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Abstract

Sample average approximation (SAA), a popular method for
tractably solving stochastic optimization problems, enjoys
strong asymptotic performance guarantees in settings with in-
dependent training samples. However, these guarantees are
not known to hold generally with dependent samples, such as
in online learning with time series data or distributed com-
puting with Markovian training samples. In this paper, we
show that SAA remains tractable when the distribution of
unknown parameters is only observable through dependent
instances and still enjoys asymptotic consistency and finite
sample guarantees. Specifically, we provide a rigorous prob-
ability error analysis to derive 1 - beta confidence bounds for
the out-of-sample performance of SAA estimators and show
that these estimators are asymptotically consistent. We then,
using monotone operator theory, study the performance of a
class of stochastic first-order algorithms trained on a depen-
dent source of data. We show that approximation error for
these algorithms is bounded and concentrates around zero,
and establish deviation bounds for iterates when the under-
lying stochastic process is phi-mixing. The algorithms pre-
sented can be used to handle numerically inconvenient loss
functions such as the sum of a smooth and non-smooth func-
tion or of non-smooth functions with constraints. To illus-
trate the usefulness of our results, we present several stochas-
tic versions of popular algorithms such as stochastic proxi-
mal gradient descent (S-PGD), stochastic relaxed Peaceman–
Rachford splitting algorithms (S-rPRS), and numerical exper-
iment.

Introduction
Stochastic optimization, a powerful modeling paradigm in
optimization under uncertainty, is ubiquitous in statistical
machine learning, engineering, and decision-making prob-
lems (Franklin 2005; Heyman and Sobel 2004; Fouskakis
and Draper 2002). Specifically, these problems seek to min-
imize an expected loss taken with respect to the distribu-
tion P of a random parameter ξ. However, more often than
not, this probability distribution is unknown and can only
be observed through a finite number of sample points. We
are thus forced to solve a surrogate optimization problem
constructed by the observed data: the optimal value of the
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original problem can be approximated by that of the surro-
gate problem. The main goal of this paper is to study the
properties of sample average approximation (SAA), a pow-
erful approach to stochastic optimization that is considered
statistically and computationally “optimal” in settings where
observations are independent. These claims have the follow-
ing caveats in non-independent settings.

• Most existing statistical guarantees for SAA critically de-
pend on the assumption that training samples are inde-
pendent and identically distributed (i.i.d.). However, the
i.i.d. assumption can be difficult to justify or outright in-
valid in practice. It is thus important to examine the prop-
erties of SAA estimators when samples are known to be
correlated.
• For an optimization scheme to be useful, it should be

solved efficiently. Standard convex optimization tech-
niques, while widely applicable, suffer performance-
wise in problems that are complex or highly structured,
and trained with non-i.i.d. samples. Consequently, practi-
cally useful methods should offer guarantees that remain
valid when the training samples display serial dependen-
cies and be rich enough to handle numerically inconve-
nient problems.

In this paper, we consider applying SAA to the stochastic
optimization problem

J∗ = min
x∈X

{
EP[`(x; ξ)] =

∫
Ξ

`(x; ξ)P(dξ)

}
, (1)

where Ξ is a sample space with a probability distribution P
and X ∈ Rd is a convex, feasible parameter space. We as-
sume throughout that `(x; ξ) is a closed, convex, and proper
function and that ξ ∈ Ξ denotes a sample instance. We let
x∗ denote the optimal solution to problem (1).

In most situations of practical interest, the distribution P
is not known or cannot be efficiently sampled, such as when
Ξ is a high-dimensional or combinational sample space (Jo-
hansson, Rabi, and Johansson 2007, 2010). This restric-
tion removes information essential to solving problem (1)
exactly. We instead consider receiving samples {ξk}Kk=1

from a stochastic process P = P k indexed by time k,
where P converges to the stationary distribution P. This
is a natural relaxation of the assumption that training sam-
ples are i.i.d. following P. As an example, consider Ξ =

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

3859



{ξ ∈ {0, 1}d | 〈a, ξ〉 ≤ b}, where a ∈ Rd, b ∈ R,
〈a, ξ〉 =

∑d
i=1 aiξi, and P is the uniform distribution over

Ξ. A straightforward way to obtain a sample from P is by
iterative random sampling from {0, 1}d until the constraint
on Ξ is satisfied: this approach takes O(2d) draws to ob-
tain a feasible sample. Alternatively, it is possible to design
a Markov chain (Jerrum and Sinclair 1996) that generates
a sample that is ε-close to the distribution P and only re-
quires log(

√
d/ε) exp(O(

√
d(log d)5/2)) draws (Dyer et al.

