
Encoding Multi-Valued Decision Diagram Constraints as Binary Constraint Trees

Ruiwei Wang and Roland H.C. Yap

School of Computing, National University of Singapore, 13 Computing Drive, 117417, Singapore
{ruiwei,ryap}@comp.nus.edu.sg

Abstract

Ordered Multi-valued Decision Diagram (MDD) is a compact
representation used to model various constraints, such as reg-
ular constraints and table constraints. It can be particularly
useful for representing ad-hoc problem specific constraints.
Many algorithms have been proposed to enforce General-
ized Arc Consistency (GAC) on MDD constraints. In this pa-
per, we introduce a new compact representation called Binary
Constraint Tree (BCT). We propose tree binary encodings to
transform any MDD constraint into a BCT constraint. We also
present a specialized algorithm enforcing GAC on the BCT
constraint resulting from a MDD constraint. Experimental re-
sults on a large set of benchmarks show that the BCT GAC
algorithm can significantly outperform state-of-the-art MDD
as well as table GAC algorithms.

Introduction
Many combinatorial problems in real life can be modelled
as Constraint Satisfaction Problems (CSPs). Especially, the
problems requiring specific constraints which do not fit well
with existing known constraints can be modelled with ad-
hoc constraints, such as Ordered Multi-valued Decision Di-
agram (MDD) constraints (Cheng and Yap 2010). Some
ad-hoc constraints have been widely studied. For example,
many Generalized Arc Consistency (GAC) algorithms have
been proposed as the propagation algorithm to handle MDD
constraints and (non-binary) table constraints (Yap, Xia, and
Wang 2020). In this paper, we present a new representation
for MDDs, showing how to transform any MDD constraint
into Binary Constraint Trees (BCTs) and design MDD GAC
propagators using BCTs.

MDD (Srinivasan et al. 1990) is a compact representation
which can be exponentially smaller than its corresponding
table representation. MDD constraints have been shown to
be useful in modelling other constraints such as regular con-
straints (Pesant 2004), table constraints and problem spe-
cific constraints (Cheng and Yap 2006, 2010). Intuitively,
GAC propagators for MDD constraints have the potential to
outperform those of table constraints as they exploit struc-
ture inside the constraint. However, prior works (Verhaeghe,

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Lecoutre, and Schaus 2018, 2019) show that table GAC al-
gorithms using bitwise operations, e.g. the CT algorithm
(Demeulenaere et al. 2016), outperform MDD GAC algo-
rithms on a large set of benchmarks. As such an open ques-
tion is whether MDD GAC algorithms can overall outper-
form the CT algorithm. We answer this, showing solving ta-
ble constraints as MDDs encoded with BCTs outperforms
the state-of-the-art table GAC algorithm CT.

Rather than using GAC for non-binary constraints, we can
transform the constraints into binary constraints and use Arc
Consistency (AC). Many binary encodings have been pro-
posed to encode table constraints as binary constraints, such
as Dual/Double Encoding (Dechter and Pearl 1989; Stergiou
and Walsh 1999), Hidden Variable Encoding (HVE) (Rossi,
Petrie, and Dhar 1990) and Bipartite Encoding (BE) (Wang
and Yap 2020). AC on the encoded instances can achieve
GAC or higher-order consistencies on the original CSPs
(Bessiere, Stergiou, and Walsh 2008). Recently, it has been
shown that specialized AC propagators can work very well
on binary encoding instances (Wang and Yap 2019, 2020). A
question though is whether the binary encoding approach is
able to give compact representations for a MDD constraint,
We demonstrate a novel binary encoding which is at least as
compact as the MDD it encodes.

In this paper, we introduce a compact representation
called BCT which is a set of binary constraints with a tree
structure. BCTs can be exponentially smaller than MDDs
when representing some constraints. We show that MDD
constraints can be transformed into BCT constraints by us-
ing Tree Binary Encodings (TBEs). We first propose a ba-
sic encoding, the Direct Tree Binary Encoding (DTBE) to
encode any MDD constraint as a BCT constraint with the
same size as the original MDD constraint. We then give
four reduction rules to reduce a BCT constraint by elimi-
nating, merging and reconstructing variables. We propose a
specialized propagator to enforce GAC on MDD constraints
encoded as BCT constraints taking advantage of our new
representation. Experimental results show that the reduction
rules significantly reduce the size of BCTs making the GAC
propagator on BCT constraints much faster than the state-
of-the-art MDD GAC propagator CD (Verhaeghe, Lecoutre,
and Schaus 2018) and also the table GAC propagator CT.

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

3850

Background
A CSP P is a pair (X,C) where X is a set of vari-
ables, D(xi) is the domain of a variable xi, and C is
a set of constraints. A literal of a variable x is a vari-
able value assignment (x, a). A tuple over a set of vari-
ables {xi1 , xi2 , . . . , xir} is denoted by a set of literals
{(xi1 , a1), (xi2 , a2), . . . , (xir , ar)}. Each constraint cj has
a constraint scope scp(cj) ⊆ X and a relation rel(cj) de-
fined by a set of tuples over scp(cj). NC(x) = {c ∈
C|x ∈ scp(c)} is a set of the constraints including a vari-
able x. N(x) = ∪c∈NC(x)scp(c) and N−(x) = N(x)\{x}
denote the neighbors of x. The arity of a constraint c is
the number of variables in its scope, i.e. |scp(c)|. A con-
straint c is a binary constraint if |scp(c)| = 2. A CSP P
is called a binary CSP if the largest constraint arity is 2.
A binary CSP is normalized if all constraints have different
scopes. Given any set of variables V and literals τ , we use
τ [V] = {(x, a) ∈ τ |x ∈ V } to denote a subset of τ , while
T [V] = {τ [V]|τ ∈ T} is the projection of tuples T on V .
A tuple τ over X is a solution of P if τ [scp(c)] ∈ rel(c)
for all constraints c ∈ C and a ∈ D(x) for all (x, a) ∈ τ .
sol(X,C) (or sol(P)) denotes all solutions of P .

