > 0, there is a (1 + ε)-
approximation for instances of k-center in Rd with running
time O(|C| ·k · (1/ε)O(d) + 2O((1/ε)O(d)·k1−1/d·log k+d log d)).

Proof. Just like in the k-supplier algorithm, it
suffices to give an algorithm with running time
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2O((1/ε)O(d)·k1−1/d·log k+d log d) that either finds a solu-
tion with cost 1 + ε or determines there is no solution with
cost at most 1.

Begin by forming C′ as in step 1 of the k-supplier algo-
rithm: so d(p, p′) > ε for distinct p, p′ ∈ C but d(p, C′) ≤ ε
for each p ∈ C. Just like in step 1 of the k-supplier algorithm,
if there is a solution with cost≤ 1, then |C′| ≤ k · (1/ε)O(d).
If |C′| is larger than this, declare there is no solution.

Finally, for each p ∈ C′ we let F ′p be any ε-net of the ball
of radius 1 + ε centered at C′. Then |F ′p| ≤ (1/ε)O(d) yet
d(q,F ′p) ≤ ε for any q with d(p, q) ≤ 1 + ε. Just like in step
1 of the k-supplier algorithm, the optimum solution to the
k-center instance C′ has a feasible solution with cost at most
1 + ε by restricting the possible locations to F ′ = ∪p∈C′F ′p.
Run the k-supplier algorithm with these C′ and F ′.

Hardness
In this section, we prove our hardness results. First, we de-
scribe the result for the Euclidean k-supplier problem.

Recall that O∗-notation suppresses factors polynomial in
the input size. We use randomized Exponential Time Hy-
pothesis (rETH) as our complexity theoretic assumption.
Given a 3-SAT instance, we denote by n and m the num-
ber of variables and clauses in the instance, respectively.
Then, rETH states that there is a constant c > 0 such that
there is no randomized algorithm that decides 3-SAT in time
O∗(2c·n) with (two-sided) error probability at most 1

3 (Dell
et al. 2014). Using the sparsification lemma (Jansen 2010)
one can show the following, see Exercises 14.1 of (Cygan
et al. 2015a).
Theorem 0.11. Under rETH, there exists a constant c > 0
such that there is no randomized algorithm that decides 3-
SAT in timeO∗(2c·(n+m)) with (two-sided) error probability
at most 1

3 where n and m are the numbers of variables and
clauses in the 3-SAT instance, respectively.

There is a known reduction from 3-SAT to Vertex Cover
such that the number of vertices in the Vertex Cover instance
is linear in the number of variables and clauses of 3-SAT
instance, see (Cygan et al. 2015a) for this reduction. Us-
ing such reduction and Theorem 0.11 we have the following
hardness result on Vertex Cover.
Theorem 0.12 (Hardness of Vertex Cover). Under rETH,
there is a constant c > 0 such that there is no randomized
algorithm that decides Vertex Cover with n vertices in time
O∗(2c·n) with (two-sided) error probability at most 1

3 .
The last ingredient we need to show our hardness result

for Euclidean k-supplier problem is the famous Johnson-
Lindenstrauss dimentionality reduction (Johnson and Lin-
denstrauss 1984) or JL lemma for short.
Theorem 0.13 (JL lemma, reformulated). Consider n points
x1, ..., xn in R`. There exists a linear map A : R` →
RcJL·log n where cJL > 0 is a constant such that for all
1 ≤ i, j ≤ n we have

0.9 · ‖xi−xj‖ ≤ ‖A(xi)−A(xj)‖ ≤ 1.1 · ‖xi−xj‖, (1)

where the norms are l2-norm. Furthermore, A can be com-
puted in polynomial time by a randomized algorithm such

that (1) holds for all pairs of given points with probability at
least 2

3 .
Now we are ready to state and prove our hardness result.

Theorem 0.3. Under rETH, there are constants ε̄ > 0 and
α > 1 such that there is no α-approximation algorithm for
d-dimensional Euclidean k-supplier in timeO∗(22ε̄·δ·d·k1−δ

)
for any 0 < δ < 1.