1993), a greatly reduced sampling cost. Autoregressive pro-
cesses (Kushner and Yin 2003) are yet another example of
stochastic data-generating processes but generate a depen-
dent source of data, here the sequential entries of a time se-
ries. The assumption of i.i.d. samples is, therefore, unrealis-
tic in many data-generating processes. These two examples
highlight the need to consider sampling efficiency and train-
ing under inter-sample dependence.

Applications of SAA to stochastic optimization are not
new and have been studied extensively in the litera-
ture (Kleywegt, Shapiro, and Homem-de Mello 2002; Kim,
Pasupathy, and Henderson 2015; Emelogu et al. 2016; Bert-
simas, Gupta, and Kallus 2018). As noted above, the idea
underlying SAA is simple—to generate solutions to problem
(1), approximate P with the discrete empirical distribution
P̂K = 1

K

∑K
k=1 δξk corresponding to training samples. SAA

improves problem solvability by turning integration over a
density function in a summation over discrete points.

Properties of solutions to SAA problems are well under-
stood. In particular, the optimal solution of an SAA problem
is known to be strongly consistent and asymptotically nor-
mal (Kim, Pasupathy, and Henderson 2015). However, most
works study problems in settings where data is i.i.d. With
the notable exceptions of Duchi et al. (2012) and Agarwal
and Duchi (2012), we are not aware of any studies of SAA
with non-i.i.d. data, while these work focus more on the con-
vergence of the proposed algorithm and iterate asymptotics
rather than the properties of SAA. Results on the asymptotic
consistency of SAA under an unknown probability distribu-
tion P and dependent training data have not yet been estab-
lished and are of particular importance.

Tractability is equally as important as statistical guaran-
tees when establishing the practical utility of an optimiza-
tion scheme. SAA tractability suffers when the loss func-
tion ` possesses a complex structure, such as statistical ma-
chine learning problems that enforce prior knowledge of the
form of the solution, such as sparsity, low rank, and smooth-
ness (Franklin 2005). As a result, it is critically important
to develop algorithms that are both rich enough to capture
the complexity of data and scalable enough to process data
in a parallelized or fully decentralized fashion. We study
the tractability of SAA with non-i.i.d. training samples for
a class of stochastic first-order algorithms. We focus primar-
ily on operator-splitting schemes, which are widely used due
to their scalability with respect to problem dimensionality.
More importantly, operator splitting schemes can be easily
parallelized and are usually simple and cheap to implement.

One general iteration scheme, defined as the Stochastic

Krasnosel’skiı̆–Mann (S-KM) iteration, is

xk = xk−1 + λk−1(T (xk−1)− xk−1 + εk−1)

where T is a nonexpansive operator defined as a mapping:
T : X → X such that ‖Tx − Ty‖ ≤ ‖x − y‖ holds for
all x, y ∈ X. The stochastic error εk−1 is caused by un-
certainty in random sampling. Succinctly, an operator split-
ting algorithm converts an optimization problem into a prob-
lem of finding a fixed point of a nonexpansive operator and
breaks this problem into several relatively simple subprob-
lems. Many commonly used methods, such as stochastic
proximal gradient descent (PGD) and stochastic alternating
direction method of multipliers (ADMM), have this iteration
step with a specific nonexpansive operator. Classical PGD
and ADMM algorithms are special cases of the KM itera-
tion without the stochastic error term.

Our setting is perhaps most similar to that in Duchi et al.
(2012), which also considers receiving data from an ergodic
process. However, our work here differs in two fundamental
ways. First, Duchi et al. (2012) focuses on algorithmic con-
vergence guarantees with dependent samples but pays little
attention to statistical properties of SAA estimators. Second,
Duchi et al. (2012) only considers stochastic mirror descent
while we consider multiple other algorithms. Sun, Sun, and
Yin (2018) similarly only considers stochastic gradient de-
scent and works under the assumption that training samples
are generated by a Markov chain, a special case of an ergodic
process. The sampling technique used in Derman and Man-
nor (2020) is the same as that in Sun, Sun, and Yin (2018),
except that samples are generated from multiple indepen-
dent trajectories of serially correlated states. Using multiple
replication (MR), a technique that attempts to remove inter-
sample dependence via multiple stochastic process trajecto-
ries, the authors generate i.i.d. samples and train the model
using standard algorithm. This approach can help to get rid
of dependence among the samples but may be difficult to
acquire in practice (we refer to the next section for details).
In contrast to this approach, we establish asymptotic con-
sistency and non-asymptotic bounds for SAA problems and
study, from a fixed-point iteration perspective, properties of
a variety of first-order algorithms based on a single trajec-
tory of a stochastic process.

In summary, while many existing works indicate that
SAA estimators are asymptotically consistent and tractable,
hardly any existing statistical performance guarantees apply
when training data fails to be i.i.d. or when training sam-
ples are generated from a single trajectory. This paper ad-
dresses this gap. Specifically, we study the performance of
SAA estimators when training samples are generated by an
ergodic stochastic process and, in the same setting, establish
properties of the S-KM iteration in solving SAA. The main
contributions of this paper are as follows.