A support of a value a ∈ D(x) on a constraint c is a
tuple τ ∈ rel(c) such that (x, a) ∈ τ and b ∈ D(y) for
all (y, b) ∈ τ . A variable x ∈ scp(c) is Generalized Arc
Consistent (GAC) on c if a has a support on c for all a ∈
D(x). c is GAC if all variables in scp(c) are GAC on c. A
CSP (X,C) is GAC if every constraint in C is GAC. For
binary CSPs, GAC is also called Arc Consistency (AC).

An Ordered Multi-valued Decision Diagram (MDD)
(Cheng and Yap 2010) with respect to an order O over a
set of r variables (Oi denotes the i-th variable) is a la-
belled layered directed acyclic graph denoted by the triple,
(∪r+1

i=1Li,∪ri=1Ei, label), where:

• Li is a set of nodes at the ith layer. L1 only includes the
root node and Lr+1 the terminal node;

• Ei is a set of directed edges e pointing from a node
out(e) ∈ Li to another node in(e) ∈ Li+1, while
label(e) maps edge e to a value in D(Oi);

• there is at most 1 edge e ∈ Ei such that out(e) = nj and
label(e) = l for each value l ∈ D(Oi) and node nj ∈ Li;

• for each node (edge), there is at least one path from root
to the terminal node including the node (edge).

We use mdd(c∗, O) to denote a MDD representing a con-
straint c∗ w.r.t. an order O over scp(c∗), where every tuple
τ in rel(c∗) corresponds to a path from root to the terminal.
Moreover, MDDs can be reduced by merging distinct nodes,
where two nodes are distinct if for each edge from one of two
nodes, there is an edge from the other node such that two
edges have the same label and point to the same node. All
MDDs considered in this paper are ordered. In addition, we
use the pReduce (Perez and Régin 2015) algorithm to merge
all distinct nodes in a MDD but do not require removing any
redundant nodes nj in Li such that there are |D(Oi)| edges
pointing from nj to the same node.1

1Many MDD GAC propagators, such as MDD4R (Perez and

n1

n3n2

n5n4

n7n6

tt

x1

x2

x3

x4

e2

e3

e8

e10

e1

e4 e5

e6 e7

e9 e11

(a) MDD

y1

h1

y2

h2

y3

h3

y4

h4

y5

x1

x2

x3

x4

cy1

cy+1
co1

cy2

cy+2
co2

cy3

cy+3
co3

cy4

cy+4
co4

(b) DTBE

Figure 1: A MDD and the corresponding DTBE where the
dashed (and solid) lines in the MDD denote value 0 (and 1).

Example 1. Figure 1a is a MDD representing a sequence
constraint (Beldiceanu and Contejean 1994) over 4 variables
X = {x1, . . . , x4} with variable domain is {0, 1} and vari-
able order is from x1 to x4. The meaning of this constraint
is to require that for any 2 consecutive variables, the value 1
is assigned to at most 1 variable.

Encoding MDD Constraints as BCTs
It is well-known that AC on a set of binary constraints hav-
ing a tree structure is sufficient to achieve global consistency.
We exploit this by observing that we can enforce GAC on a
constraint by encoding it into a set of binary constraints with
a tree structure and maintain AC on these binary constraints.
In this section, we propose a transformation reducing con-
straints in this fashion.
Definition 1. A Binary Constraint Tree (BCT) is a normal-
ized binary CSP whose constraint graph is a tree. A BCT
constraint c is a pair (V, P) such that P = (X,C) is a BCT
and scp(c) = V and V ⊆ X and rel(c) = sol(X,C)[V].
A tree binary encoding (TBE) of a constraint c∗ is a BCT
P = (X,C) such that (scp(c∗), P) has the same constraint
relations as c∗ where the variables in scp(c∗) and X\scp(c∗)
are called the original and hidden variables, respectively.

Given any TBE P of a constraint c∗, the constraint graph
of P is a tree, thus, if P is AC, every literal of a variable in X
is included by at least a solution of P , giving the following.
Proposition 1. Enforcing AC on P achieves GAC on c∗.

Direct Tree Binary Encoding
We now introduce a specific TBE, DTBE, for MDD con-
straints which directly encodes the nodes and edges in each
layer of the MDDs as hidden variables, and then uses binary
constraints to connect the edges with the nodes and labels.
Its details are given in the following definition.
Definition 2. A direct tree binary encoding (DTBE) of a
constraint c∗ w.r.t. a MDD mdd(c∗, O) is a BCT dtbe(c∗)=
(Y ∪H ∪ scp(c∗), {co1, c

y
1, c

y+
1 , ..., cor, c

y
r , c

y+
r }) where

Régin 2014) and CD, also do not require removing redundant
nodes.