Proof. We show a gap-introducing reduction from Vertex
Cover to Euclidean k-supplier problem. Consider a Vertex
Cover instance (G = (V,E), k) where V = {1, 2, ..., n}.
We construct an instance of Euclidean k-supplier as follows:
define the client set as C := {ei+ ej : ∀ (i, j) ∈ E} and the
set of facilities as F := {ei : ∀1 ≤ i ≤ n} where ei is the
standard unit vector in Rn, i.e., ei has 1 in i-th coordinate
and 0 elsewhere.

Suppose G has a vertex cover S = {i1, ..., ik}. We claim
the union of balls of radius 1 around each center eij for all
1 ≤ j ≤ k covers all the clients. The reason is that for each
client er+es, either r or s is in S. W.l.o.g., we assume r ∈ S,
and therefore we open er as a center with radius 1 and the
claim follows by noting that ‖er − (er + es)‖ = 1.

Next, we prove the other direction. Suppose G does not
have a vertex cover of size k. We show that an optimal so-
lution for k-supplier instance is at least

√
3. Let F ∗ be an

optimal set of centers. We have the following fact.

Claim 1. There is a client er + es that is assigned to ei∗ ∈
F ∗ where i 6= r, s.

Note ‖ei∗ − (er + es)‖ =
√

3 and therefore the optimal
solution for the k-supplier instance is at least

√
3. So it re-

mains to prove the claim.

Proof. (of claim) Suppose not. Then, every client er + es
is assigned to either center er or es. It is easy to see if we
define S as the set of all vertices i such that ei ∈ F ∗, then S
is a feasible vertex cover for G, a contradiction.

We can use the JL lemma (Theorem 0.13) to further re-
duce the above k-supplier instance in Rn to a k-supplier
instance in dimension cJL · log n (recall that cJL is a con-
stant in the JL lemma). Then, with probability at least 2

3 , a
YES-instance of Vertex Cover is mapped to an instance of
k-supplier in dimension cJL · log n with optimal solution at
most 1.1 and a NO-instance of Vertex Cover is mapped to an
instance of k-supplier in dimension cJL · log n with optimal
solution at least

√
3 · 0.9.

Finally, set α :=
√

3·0.9
1.1 > 1.4 and ε̄ := 1

2·cJL (in the
statement of Theorem). We finish the proof by way of con-
tradiction. Suppose there is a 1.5-approximation algorithm
for k-supplier in Rd that runs inO∗(22ε̄·δ·d·k1−δ

). Therefore,
we can decide Vertex Cover in time O∗(22ε̄·δ·d·k1−δ

) with
error probability at most 1

3 where d = cJL · log n. Plug-
ging their values of d, α, ε̄ and noting that k ≤ n, we have
a randomized algorithm that decides Vertex Cover in time

O∗(2n
1− δ

2 ) for some 0 < δ < 1 and this contradicts the
hardness result for Vertex Cover (Theorem 0.12).
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Hardness of k-center
Our hardness reduction is from 3-Planar Vertex Cover which
is a restricted version of Vertex Cover on planar graphs of
maximum degree 3. We need the following complexity re-
sult based on Exponential Time Hypothesis (ETH) (Impagli-
azzo, Paturi, and Zane 2001).

Proposition 0.14. There is no 2o(
√
n) time algorithm for 3-

Planar Vertex Cover, unless ETH fails, where n is the num-
ber of vertices.

Proof. The proposition for Planar Vertex Cover essentially
follows by combining two reductions due to (Lichtenstein
1982): (i) 3-SAT to Planar 3-SAT and (ii) Planar 3-SAT to
Planar Vertex Cover. For a more formal exposition, see The-
orem 14.9 (Cygan et al. 2015b) which states that there is no
2o(
√
n) time algorithm for Planar Vertex Cover, unless ETH

fails. Our proposition follows from the fact that the second
reduction ensures that the constructed graph has maximum
degree 3.