• Asymptotic consistency. We generalize SAA problems
to scenarios where training samples are correlated and
prove that the SAA solutions are asymptotically consis-
tent.
• Finite sample guarantees. By introducing a weakened

version of φ-mixing, we establish 1 − β confidence
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bounds on the out-of-sample performance based on the
optimal solution obtained by minimizing an SAA prob-
lem.
• Tractability. We examine the performance of first-order

algorithms for solving SAA problems in an efficient
manner via monotone operator theory. We show that the
approximation error of the algorithm is bounded and con-
centrates around zero, and further establish iterate devia-
tion bounds.

SAA with Dependent Data
To motivate the broad applicability of sampling from a
stochastic process, in this section, we begin with an exam-
ple in distributed optimization under a simple peer-to-peer
communication scheme (Johansson, Rabi, and Johansson
2007), where the optimization problem evolves according
to a finite-state Markov chain. We then move toward a spe-
cific sampling technique, called the multiple replication ap-
proach, which generates training samples from multiple tra-
jectories to get rid of dependency among the samples. How-
ever, its efficiency can not be guaranteed and it wastes a lot
of samples. We then propose an iteration procedure that ef-
ficiently uses every obtained sample and works when there
is only a single trajectory available.

Peer-to-Peer Optimization Suppose that the distribution
P is supported on a set of n points {ξ1, . . . , ξn} and that
there are n processors, each with a convex function `(x; ξi).
The objective is to minimize L(x) = 1

n

∑n
i=1 `(x; ξi). To

solve this problem, the current set of parameters xk ∈ X
is passed to one of the processors and updated in each it-
eration. More specifically, let the token i(k) indicate the
processor i holds xk at time k: at this time, only the data
stored in processor i is accessed. Given the current state
i(k), the next state i(k + 1) is determined randomly via
P(i(k + 1) = j | i(k) = i) = Pij , with 0 ≤ Pij ≤ 1.
The data stored in processor j is then accessed and used to
update xk. Since Ξ is a combinational space in this setting,
it is hard to draw samples directly. Moreover, it is unrealistic
to assume that samples are i.i.d. However, because the token
i(k) can be viewed as evolving according to a Markov chain
with a doubly stochastic transition matrix (Pij)i,j , the data
generating process forms a Markov chain.

Multiple Replication Approach As mentioned previ-
ously, although we can design a stochastic process to gener-
ate training samples, it may be impossible to generate i.i.d.
training samples. A natural method called multiple repli-
cation approach (Gelman and Rubin 1992), is adopted to
obtain a sequence of i.i.d. samples. Specifically, in this ap-
proach, after specifying the initial conditions of the stochas-
tic process P , a sequence ξ1, . . . , ξs, for some s, is gener-
ated. And we only keep the last sample ξs that follows the
marginal distribution P s, which is assumed to be close to P.
The same procedure is repeated for K times to simulate K
i.i.d. samples, then use standard algorithms as for indepen-
dent data.

Unfortunately, this method does not work if there is only
one trajectory or expensive to simulate multiple trajecto-

Algorithm 1: Stochastic Krasnosel’skiı̆–Mann (S-KM)
Input: Initial value x0 and given δ-optimality
While‖T (x̄k−1; ξk)−x̄k−1‖2 > δ

1: Sample ξk ∼ P k
2: xk ← x̄k−1 + λk−1

(
T (x̄k−1; ξk)− x̄k−1

)
3: x̄k ← k−1

k x̄k−1 + 1
kx

k

end while

ries. Further, the computation cost could be quite high. This
is because sampling a long trajectory and using only the
last sample wastes a large number of samples, especially
when s is large. This waste may seem necessary because
a small s induces a large bias in ξs: after all, a random
trajectory may take a long time to explore the parameter
space and will often double back to previously visited states.
This further complicates the problem of choosing a s ap-
propriately. A small s will cause large bias in ξs, which
slows the convergence of algorithms and reduces its final
accuracy—{ξk}Kk=1 are generated from P s where P s could
be far away from P. A large s, on the other hand, is wasteful
especially when the iterate xk is still far from convergence
and some bias does not prevent the iteration update to make
good progress. Therefore, s should increase adaptively as k
increases—this makes the choice of s even more difficult.