3851

• r = |scp(c∗)| and O is an order over scp(c∗);
• Y = {y1, ..., yr+1}, H = {h1, ..., hr} and scp(coi) =

{Oi, hi}, scp(cy+i) = {yi+1, hi}, scp(cyi) = {yi, hi};
• D(yi) is the set of nodes in the ith layer of mdd(c∗, O);
• D(hi) is the set of edges which point from the nodes in

the ith layer of mdd(c∗, O) to the next layer;
• rel(cyi) = {{(hi, a), (yi, b)}|a ∈ D(hi), b = out(a)};
• rel(coi) = {{(hi, a), (Oi, l)}|a ∈ D(hi), l = label(a)};
• rel(cy+i) = {{(hi, a), (yi+1, b)}|a ∈ D(hi), b = in(a)}.

Figure 1b illustrates the DTBE of a constraint c∗ w.r.t.
the MDD given in Figure 1a. The MDD has 4 (and 5)
layers of edges (nodes) corresponding to the hidden vari-
ables H = {h1, . . . , h4} (and Y = {y1, . . . , y5}). The
domains of the hidden variables are the set of the nodes
or edges at each layer of the MDD, e.g. D(y1) = {n1}
is the set of the nodes in the first layer of the MDD and
D(h1) = {e1, e2} is the set of the edges which point
from n1. Every node and edge in Figure 1b denotes a
variable and binary constraint respectively. The constraint
relations can be directly constructed using definition 2, e.g.
rel(co1)={ {(h1, e1), (x1, 0)}, {(h1, e2), (x1, 1)} },
rel(cy1)={ {(h1, e1), (y1, n1)}, {(h1, e2), (y1, n1)} },
rel(cy+1)={ {(h1, e1), (y2, n2)}, {(h1, e2), (y2, n3)} }.

We can see that the constraint graph is a tree and every
solution of dtbe(c∗) denotes a path in the MDD which
corresponds to a tuple in rel(c∗), thus, dtbe(c∗) is a TBE of
c∗. We also call (scp(c∗), dtbe(c∗)) as a DTBE constraint.

Example 2. The following constraint over the variables
X = {x1, · · · , xr} with domains D = {1, · · · , r} and
r > 2 expresses the relation

∨r
i=1

∨r
j=i+1(xi = xj). The

constraint in this example is used to show that BCTs can be
very expressive, exponentially smaller than MDDs on repre-
senting some constraints. This constraint expresses the nega-
tion of the alldifferent constraint. The size of the MDD rep-
resenting the constraint is exponential in r.

The constraint can be represented as a BCT (V,C) where
V = X∪{h} and C = {c1, · · · , cr} andD(h) = {ajkl|1 ≤
j, k, l ≤ r, j ̸= k} and for 1 ≤ i ≤ r, scp(ci) = {xi, h} and
rel(ci) = { {(h, ajkl), (xi, a)} | j ̸= i, k ̸= i, l ∈ D, a ∈
D} ∪ { {(h, ajkl), (xi, a)} | i ∈ {j, k}, a = l, a ∈ D}.
For any tuple τ over X , τ is in the constraint relation, i.e.
there exists variables xi, xj ∈ X and a value a ∈ D such
that {(xi, a), (xj , a)} ⊂ τ , if and only if τ ∪ {(h, aija)} is
a solution of (V,C). So, BCT can be exponentially smaller
than MDD when representing this constraint.

TBE Reduction Rules
After encoding a MDD constraint c∗ into a BCT with the
DTBE encoding, we can maintain GAC on c∗ by enforcing
AC on the BCT (Proposition 1). Our experimental results
(see Figure 4) show that the GAC algorithm on DTBE con-
straints (given in Section 8) is competitive with the state-of-
the-art MDD GAC algorithm CD (Verhaeghe, Lecoutre, and
Schaus 2018). This shows that DTBE is already good as the
MDD representation. Next, we show how to make the rep-
resentation more compact. We propose four reduction rules
to reduce any TBE P1 = (X1, C1) of a constraint c∗.

y2

h1

h2

y3

h3

y4

h4

x1

x2

x3

x4

cy+1
co1

cy2

cy+2
co2

cy3

cy+3
co3

cy4 co4

(a) P2a: Rule 1

x1

h2

h3

x2

x3

x4

cn1

cn2

co2

co3

cn3

(b) P2b: Rule 2

Figure 2: Applying Rules 1 & 2 for reducing the DTBE
given in Figure 1b, where each rectangle and line respec-
tively denote a variable and a constraint.

Two Hidden Variable Elimination Rules
The first rule is to eliminate any hidden variable in P1 which
is only included by one constraint c in C1. Assume scp(c) =
{x, y} and let R1(P1, x) = (X1 \{x}, C1 \{c}) be the CSP
generated by eliminating x. Since c is removed, the domain
of y is reconstructed as {b ∈ D(y)|(y, b) ∈ rel(ci)[{y}]}. A
tuple over X1 \ {x} is a solution of R1(P1, x) iff it can be
extended to a solution of P1, so R1(P1, x) is a TBE of c∗.
Lemma 1 (Rule 1). R1(P1, x) is a TBE of c∗.

Next, we present the second rule that eliminates any hid-
den variable x that is only included by 2 constraints ci, cj ∈
C1. Assume scp(ci) = {x, y} and scp(cj) = {x, z}. Let
R2(P1, x) = (X1 \ {x}, C ∪ {c′}) be the CSP generated by
eliminating x where C = C1 \{ci, cj} and scp(c′) = {y, z}
and rel(c′) = sol({x, y, z}, {ci, cj})[{y, z}]. Similarly, a
tuple over X1 \ {x} is a solution of R2(P1, x) iff it can be
extended to a solution of P1, thus, R2(P1, x) is a TBE of c∗.
Lemma 2 (Rule 2). R2(P1, x) is a TBE of c∗.