Theorem 0.2. There exists a constant α > 1 such that there
is no α-approximation algorithm for 2-dimensional k-center
in time 2o(k

1/4) · nO(1), unless ETH fails.

Proof. For proving the theorem, we use the gap-preserving
reduction of Feder and Greene (1988) from 3-Planar Ver-
tex Cover to Planar k-center. They start with any embed-
ding of the planar graph where each edge is replaced by
an odd length path. Let L be the sum of the lengths of
the edges in the embedded graph. Their reduction ensures
that if there is a vertex cover of size k1, then there is a
k-center solution of radius 1, for a suitable k ≤ k1 + L,
and if there is no vertex cover of size k1, then there is no
k-center solution of radius at most 1.82. By using the pla-
nar embedding scheme in (Shiloach 1976), which ensures
that L = O(n2), it follows that in the constructed instances
of k-center, k = O(n2). Thus, using an α-approximation
algorithm for Planar k-center with α ≤ 1.82 that runs in
2o(k

1/4) · nO(1) time, we can solve 3-Planar Vertex Cover
exactly in 2o(k

1/4) · nO(1) = 2o(
√
n) · nO(1) time. This

contradicts Proposition 0.14, and hence our claim must be
true.

Non-Uniform k-Center
By standard scaling argument (Chakrabarty, Goyal, and Kr-
ishnaswamy 2020), we can assume that the optimal dilation
is 1. Let OPT be any optimal set of balls. We denote a ball
with center c and radius r by B(c, r). Consider any set of
points S. A ball B is said to cover S if the points of S are
contained in B. A set of balls B is said to cover S if the
points of S are contained in the union of the balls in B.

The General Metric Case
Note that C is the set of points that we need to cover and F
is the set of centers. Let n = |C ∪ F|. In this case, we give a
simple 3-approximation that runs in 2O(k)n2 time.

The Algorithm. Let sol be the solution set of balls which
is initialized to ∅. Also let C′ ⊆ C be the set of points left to
cover, i.e., the set of points which are not covered by sol. If
C′ is empty or |sol| = k, then terminate. Otherwise, proceed
as follows. Consider a point p ∈ C′. Suppose ri be the radius
of a ball in OPT that covers p and assume that we know this
index i where 1 ≤ i ≤ t. Consider the point c ∈ F closest
to p. Add the ball B(c, 3ri) to sol. Repeat the above steps.

The assumption that for a point we know the optimal in-
dex i can be removed in a trivial manner by trying all t ≤ k
possible choices. The algorithm runs for at most k iterations,
and thus we make the assumption for at most k points. The
total number of choices to consider is thus kO(k). Now, in
each iteration we need to find c and the ball B(c, 3ri), and
remove the points in B(c, 3ri) from consideration. We can
precompute and store the closest point in F for each point
in C. This helps us implement each iteration in O(n2) time.
Hence, the algorithm runs in total 2O(k log k)n2 time. Next,
we prove the correctness.

Lemma 0.15. Consider the case when the algorithm makes
all correct choices. For every iteration j of the algorithm
except the last one, where 1 ≤ j ≤ k, there is a ball B∗l in
OPT, such that in the beginning of the iteration, B∗l is not
covered by sol, but in the end of the iteration, B∗l is covered
by sol once we add the ball B(c, 3ri) to sol. Moreover, the
radius of B∗l is ri.

Proof. Consider any iteration j which is not the last one.
Thus, C′ is non-empty and we pick a point p ∈ C′. As p is
not yet covered by sol, there is a ball B∗l in OPT containing
p such that B∗l is not covered by sol. We correctly find the
radius ri of this ball by our assumption. Now, the center c∗
of B∗l must be at most at a distance ri from p, as p ∈ B∗l .
Thus, the closest point c computed for p must be at a dis-
tance ri from p. Now, for any point p′ ∈ B∗l , dist(c, p′) ≤
dist(c, p) + dist(p, p′) ≤ ri + dist(p, c∗) + dist(c∗, p′) ≤
ri + ri + ri = 3ri. (The first and the second inequalities
are due to triangle inequality.) Thus, any point in B∗l is con-
tained in B(c, 3ri). As this ball is added to sol in the end of
the iteration, B∗l is covered by sol.