Stochastic Krasnosel’skiı̆–Mann (S-KM) Iteration As-
sume that P can only be observed through samples {ξk}Kk=1
from an ergodic stochastic process P that converges to P.
We address the SAA problem

Ĵ∗K = min
x∈X

{
L(x) = EP̂K [`(x; ξ)] =

1

K

K∑
k=1

` (x; ξk)

}
(2)

and its corresponding optimal solution x̂∗K with an alterna-
tive iteration procedure that uses every sample immediately.
Specifically, suppose that the distribution P is supported on
{ξk}Kk=1. Problem (1) can then be approximated by (2). Iter-
ation procedure to solve problem (2) is given in Algorithm
1: in the t-th iteration, the update

xk ← xk−1 + λk−1

(
T (xk−1; ξk)− xk−1

)
is applied, where ξk is sampled from the stochastic process
P evaluated at time k.The operator T in Algorithm 1 is a
nonexpansive operator that depends on the specific method
used. We include the sample ξk as an argument of T to ex-
plicitly indicate that the k-th iteration depends only on the
most recently drawn sample. For more details regarding the
forms of ` and T used in practice, please see the section of
Application and Table 1.

Statistical Guarantees
In this section, we show that the widely used SAA method
retains its statistical guarantees if training samples are gen-
erated by an ergodic stochastic process that converges to a
desired stationary distribution P. The reason for this is that
the empirical distribution is a sufficient statistic and satisfies
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requirements for large number theory.We begin with finite
sample performance. If we only have access to K training
samples, we can obtain the optimal solution x̂∗K and the cor-
responding optimal value Ĵ∗K via (2). The quality of x̂∗K and
Ĵ∗K can be evaluated through out-of sample performance,
defined as EP[`(x̂∗K ; ξtest)], where ξtest is a testing sample as-
sumed to be drawn from P and is independent of the training
samples.

Preliminaries
We start the section by recalling some definitions that fa-
cilitate to present theoretical properties in the next section.
The definition of total variation distance is first introduced
to measure the convergence of the stochastic process P to
the distribution P.

Definition 1 Let P and Q be probability measures defined
on a set Ξ with respective densities p and q relative to an
underlying measure µ. The total variation distance between
P and Q is

dTV(P,Q) =
1

2

∫
Ξ

|p(ξ)−q(ξ)|dµ(ξ) = sup
A⊂Ξ
|P(A)−Q(A)|,

where the supremum is taken over measurable subsets of Ξ.
Using total variation distance, we can define the notion of

a mixing stochastic process. Let P k[s] = P k(· | Fs) denote
the distribution of ξk conditional on the σ-algebra Fs with
Fs = σ(ξ1, . . . , ξs).

Definition 2 Define F0 = {∅,Ω} and let (Fk)
K
k=1 be an

increasing sequence of σ-algebras such that Fk−1 ⊆ Fk for
any k. The φ-mixing coefficient of the sample distribution P
under total variation is

φ(l) = sup
k∈N+,B∈Fk

{2dTV

(
P k+l(· | B),P

)
}.

We say that the process is φ-mixing if φ(l) → 0 as l → ∞.
Note that if the training samples are i.i.d., then φ(1) = 0. We
state the following results in a general form using φ-mixing
coefficients.

Assumption and Main Results
Before formalizing any statistical properties, we introduce
one assumption.
Assumption 1 The φ-mixing coefficients for the sample dis-
tribution are summable, i.e.,

∑∞
k=1 φ(k) <∞.

Assumption 1 is met by some stochastic processes satisfy-
ing geometric mixing since φ(k) ≤ φ0 exp(−φ1k

α) would
hold for some φ0 > 0, φ1 > 0, and α > 0. A large class
of stochastic process are geometric mixing: this includes au-
toregressive models and aperiodic Harris-recurrent Markov
processes (Modha and Masry 1996).

Let ‖P̂K − P‖ =
∫ 1

0
|P̂K(t) − P(t)|dt with P̂K =

1
K

∑K
k=1 δξk . If Assumption 1 holds, then Theorem 1 in

Dedecker and Merlevede (2007) indicates that

P
{
‖P̂K − P‖ ≥ ε

}
≤ 2 exp

(
− K2ε2

2C(
∑K
k=1 φ(k))

)

for all K ≥ 1 and ε > 0, where C(
∑K
k=1 φ(k)) is a func-

tion of
∑K
k=1 φ(k) and satisfies C(

∑K
k=1 φ(k)) < ∞. This

concentration inequality provides a prior estimate of the dis-
tribution P that resides outside of the ε-ball Bε(P̂K) = {P̃ |
‖P̂K − P̃‖ ≤ ε}. Therefore, taking ε as

εK(β) =

(
2C(

∑K
k=1 φ(k)) log(2β−1)

K2

) 1
2

, (3)

we get the smallest ball that contains P with confidence 1−β
for some prescribed β ∈ (0, 1).