For the example DTBE P given in Figure 1b, two vari-
ables y1, y5 can be eliminated with Rule 1. The TBE
P2a = R1(R1(P, y1), y5) generated by applying Rule 1
is given in Figure 2a. Then five variables h1, h4, y2, y3, y4
in Figure 2a can be eliminated by Rule 2. The reduced
TBE P2b = R2(R2(R2(R2(R2(P2a, h1), h4), y2), y4), y3)
is shown in Figure 2b, where cn1 , c

n
2 , c

n
3 are the new con-

straints generated. The relations of the new constraints can
be directly constructed by Rule 2, e.g. rel(cn3)={< e3, e6 >,
< e4, e7 >, < e4, e8 >, < e5, e7 >, < e5, e8 >} where
< ei, ej > denotes the tuple {(h2, ei), (h3, ej)}.

A Hidden Variable Merging Rule
The third rule merges any 2 hidden variables x, y which are
constrained by a constraint ci ∈ C1, i.e. scp(ci) = {x, y},
as a new variable m such that D(m) = rel(ci), while ev-
ery constraint cj ∈ C1 between x (or y) and another vari-
able z /∈ {x, y} is replaced with a new constraint c′j where
scp(c′j) = {z,m} and rel(c′j) = {{(z, a), (m, τ)} | τ ∈
rel(ci), τ ∪ {(z, a)} is in sol({x, y, z}, {ci, cj})}. We can
get a new CSP R3(P1, ci) = (X ∪ {m}, C ∪ C ′) where
X = X1\{x, y} and C = {c ∈ C1|x /∈ scp(c), y /∈ scp(c)}

3852

and C ′ = {c′j |cj ∈ C1, cj /∈ C, cj ̸= ci}. For each tuple τ
over X1, τ is a solution of P1 iff τ [X] ∪ {(m, τ [{x, y}])} is
a solution of R3(P1, ci). So R3(P1, ci) is a TBE of c∗.
Lemma 3 (Rule 3). R3(P1, ci) is a TBE of c∗.

Rule 3 encodes binary constraints as hidden variables by
regarding constraint relations as variable domains, where
each value in the domain corresponds to a tuple in the rela-
tion. We then present a rule to reconstruct hidden variables.

A Hidden Variable Reconstruction Rule
We first introduce c-table (Katsirelos and Walsh 2007) be-
fore giving the fourth rule. A c-tuple τ over a set of variables
V is a set of literals such that for each literal (x, a) ∈ τ ,
the variable x is included in V . We can see that a tuple is
a special case of c-tuples. Every c-tuple τ over variables V
represents a set of tuples denoted as T (τ) = {τ ′ ⊆ τ |τ ′ is
a tuple over V }. A c-table is a set of c-tuples. A c-table rel1
represents a set of tuples rel2 if the c-tuples in rel1 represent
the tuples in rel2, i.e. ∪τ∈rel1T (τ) = rel2

The fourth rule reconstructs the domain of any hidden
variable with its conditional c-tables defined as follows.
Definition 3 (CC-T). Given a normalized binary CSP P and
a variable x in P , the conditional table of x is a set of tuples
ct(P, x) = sol(N(x), NC(x))[N−(x)]. A conditional c-
table (CC-T) of x is a c-table representing ct(P, x).

For any variable x in P1, the domain of x defines a CC-
T cct(P1, x) = {ta | a ∈ D(x)} where ta = { (y, b) | y ∈
scp(c), c ∈ NC(x), {(y, b), (x, a)} ∈ rel(c) } is a c-tuple.
For any constraint in NC(x), ta includes all literals (y, b)
such that {(y, b), (x, a)} ∈ rel(c). Therefore, for each solu-
tion τ of P1, if a literal (x, a) is in τ , then the tuple τ [N−(x)]
is a subset of ta, otherwise there is a constraint c ∈ NC(x)
such that τ [scp(c)] /∈ rel(c).

For example, cct(P2b, h3) is a CC-T including 3 c-tuples
te6 , te7 , te8 , where te6 = {(h2, e3), (x3, 0), (x4, 0), (x4, 1)},
te7 = {(h2, e4), (h2, e5), (x3, 0), (x4, 0), (x4, 1)}, and te8

= {(h2, e4), (h2, e5), (x3, 1), (x4, 0)}. We can see that for
any solution τ of P2b including the literal (h3, e6), the tuple
τ [{h2, x3, x4}] is a subset of the c-tuple te6 .

Conversely, given any CC-T rel of x, we can reconstruct
x into a new variable x′ such that D(x′) = rel and replace
each constraint c between x and another variable y with a
new binary constraint c′ such that scp(c′) = {x′, y} and
rel(c′) = {{(x′, τ ′), (y, a)} | τ ′ ∈ D(x′), (y, a) ∈ τ ′}.
Correspondingly, we can get a new CSP R4(P1, x, rel) =
(X ∪ {x′}, C ∪C ′) where X = X1 \ {x} and C ′ = {c′|c ∈
C1, x ∈ scp(c)} and C = C1 \ NC(x). The following
lemma shows that R4(P1, x, rel) is also a TBE.
Lemma 4 (Rule 4). R4(P1, x, rel) is a TBE of c∗.

Proof. P1 is a BCT and Rule 4 keeps the structure of P1, i.e.
the constraint graph of R4(P1, x, rel) is connected and the
number of constraints (edges) is equal to that of variables
(nodes) minus 1. Therefore, R4(P1, x, rel) is also a BCT.
Given any tuple τ ∈ sol(X,C):

• If there is a c-tuple τ ′ ∈ D(x′) such that the tu-
ple τ ∪ {(x′, τ ′)} is a solution of R4(P1, x, rel), i.e.