The above lemma shows that in every iteration of the al-
gorithm except the last one, a new ball in OPT is being cov-
ered by a ball of radius 3 times the radius of the optimal
ball. Thus, sol must cover all the points in C after at most k
iterations. We note that if C = F , then an algorithm simi-
lar to the above indeed gives a 2-approximation, as in that
case, one can pick the ball B(p, 2ri) in every iteration. The
analysis is very similar. We obtain the following theorem.

Theorem 0.16. A 3-approximation for NUkC can be com-
puted in time 2O(k log k)n2. Moreover, if C = F , the approx-
imation factor is 2.

The Euclidean Case
In this case, C is a subset of n points of Rd and F = Rd.
A ball B = B(c, r) with c ∈ Rd is called the Minimum
Enclosing Ball (MEB) of S if B covers S and there is no
ball with center in Rd and radius strictly less than r that
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covers S. We denote the center and radius of the MEB of S
by cB(S) and rB(S), respectively.

Our algorithm is basically an extension of the k-center
algorithm due to Badoiu et al. (2002). In k-center, the goal
is to select k balls of equal radius that cover all the input
points. However, in our case, we need to find ki balls of
radius ri for each 1 ≤ i ≤ t to cover the input points. Our
main contribution is to handle non-uniform radii.

The Algorithm. Consider any arbitrary ordering of the k
balls B∗1 = B(c∗1, r

∗
1), . . . , B∗k = B(c∗k, r

∗
k) in OPT. For

each index 1 ≤ i ≤ k, we maintain a set Si ⊆ C ∩ B∗i
of points which is initialized to ∅. To start with, we pick
any arbitrary point q ∈ C and add it to the set Si such that
q ∈ B∗i . For the time being, assume that we know this in-
dex i for q. Next, we apply the following procedure over
k · d2/εe iterations. In the beginning of every iteration, we
check whether all the points in C are covered by the union of
the balls∪ki=1B(cB(Si), (1+ε)r∗i ). If yes, then we terminate.
Otherwise, we proceed as follows. For each point p ∈ C, let
δ(p) = minki=1‖cB(Si) − p‖. Pick a point p′ ∈ C among
the points not in ∪ki=1B(cB(Si), (1 + ε)r∗i ) such that δ(p′) is
maximized, i.e., p′ is a point which is farthest away from the
centers of the MEBs among the “uncovered” points. Again
suppose we know the correct optimal ball B∗i that contains
p′. Add p′ to Si.

The assumption that for a point we know its optimal
ball can be removed in a trivial manner by trying all k
possible choices. As we make the assumption for O(k/ε)
points, the total number of choices to consider is kO(k/ε).
In every iteration, computation of the MEBs and p′ can
be done in O(ndk) time. Thus, the algorithm runs in total
2O((k log k)/ε)dn time.

It is possible to save some computation in the above algo-
rithm by removing all points from consideration which are
already covered and do not appear in a set Si. However, the
asymptotic complexity remains the same.

Next, we prove the correctness of the algorithm. In partic-
ular, we show that when the algorithm terminates, all points
of C are covered by ∪ki=1B(cB(Si), (1 + ε)r∗i ). We need the
following lemma proved in (Goel, Indyk, and Varadarajan
2001).

Lemma 0.17. For any set of points T ⊂ Rd and any point z
at distanceK from cB(T ), there is a point z′ ∈ T at distance

at least
√
r2
B(T ) +K2 from z.

First, we prove the following lemma.

Lemma 0.18. Consider any set Si where 1 ≤ i ≤ k and
suppose the algorithm added d2/εe points of C ∩ B∗i to Si.
Then for any point p ∈ C ∩B∗i , ‖cB(Si) − p‖ ≤ (1 + ε)r∗i .