Theorem 1 (Out-of-sample guarantees) Let Ĵ∗K and x̂∗K be
as defined in (2). Suppose that `(x; ξ) is bounded by a con-
stant L for x ∈ X and ξ ∈ Ξ. Let ε∗ = LεK(β). Then, we
have that

P
{
EP[`(x̂∗K ; ξtest)] ≤ Ĵ∗K + ε∗

}
≥ 1− β.

Equation (3) indicates that ε∗ → 0 as K → ∞ for any
fixed β. Since the true distribution P is unknown, the out-
of-sample performance of x̂∗K , defined as EP[`(x̂∗K , ξ)], can-
not be evaluated in practice. It is then more practical to es-
tablish bounds on EP[`(x̂∗K ; ξ)]. It can be seen directly that
J∗ ≤ EP[`(x̂∗K ; ξ)], but this lower bound is still impractical
unless P is known. Our primary concern here is to bound
the cost from above. From Theorem 1, we can conclude that
the out-of-sample performance of x̂∗K is bounded by a ball
of Ĵ∗K with radius ε∗ with probability 1 − β. Esfahani and
Kuhn (2018) establishes a similar results for minimization-
maximization problems in the i.i.d. setting. In addition, one
can show that if βK converges to zero at a particular rate,
then the solution to problem (2) converges to the original
solution of problem (1) as K tends to infinity.

Theorem 2 (Asymptotic consistency) Let βK ∈ (0, 1) with
limK→∞ εK(βK) = 0 and

∑∞
K=1 βK < ∞. Under the

assumptions of Theorem 1, we have

P
{

lim
K→∞

Ĵ∗K = J∗
}

= 1 and P
{

lim
K→∞

x̂∗K = x∗
}

= 1.

Computational Tractability
Even though SAA offers powerful statistical guarantees, it is
practically useless unless the underlying optimization prob-
lem can be solved efficiently. In this section, we develop
a numerical procedure to solve problem (2) when the data
comes from an ergodic process P that converges to P. We
consider two types of problems related to problem (2): one
unconstrained problem, given by

min
x∈X

{
EP̂K [`(x; ξ)] =

1

K

K∑
k=1

f (x; ξk) + g (x; ξk)

}
, (4)

and another subject to a linear constraint,

min
x∈X,y∈X

{
EP̂K [`(x, y; ξ)] =

1

K

K∑
k=1

f (x; ξk) + g (y; ξk)

}
subject to Ax+By = b, (5)
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where b ∈ X and the operators A, B are bounded and linear.
Many optimization problems can be cast as one of prob-

lem (4) or (5) (Zhang 2004; Teo et al. 2010; Davis and
Drusvyatskiy 2019; Yu et al. 2019). Problems of these types
arise in diverse applications in image processing, machine
learning, and statistics (Boyd and Vandenberghe 2004; Piet-
rosanu et al. 2020, 2021; Wang et al. 2019; Zhang et al.
2021). In these fields, the dimensionality of data can be
extremely large. Traditional methods may thus fail to effi-
ciently (in terms of time) generate solutions. Regularizers,
for example, enforce prior knowledge of the form of the so-
lution, such as sparsity, low rank, or smoothness. In regu-
larization schemes, f and g can be data fitting and penalty
terms, respectively. Typically, penalty terms make problems
(4) and (5) difficult to optimize jointly. Even if the both
terms can be handled jointly, modern data is often high-
dimensional and consists of millions or billions of training
examples: running even a single iteration using classical al-
gorithms is often infeasible. Moreover, in most statistical
learning problems, we are more concerned with target pa-
rameter estimates rather than the objective function value.
We present a stochastic KM algorithm that can handle a
amount of non-i.i.d. data in a fast, parallelized, and efficient
manner.

The methodology we present is different from those used
in classical convex analysis (Boyd and Vandenberghe 2004),
mainly because operator splitting algorithms are driven by
fixed-point iteration rather than by the goal to minimize a
loss function: convergence is due to the contraction property
of a given fixed-point operator instead of “descent” on the
loss. Most fixed-point iteration schemes do not decrease the
objective function monotonically. Therefore, convergence of
the objective function is a consequence of fixed-point con-
vergence but not the cause of it.

For a nonexpansive operator T : X → X, define
Fix(T ) = {x ∈ X : x = T (x)}. We assume that Fix(T ) 6=
∅. Let λk ∈ (0, 1) and choose x0 arbitrarily from X. Then
the S-KM iteration of T with data generated from P at time
k is

xk = xk−1 + λk−1

(
T
(
xk−1

)
− xk−1 + εk−1

)
= Tλk−1

(xk−1) + λk−1εk−1,

where εk−1 is caused by the randomness of samples.
The convergence of the fixed point iteration with a non-