0 1x1

a1
a2

m1
0
1
x2

a3
a4

m2
0
1
x3

0 1x4

(a) P3a: Rule 4 on P2b

0 1x1

a5
a6

a7
m3

0
1
x2

0
1

x3

0 1x4

(b) P3b: Rule 3 on P3a

Figure 3: Applying Rules 3 & 4 for reducing the TBE given
in Figure 2b, where every rectangle denotes a variable and
the set of values in the rectangle is the domain of the vari-
able, and each line between 2 values in two rectangles de-
notes a tuple in the relation of the constraint between the 2
variables corresponding to the two rectangles.

the tuple τ is in sol(R4(P1, x, rel))[X], then the tuple
τ [scp(c)] ∪ {(x′, τ ′)} is in rel(c′) and τ [scp(c)] ⊆ τ ′

for all c ∈ NC(x), thus, τ [N−(x)] ⊆ τ ′. At the
same time, D(x′) is a c-table representing ct(P1, x),
thus, τ [N−(x)] is in ct(P1, x). ct(P1, x) is equal to
sol(N(x), NC(x))[N−(x)], so τ is in sol(P1)[X].

• Conversely, if τ is in sol(P1)[X], then τ [N−(x)] is in
ct(P1, x) and there is τ ′ ∈ D(x′) such that τ [N−(x)] ⊆
τ ′, sinceD(x′) is a c-table representing ct(P1, x). Corre-
spondingly, for any c ∈ NC(x), τ [scp(c)]∪{(x′, τ ′)} is
in rel(c′), since τ [scp(c)] ⊆ τ ′, so τ∪{(x′, τ ′)} is a solu-
tion of R4(P1, x, rel) and τ is in sol(R4(P1, x, rel))[X].

So we can get that sol(R4(P1, x, rel))[scp(c
∗)] is equal

to sol(P1)[scp(c
∗)] and rel(c∗), which means the BCT

R4(P1, x, rel) is a TBE of c∗.

For the TBE P2b given in Figure 2b, the hidden vari-
able h2 can be reconstructed by Rule 4 as a new hid-
den variable m1 with the CC-T rel2 = {a1, a2}, where
a1 = {(x1, 0), (x2, 1), (h3, e6)} and a2 = {(x1, 0), (x1, 1),
(x2, 0), (h3, e7), (h3, e8)}, and then the hidden variable
h3 can be reconstructed as a new hidden variables m2

with the CC-T rel3={a3, a4} where a3 = {(x3, 0), (x4, 0),
(x4, 1), (m1, a1), (m1, a2)} and a4 = {(x3, 1), (x4, 0),
(m1, a2)}. We show an example of Rule 4 in Figure 3a
which gives TBE P3a = R4(R4(P2b, h2, rel2), h3, rel3).
The constraint relations are reconstructed based on the CC-
Ts, e.g. the relation of the constraint cn4 between m1 and
m2 is equal to {{(m1, a1), (m2, a3)}, {(m1, a2), (m2, a3)},
{(m1, a2), (m2, a4)}}, which is based on that (m1, a1) ∈
a3, (m1, a2) ∈ a3 and (m1, a2) ∈ a3.

We can also merge the hidden variables m1 and m2 in P3a

as a new hidden variable m3 with Rule 3. An example us-
ing Rule 4 is Figure 3b giving the TBE P3b = R3(P3a, c

n
4),

where each value in D(m3) = {a5, a6, a7} corresponds to
a tuple in rel(cn4). For example, a5 corresponds to the tu-
ple {(m1, a1), (m2, a3)} and the values connecting to a5 in
Figure 3b also connect to a1 or a3 in Figure 3a.

3853

Evaluating TBE Sizes
Rules 1-4 can be used to make a new TBE. However, the
new TBEs may not always be more compact than the orig-
inal. Thus, we need to evaluate the sizes of the TBEs be-
fore reconstructing them. We do not use rules which do
not reduce the TBE as measured by the evaluated size. In
this paper, as we represent binary constraints as binary ma-
trices, the size of any binary constraint c is evaluated as
|D(x) × D(y)| where scp(c) = {x, y}. The evaluated size,
size(P), of any TBE P is the sum of the evaluated sizes of
all binary constraints in P .

The evaluated sizes of the TBEs given in Figures 1b, 2a,
2b, 3a and 3b are 66, 56, 33, 20 and 24, respectively. We can
see that P3a is the smallest TBE. The evaluated size of P3a

is 3.3 times smaller than that of the original DTBE given in
Figure 1b. In addition, size(P3b) is greater than size(P3a),
so we do not use Rule 3 to merge the hidden variables m1

and m2 in P3a.

Constructing CC-Ts
We can reconstruct the domain of a hidden variable x in a
TBE P with any CC-Ts of x via Rule 4. However, it is NP-
hard to get the optimal c-table (Katsirelos and Walsh 2007)
representing the conditional table ct(P, x). In this paper,
we construct a CC-T by merging some c-tuples in ct(P, x)
and cct(P, x). Two c-tuples τ1 and τ2 in a CC-T rel1 of x
are mergeable w.r.t. a variable y ∈ N−(x) if τ1 \ τ2 (or
τ2 \ τ1) is empty or only includes some literals of y, since
T (τ1) ∪ T (τ2) = T (τ1 ∪ τ2). This is an equivalence re-
lation defining a partition par(rel1, y) of rel1 where all c-
tuples in the same subset S are mergeable w.r.t. y. We use
merge(rel1, y) = {∪τ∈Sτ | S ∈ par(rel1, y)} to denote
a c-table generated by merging c-tuples with par(rel1, y).
Obviously, merge(rel1, y) is also a CC-T of x.