Proof. Consider the first τ = d2/εe iterations when the al-
gorithm adds points of C ∩ B∗i to the set Si. Let Si,j be the
set Si at the j-th such iteration. Thus, Si,0 is a singleton set,
and Si,j+1 = Si,j ∪ {p′} for some p′ ∈ C ∩ B∗i added to
Si,j . Also let r̂j = rB(Si,j), R̂ = (1 + ε)r∗i , λj = r̂j/R̂, and
Kj = ‖cB(Si,j+1) − cB(Si,j)‖. We have the following claim

whose proof is similar to the proof of a theorem (Theorem
2.1) due to Badoiu and Clarkson (2003).

Claim 2. λj ≥ 1− 1
1+j/2 .

Proof. Note that the point p′ that the algorithm adds
to Si,j has the property that it is currently not in
∪kl=1{B(cB(Sl), (1 + ε)r∗l )} and, in particular not in
B(cB(Si,j), R̂). Moreover, p′ is farthest away from
cB(Si,j) among the points in C ∩ B∗i not covered by
∪kl=1{B(cB(Sl), (1 + ε)r∗l )}. Thus, ‖cB(Si,j) − p′‖ >

R̂. Also, ‖cB(Si,j) − p′‖ ≤ ‖cB(Si,j) − cB(Si,j+1)‖ +

‖cB(Si,j+1) − p′‖ ≤ Kj + r̂j+1. Thus, r̂j+1 > R̂−Kj .
By Lemma 0.17, with Si,j = T and cB(Si,j+1) = z, there

is a point of Si,j at least
√
r̂2
j +K2

j from cB(Si,j+1). Thus,

r̂j+1 ≥
√
r̂2
j +K2

j . It follows that,

λj+1R̂ = r̂j+1 ≥ max{R̂−Kj ,
√
λ2
j R̂

2 +K2
j }

The lower bound on λj+1 is smallest when the above two

quantities are equal, i.e., when Kj =
(1−λ2

j )R̂

2 . Thus,
λj+1 ≥ (1 + λ2

j )/2.
This recurrence solves to λj ≥ 1 − 1

1+j/2 using the fact
that λ0 = 0.

Now, we know that Si,j ⊆ C ∩ B∗i and so the radius of
the MEB of Si,j can be at most r∗i . Hence, λj can be at most
1/(1 + ε) by definition. By the above claim, this maximum
value is achieved when j ≥ 2/ε, and thus j < 1 + d2/εe.
It follows that after d2/εe points of C ∩ B∗i are added to Si,
(1+ε)-expansion ofB(Si) contains all the points of C∩B∗i .
As the radius of B(Si) is at most r∗i , for any point p ∈ B∗i ,
‖cB(Si) − p‖ ≤ (1 + ε) · rB(Si) ≤ (1 + ε)r∗i .

Next, we finish the correctness proof.

Lemma 0.19. When the algorithm terminates, all points of
C are covered by ∪ki=1B(cB(Si), (1 + ε)r∗i ).

Proof. Suppose the statement is not true, i.e., there is a point
p which is not covered by ∪ki=1B(cB(Si), (1 + ε)r∗i ). This
means the algorithm ran for all k · d2/εe iterations, i.e., the
total size of the sets {Si} is k ·d2/εe. Let j be the index such
that p ∈ B∗j . Now, consider the case when the algorithm
makes all correct choices. Note that there must be at least
one such case, as we try all possible k choices in every step.
By Lemma 0.18 and the way the algorithm adds points to
the sets {Si}, the size of each Si can be at most d2/εe. But,
this implies that the size of Sj is at least d2/εe, as the total
size of the sets {Si} is k · d2/εe. It follows by Lemma 0.18,
‖cB(Sj) − p‖ ≤ (1 + ε)r∗j , which is a contradiction.

From the above discussion, we obtain the following.

Theorem 0.20. A (1 + ε)-approximation for Euclidean
NUkC can be computed in time 2O((k log k)/ε)dn.
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