expansive operator T fails in general. The S-KM algorithm
thus replaces T with an averaged version Tλ to ensure con-
vergence, as an averaged nonexpansive operator has the con-
traction property (Davis and Yin 2016). It can be shown that
the fixed point of a nonexpansive operator is also the fixed
point of its corresponded averaged nonexpansive operator.
In practice, the operator T in Algorithm 1 depends on the
stochastic splitting method used. For example, when using
stochastic proximal gradient algorithm to solve problem (4),
T = Jγ∂g ◦ (I − γ∂f), where Jγ∂g = (I + γ∂g)−1, I
is an identity operator, γ is a step size. When g is a closed,
convex, and proper function, Jγ∂g is equivalent to the well-
known proximal operator

proxγg(x) = arg min
y∈X

(g(y) +
1

2γ
‖y − x‖22),

with ‖·‖2 denoting the L2 norm on X, and, the correspond-
ing algorithm is known as proximal point approach (PPA).
More examples are deferred to Table 1.

S-KM Performance with Non-i.i.d. Data
We next study the properties of S-KM iteration when us-
ing non-i.i.d. training samples. We show that, under some
mild conditions, S-KM iterates concentrate around the true
value. These general results are fundamental and cover many
splitting algorithms as special cases. Because splitting algo-
rithms are driven by fixed-point operators, it becomes natu-
ral to perform the analysis in terms of Fixed Point Residual
(FPR) (Davis and Yin 2016), defined as

e2
k = ‖Txk − xk‖2,

which are related to differences between successive KM it-
erates through xk+1 − xk = λk(T (xk)− xk). In first-order
algorithms, with the assumption that, εk = 0, ∀k, FPR typ-
ically relates to the gradient of the objective. For example,
in the unite-step gradient descent algorithms xk = xk−1 −
∇f

(
xk−1

)
, and so the FPR is given by ‖∇f

(
xk−1

)
‖2.

Thus, FPR convergence naturally implies the convergence
of ‖xk+1 − x∗‖2.

We proceed by establishing the properties of the ergodic
FPR. We first, through Theorem 3, provide the following
boundedness on the expectation of the norm of the approx-
imation error due to randomness of sampling from P rather
than P .
Assumption 2 X is compact and has finite radius r: specif-
ically, for any x, x∗ ∈ X, ‖x− x∗‖ ≤ r <∞.

Assumption 2 is the same as the one for online algorithms
with correlated data (Agarwal and Duchi 2012; Sun, Sun,
and Yin 2018) and common in the online learning, optimiza-
tion literature.
Theorem 3 (Boundedness on approximation error) Under
Assumption 2, the norm of the difference between the true
function T (xk; ξ) − xk with ξ drawing from P and its ap-
proximation T (xk; ξk+1)−xk with ξk+1 drawing from P̂K is
uniformly bounded in expectation. Specifically, E‖εk‖ ≤ ∆,
where

∆ =

(
8r2C(

∑∞
k=1 φ(k))

K2

) 1
2

Γ

(
1

2

)
and Γ(z) =

∫∞
0
xz−1 exp(−x)dx is the gamma function.

Theorem 3 suggests that the approximation becomes close
to the true one when K increases. However, the noisy can
be large when K is small. This is because we are consider-
ing drifting distributions and, in the worse case, P k can be
quit far away from P. Therefore, both Theorem 3 and MR
approach indicate that underestimating the mixing time can
potentially backfires.
Theorem 4 (Bound of fixed point residual) Let ēK =

ΛK
−1∑K

k=1 λkek, with ek = Txk − xk, ΛK =
∑K
k=1 λk,

and λk ∈ (0, 1). Under Assumption 2,

E‖ēK‖ ≤
2r(1 + φ(1)) + 2

∑K
k=1 E‖λkεk‖

ΛK
.
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Algorithm Operator identity Subgradient identity
SGD (g = 0) I − γ∇f xk+1 = xk − γk∇f(xk)
PPA (g = 0) (I + γ∂f)−1 xk+1 = proxγkf (xk)

PGD (I + γ∂g)−1(I − γ∇f) xk+1 = proxγkg(I − γk∇f(xk))

DRS (I + γ∂f)
−1
[
(I + γ∂g)

−1
(I − γ∂f) + γ∂f

]
xk+1 = 1

2x
k + 1

2 reflγk∂f ◦ reflγk∂g
(
xk
)

Relaxed PRS (I + γ∂f)
−1

(I − λ∂g) (I + λ∂g)
−1

(I − λ∂f) xk+1 = (1− λk)xk + λk reflγk∂f ◦ reflγk∂g
(
xk
)

Table 1: Overview of several first-order algorithms

When the data is i.i.d. following the distribution P, then
φ(1) = 0. The result in Theorem 4 consequently reduces
to that for S-KM iterations with i.i.d. samples. To establish
an upper bound for S-KM iterates around the true value, we
introduce the following two assumptions.