We then show how to generate a CC-T rel used for
Rule 4. Let v be a variable in N−(x) with maximum
domain size. If

∏
y∈(N−(x)\{v}) |D(y)| < |D(x)|, which

means that the number of c-tuples in merge(ct(P, x), v) is
less that of cct(P, x), then the CC-T rel is initialized as
merge(ct(P, x), v), otherwise it is initialized as cct(P, x).
At the same time, we go through the variables y in N−(x)
one by one in an order of decreasing domain size and itera-
tively reset rel as the CC-T merge(rel, y).

Reducing DTBE
Algorithm 1 is used to reduce any DTBE of a MDD con-
straint c∗ by applying the 4 reduction rules. We remark that
it is NP-hard to construct the optimal TBE by reducing a
DTBE by using the rules. As such, we propose the follow-
ing heuristic based on preliminary experiments. We apply
the reduction rules in a certain order and also process the
hidden variables with order O. The rules are only applied
when it reduces the evaluated size of the DTBE. The algo-
rithm first generates a DTBE (X,C) of the constraint c∗ at
Line 1. Then the following functions applying a reduction
rule are used to transform (X,C):
• ApplyRule1(X,C) is called at Line 2. It scans all hid-

den variables x ∈ X and applies Rule 1 to eliminate x if

Algorithm 1: ReducingDTBE(c∗)
1 (X,C)← dtbe(c∗);
2 ApplyRule1(X,C);
3 ApplyRule2(X,C);
4 ApplyRule4(X,C);
5 ApplyRule2(X,C);
6 ApplyRule3(X,C);
7 ApplyRule4(X,C);
8 ApplyRule2(X,C);

return (X,C);

x is only included by one constraint in C.
• ApplyRule2(X,C) is called at Lines 3,5 and 8. It scans

all hidden variables x and applies Rule 2 to eliminate x if
x is only included by two constraint ci, cj in C such that
|D(y)| × |D(z)| is not greater than |D(x)| × (|D(y)| +
|D(z)|) where scp(ci) = {x, y} and scp(cj) = {x, z}.

• ApplyRule3(X,C) is called at Line 6. It repeatedly
scans the hidden variables from O1 to Ok and back to O1

until Rule 3 cannot be applied to merge any variables,
where k is the number of hidden variables. For any hid-
den variable Oi, if there is a constraint c ∈ C between Oi

and another hidden variable Oj such that the evaluated
size of R3((X,C), c) is not greater than that of (X,C),
then Oi and Oj are merged by Rule 3.

• ApplyRule4(X,C) is called at Lines 4 and 7. It scans
all hidden variables in the order O and uses Rule 4 to
reconstruct the hidden variable domains. The detail of the
CC-Ts used by Rule 4 is given in the last subsection.

The initial order O over the hidden variables in dtbe(c∗) is
set as yr+1 < hr < yr < ... < h1 < y1 where r =
|scp(c∗)|. After a new variable m is added by merging a
variable x with its neighbors via Rule 3 or reconstructing x
via Rule 4, we update the order as m < z (or z < m) for all
variables z such that x < z (or z < x).

A BCT GAC Propagator
The BCT is a binary CSP with a special structure, which we
exploit to devise more efficient propagators. We follow the
ideas of special propagation order in the HTAC algorithm
(Wang and Yap 2019). Given any TBE (X,C) of a constraint
c∗, the constraint graph of (X,C) is a tree. Hence, we can
enforce AC on (X,C) by calling various revise functions
to update variable domains from O1 to On and back to O1

where n = |X| and O is an order over X such that |{Oj ∈
N(Oi)|j > i}| ≤ 1 for each variable Oi ∈ X .

We use three different variable domain representations,
including sparse sets (Briggs and Torczon 1993), sparse bit
sets (Demeulenaere et al. 2016) and the default domain
representations used in the Abscon solver. To exploit ef-
ficient bit operations, we select a subset of hidden vari-
ables, H1 ⊂ X , such that for each constraint c ∈ C,
scp(c) ∩H1 ̸= ∅ or scp(c) ⊆ scp(c∗), representing the do-
mains of these variable as sparse bit sets. The domains of the
remaining hidden variables, H2 = X \H1, are represented

3854

as sparse sets. We do not represent all hidden variable do-
mains as sparse bit sets, since our preliminary experiments
show that it is better to use sparse sets for the variables in
H2. Note that we only use one kind of domain representa-
tions for each hidden variable to avoid the cost of maintain-
ing consistency between different representations. Finally,
for the original variables in scp(c∗), we use the default do-
main representations in the Abscon solver, i.e. both ordered
link and bit set. For the TBEs used in this paper, we set H1

as {h ∈ X|h /∈ scp(c∗), N(h) ∩ scp(c∗) ̸= ∅}.
As the variable domain representations are different, dif-

ferent revise functions are needed for the propagators of the
binary constraints between various variables. For each bi-
nary constraint c ∈ C between 2 variables x, y, if x /∈ H1

or y /∈ H1, i.e. there is one variable whose domain is not
represented as (sparse) bit set, we can directly use the exist-
ing revise functions introduced in (Lecoutre and Vion 2008;
Wang and Yap 2019), otherwise we apply a new revise func-
tion (Algorithm 2) given below for the case when both vari-
ables are sparse bit sets.

A Revise Function for Bit Set Variable Domains

We first introduce the data structures used in our new re-
vise function (see Algorithm 2). For any variable x: (i)
bitDom[x] is a bit set representing D(x) and bitDom[x][i]
denotes the ith word, where each ‘1’ bit in the word cor-
responds to a value in D(x); (ii) wordDom[x] is a sparse
set recording the non-ZERO words in bitDom[x]; (iii)
bitSup[c, x, i, p] is a bit set recording all values in D(y)
which supports the value corresponding to the pth bit in
bitDom[x][i], where scp(c) = {x, y} and a value b ∈ D(y)
supports a value a ∈ D(x) if {(x, a), (y, b)} ∈ rel(c).

The revise function (as usual) is used to enforce a vari-
able x to be AC on a constraint c, i.e. eliminates values
in D(x) which are not supported by any value in D(y),
where scp(c) = {x, y}. The outer loop (Line 1), goes
over each xwi in wordDom[x] and a word xw records
the values in bitDom[x][xwi] whose supports in D(y) have
not been found. The inner loop (Line 2), scans all ywi
in wordDom[y] and removes the values, which are sup-
ported by a value in the word yw = bitDom[x][ywi],
from xw. At Lines 8 and 9, the values in xw can be elim-
inated from bitDom[x][xwi], since they have not any sup-
port in D(y). A main part of the function is checking which
values in xw have supports in yw. If bitcount(xw) <
bitcount(yw) where bitcount counting the number of ‘1’
bits in a word, then the function scans all values in xw, us-
ing numberTrailingZeros which return the position of the
right most ‘1’ bit in the word, and checks whether they have
any supports in yw (between Lines 3 and 4), otherwise it
scans all values in yw to compute a union w of the values in
bitDom[x][xwi] supported by the values (between Lines 5
and 6). At Line 7, w is used to update xw.

Experiments
We evaluate the effectiveness of the reduction rules (com-
pression ratio) and efficiency of GAC algorithms in the Ab-

Algorithm 2: revise(c, x)
Assume scp(c) = {x, y};

1 for xwi ∈ wordDom[x] do
xw ← bitDom[x][xwi];

2 for ywi ∈ wordDom[y] do
w ← 0;
yw ← bitDom[y][ywi];
if bitcount(xw) < bitcount(yw) then

3 word← xw;
while word ̸= 0 do

p← numberTrailingZeros(word);
word← word&¬(1 << p);
bs← bitSup[c, x, xwi, p];
if (bs[ywi] & yw) ̸= 0 then

4 w ← w | (1 << p);

else
5 word← yw;

while word ̸= 0 do
p← numberTrailingZeros(word);
word← word&¬(1 << p);

6 w ← w | bitSup[c, y, ywi, p][xwi];

7 xw ← xw&¬w;
if xw = 0 then

break;

8 bitDom[x][xwi]← bitDom[x][xwi] &¬xw;
9 update wordDom[x];

return bitDom is changed;

scon solver.2 We compare the propagators DTBE (GAC on
DTBE constraints) and TBE (GAC on the BCT constraints
generated by Algorithm 1) with CD (Compact-MDD), a
state-of-the-art MDD GAC propagators also using bitwise
operations (Verhaeghe, Lecoutre, and Schaus 2018). We
tested the algorithms with the binary branching MAC and
geometric restart strategy.3 The variable and value search
heuristics used are Activity (Michel and Van Hentenryck
2012) and lexical value order. Experiments were run on a
3.20GHz Intel i7-8700 machine. Total time is limited to 10
minutes per instance and memory to 12G, where total time
is the sum of initialization time, transformation time and
solving time. We tested with a set of (structured) bench-
marks also used by other papers (Cheng and Yap 2010;
Gange, Stuckey, and Szymanek 2011; Verhaeghe, Lecoutre,
and Schaus 2018):

• Car Sequencing: we use 30 Caroline Gagne hard in-
stances (denoted as C-1) from CSPlib.4 The problem is
modelled with cardinality constraints and sequence con-
straints, where the sequence constraints are represented

2https://www.cril.univ-artois.fr/%7Elecoutre/#/softwares
3The initial cutoff = 10 and ρ = 1.1. For each restart, cutoff

is the allowed number of failed assignments and cutoff increases
by (cutoff × ρ) after restart.

4www.csplib.org

3855

as Binary Decision Diagrams (Cheng and Yap 2010). The
MDDs used in C-1 are small. We create harder instances
by increasing the block size and block capacity of the C-1
instances by 2 times (and 3 times) to create new instances
with larger MDDs denoted as C-2 (and C-3).

• Pentominoes: we use 5 instances (denoted as P-m) from
Minizinc Challenge 2020 and 36 instances from the pen-
tominoes generator website.5 These instances are mod-
elled with regular constraints. We convert the regular
constraints to MDD constraints. The instances are sepa-
rated into 3 series P-10, P-15 and P-20 where P-10 (P-15
or P-20) includes the instances using a 10× 10 (15× 15
or 20× 20) board and 10 (15 or 20) tiles.

• Nurse Scheduling: we use the model 1 and 2, denoted
as N-1 and N-2, from (Gange, Stuckey, and Szymanek
2011) where we only convert the regular constraints to
MDD constraints. The MDDs used in N-1 and N-2 are
small, so we create more challenging N-3 (N-4) instances
with lager MDDs by changing the regular constraint of
each nurse in N-2 to restrict that the nurse must work 1
or 2 night shifts every 9 (11) days, and 2 or 3 (3 or 4) days
off every 7 (9) days, while the nurse can only work a sec-
ond shift after 12 hours of the first. For each model, we
use 50 instances from the N30 series6 where the number
of nurses in each instance is set to the maximum number
of nurses required for any day.