Assumption 3 There is a non-increasing sequence κ(k)
such that, if xk and xk+1 are successive S-KM iterates, then
E{‖xk+1 − xk‖ | Ft} ≤ κ(k).

Assumption 4 For a sequence of samples ξ1, . . . , ξK , the S-
KM iteration produces a sequence of iterates x1, . . . , xK−1

such that
∑K−1
k=0 ‖Tλk

(xk; ξk+1) − Tλk
(x∗; ξk+1)‖ ≤

RK−1.

Assumption 3 ensures that S-KM iterates are approxi-
mately stable. A similar condition for the non-i.i.d. setting
is also given in Agarwal and Duchi (2012). Assumption 4
allows us to quantify the impact of our assumptions on the
performance of some specific instances of T .

Theorem 5 (Deviation bound for iterates) Under Assump-
tions 2, 3, and 4, for any τ > 0,

E[‖
K∑
k=1

(xk − x∗)‖] ≤ (1 + φ(1))E[RK−1]

+ 2(K − τ)r
√
φ(τ + 1) + τ(

K−τ∑
k=1

E[κ(k − 1)] + r).

In the case where τ = 0, φ(1) = 0 gives a bound for the
i.i.d. setting.

Application
There are many works that focus on using stochastic op-
erator splitting algorithms to solve structured optimization
problems (Xu 2020; Rosasco, Villa, and Vũ 2019; Yun,
Lozano, and Yang 2020; Ouyang et al. 2013). We next
present several examples of nonexpansive operators that
cover widely used algorithms based on the computation of
proximal and gradient operators. For simplicity, we assume
that step size γ = γk for all k .

Stochastic PGD Suppose that the function f in problem
(4) is convex and differentiable with a (1/β)-Lipschitz con-
tinuous gradient for some β > 0 and that g : X→ R∪ {∞}
is a proper, closed, lower semi-continuous convex function.
Solving problem (4) is equivalent to finding x ∈ X such that
0 ∈ ∂f(x)+∂g(x). Stochastic PGD (S-PGD), due to its sim-
plicity, efficiency, and empirical performance, is commonly

used to solve this problem. For all k ≥ 0 and γ ∈ (0, 2β),
the iteration step at time k can be written as

xk+1 = proxγ∂g(x
k − γ∇f(xk; ξk+1) + εf,k) + εg,k.

We will show that the S-PGD algorithm is a special case
of the S-KM iteration. Let T1 = Jγ∂g and T2 = (I−γ∇f).
Then TPGD = T1 ◦ T2. Since T1 is (1/2)-averaged and T2 is
(γ/(2β))-averaged, it follows that TPGD is 2β/(4β − γ))-
averaged (Bauschke and Combettes 2011). Since ∇f is
single-valued, we have that, for all k ∈ N and x ∈ X,

x ∈ (∇f + ∂g)−1(0)⇔ x− γ∇f(x) ∈ x+ γ∂g(x)

⇔ x ∈ Fix(T1 ◦ T2).

The results of Theorem 3-5 then hold. The following corol-
lary further establishes a generalized error bound for regret
for S-PGD.

Corollary 1 (Generalized error bound for regret: S-PGD)
Under Assumption 2 and let x̄ = K−1

∑K
k=1 x

k and τ =
infk τk, with τk = λk(1− λk), we have

E {f (x̄) + g (x̄)− [f(x∗) + g(x∗)]}

≤ r2

2Kγ
+

(
1

β
− 1

γ

)(
4r2 +

8r2πC(
∑∞
k=1 φ(k))

Kτ

)
.

Stochastic Generalized DRS A line search can be used
to guarantee the convergence of the S-PGD algorithm if the
Lipschitz constant of∇f is not known. Finding an appropri-
ate step size, however, presents another expensive practical
challenge. We introduce the Stochastic generalized Douglas-
Rachford Splitting (S-gDRS) algorithm to avoid choosing
the step size altogether. The results given in Theorem 3–5
hold by specifying T in the S-KM iteration as

TDRS =
1

2
(reflγ∂f ◦ reflγ∂g + I),

where reflγ∂f and reflγ∂g are reflection operators.

Definition 3 Given any operator T : X → X, let JγT
denote the operator (I + γT )−1. The operator reflγT =
2JγT − I is called the reflection operator of T .

Because reflection operators are nonexpansive and
the composition of nonexpansive operators is nonex-
pansive (Bauschke and Combettes 2011), we have that
reflγ∂f ◦ reflγ∂g is a nonexpansive operator. Therefore, TDRS
is (1/2)-averaged, indicating that the S-gDRS algorithm is a
special case of the S-KM algorithm. In addition, the defi-
nition of the reflection operator indicates that the step size
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Figure 1: Performance of Algorithm 1 and the other two methods: SP-m and MR-s, the x axis is the iteration, the y axis from
the left to right are ‖L(x̄)− x∗‖2, ‖T (x̄t, ξt)− x̄t‖2 and ‖x̄t − x∗‖2.

γ > 0 will not affect the convergence of TDRS. This is an ad-
vantage over TPGD, which instead requires that γ ∈ (0, 2β).
The S-gDRS algorithm (with λk = 1, ∀k) is a special case of
the relaxed Peaceman–Rachford Splitting (PRS) algorithm
with the iteration,

xk+1 = (1− λk)xk + λk · reflγ∂f ◦ reflγ∂g
(
xk
)

taking λk = 1/2, ∀k. A similar result holds for stochastic re-
laxed PRS (S-rPRS). We also give the error bound for regret
for S-rPRS.

Corollary 2 (Generalized error bound for regret: S-rPRS)
Under Assumption 2, Let x̄f = K−1

∑K
k=1 x

f
k and x̄g =

K−1
∑K
k=1 x

g
k with the auxiliary points xgk = proxγg(x

k)+

εg and xfk = proxγf
(
reflγ∂g(x

k)
)

+ εf . Denote τ =
infk τk, with τk = λk(1− λk). We have that,

E[f(x̄f ; ξ) + g(x̄g; ξ)− (f(x∗; ξ) + g(x∗; ξ))]

≤ r2

4γλK
+

2(λ− 1)r2

γλ2
+

4r2π

γλτ

(
1− 1

λ

)
C(
∑∞
k=1 φ(k))

K
.

Numerical Experiments We present some numerical re-
sults in our setting where samples are generated from an au-
toregressive process. We show that the iteration procedure
in Algorithm 1 uses fewer samples and yields better per-
formance than does the multiple replication approach. We
also demonstrate the advantage of using each sample of one
trajectory in each iteration rather than at regular intervals:
although the dependency of data is weakened by using sam-
ples at regular intervals, the performance of iteration has not
been improved. Our data-generating mechanism resembles
that in Duchi et al. (2012). Let A be a subdiagonal matrix
with entries Ai,i−1

i.i.d.∼ U[0.8, 0.99]. We uniformly draw a
sparse vector x ∈ R1000, specifically, with the first non-zero
50 elements of x. The data {(ξ1

k, ξ
2
k)}k∈N is generated ac-

cording to the autoregressive process

ξ1
k = Aξ1

k−1 + e1Wk, ξ2
k =

〈
x, ξ1

k

〉
+ Ek,

where e1 is the first standard basis vector, the Wks are i.i.d.
N(0, 1) random variables, and the Eks are i.i.d. biexponen-
tial random variables with variances of one. We aim to solve

the lasso-type problem

x̂∗K = argmin
x∈Rd

{
1

K

K∑
k=1

‖
〈
x, ξ1

k

〉
− ξ2

k‖2 + λ‖x‖1

}
,

where λ is a pre-set tuning parameter, using PGD. We gen-
erate samples from the above autoregressive model in three
ways: (SP) samples are the elements of a single trajectory
and are used immediately; (SP-m) samples are generated
at every m-th element of the same trajectory up to get K
samples (e.g., with K = 4 and m = 3, we keep samples
at k = 1, 4, 7, 10); and, (MR-s) samples are generated via
multiple replication method as the s-th elements of inde-
pendent trajectories starting from the same state. And, we
need simulateK trajectories in total. By not using every ele-
ment, SP-m weakens dependencies between generated sam-
ples. SP and MR are closely resemble the sampling tech-
nique in Duchi et al. (2012) and Sun, Sun, and Yin (2018).
Given sample size, K = 1000, we consider m = 2, 3 for
SP-m and s = 4, 6, 8, 10 for MR-s.

Figure 1 illustrates our numerical results and the conver-
gence behavior of the three methods that is evaluated by
three criteria: regret function L(x̄) − L(x∗), FPR and the
difference between iterate and true value. As expected, the
multiple replication approach shows poor performance for
small s as the true mixing time is underestimated: MR-4 has
the worst performance under the criteria. Moreover, it be-
comes clear that using each sample sequentially (SP) rather
than attempting to draw weak dependent samples at each
iteration from the same trajectory (SP-m) is a more compu-
tationally efficient approach.

Conclusion
In this paper, We show that SAA retains its asymptotic con-
sistency and out-of-sample performance when data is not in-
dependent and can be solved efficiently in practice, we also
evaluate the performance of a class of first-order algorithms
and give several examples illustrating the usefulness of our
analyses. We provide generalized error bounds for iterates
around the true value that show the impact of dependence
of the training sample on the convergence result. It may
be possible to sharpen these results using monotone oper-
ator properties, such as the contraction property of firmly-
nonexpansive operators. We leave these investigations to fu-
ture work.
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