• XCSP: we use all 2559 non-binary instances which only
employ table constraints from the XCSP website7 and the
methods from (Cheng and Yap 2010; Perez and Régin
2015) to encode tables into MDDs.

Non-table Benchmarks
We first evaluate on problems with MDD constraints, the
Car Sequence, Pentominoes and Nurse Scheduling Prob-
lems. The constraint relations of the MDD constraints used
in these benchmarks are very large, and not practically rep-
resentable as tables, hence, table GAC propagators are not
evaluated. We use the MDDc propagator (Cheng and Yap
2010) as a baseline algorithm for these problems.

The results are shown in Table 1. Many instances cannot
be solved in 10 minutes, thus, we show the average number
of search nodes per second, i.e. the number of search nodes
divided by solving time. We highlight that these benchmarks
are hard for the MDD solvers as the search speed can be as
very low, e.g. 4 nodes/s (MDDc on P-20). The columns la-
belled #N and #E show the average number of nodes and
edges of each MDD constraint. The ESR column is the mean
ratio of “the evaluated size of DTBE constraints” to “the
evaluated size of TBE constraints”. The RT column is the
average CPU time (in seconds) of Algorithm 1.

We see the reduction rules work well on these bench-
marks. The mean evaluated size of TBE is up to 347 times
smaller than that of DTBE. More significantly, ESR in-
creases as MDD constraints’ sizes increase, so compression

5https://github.com/zayenz/minizinc-pentominoes-generator
6https://www.projectmanagement.ugent.be/nsp.php
7http://xcsp.org

#I #N #E RT Nodes/s ESRTBE DTBE CD MDDc
C-1 30 1366 1903 0.03 1308 1198 1219 1253 3
C-2 30 16K 23K 0.13 1730 1478 1458 708 5
C-3 30 313K 435K 3.43 814 538 530 45 5
P-m 5 8366 95K 0.55 5083 2114 2423 602 46
P-10 12 7612 56K 0.28 4392 1070 1151 580 60
P-15 12 43K 511K 2.21 1155 75 81 46 162
P-20 12 137K 2M 11.13 246 14 15 4 347
N-1 50 1788 2319 0.01 11512 7818 7933 4211 13
N-2 50 1955 2914 0.01 13174 8897 9018 3384 26
N-3 50 13K 23K 0.06 11618 1827 1837 607 91
N-4 50 91K 161K 0.39 3728 44 43 96 255

Table 1: Non-table benchmarks. “#I”, “#N”, “#E” stand for
the number of “instances”, “nodes”, “edges” and “RT” and
“ESR” stand for “reduction time” and “evaluated size ratio”.

increases with larger MDDs. The DTBE propagator has sim-
ilar performance to CD, showing that our basic representa-
tion is competitive. After rule reduction, the TBE propagator
is much faster than other propagators on the problems tested.
We can see that the larger the ESR, the faster the TBE prop-
agator. For example, the mean evaluated size of TBE is 255
times (and 91 times) smaller than that of DTBE on the N-4
series (and N-3 series), while TBE can be 85 times (and 6
times) faster than DTBE. In addition, the mean times of Al-
gorithm 1 are acceptable. The transformation time is mostly
small. The largest RT time in Table 1 is 11.13s, i.e. the aver-
age reduction time of P-20. This is not significant compared
to the improvement, e.g. TBE has 246 search nodes/s on P-
20 but MDDc only has 4 nodes/s and CD is 15 nodes/s.

Table Benchmarks
We now evaluate table constraint benchmarks. The eval-
uation with non-table benchmarks was for ad-hoc con-
straints beyond the reach of tables. We now evaluate bench-
marks when table or MDD constraints are both feasible
representations. We use CT (Demeulenaere et al. 2016)
as the baseline algorithm as it is a state-of-the-art table
GAC algorithm. CT has been shown to overall outperform
MDD GAC algorithms on table constraint benchmarks (Ver-
haeghe, Lecoutre, and Schaus 2018, 2019).

Experimental results are shown in Figure 4. We compare
the reduction rules and GAC propagators with performance
profiles (Dolan and Moré 2002) in Figures 4a and 4b. The
various (colored) lines in 4a “DTBE+some Rules” compare
the TBE generated with a different subset of rules in Algo-
rithm 1, e.g. “DTBE+Rule 4” means only Rule 4 is used.
Every dot (α, β) in Figure 4a (Figure 4b) denotes that there
are β percentage instances such that the ratio of “the evalu-
ated size (the total time) of a TBE constraint (a propagator)”
to “the evaluated size (the total time) of the virtual best TBE
constraint (the virtual best propagator)” is up to α. The to-
tal time includes the time of encoding table constraints as
MDDs and BCTs. In Figure 4b, we remove: (i) the instances
that cannot be solved by TBE, DTBE, CT or CD within 10
minutes (timeout); and (ii) the instances on which the solv-
ing times of CT and TBE are both less than 2 seconds (triv-

3856

0
10
20
30
40
50
60
70
80
90

100

20 22 24 26 28 210

%
In

st
a

n
ce

ESR

DTBE
DTBE+Rule 4

DTBE+Rules 1,2,4
DTBE+All Rules

(a) Evaluated size

0
10
20
30
40
50
60
70
80
90

100

20 21 22 23 24 25 26

%
In

st
an

ce

Time Ratio

TBE
CT
CD

DTBE

(b) Total time

20
21
22
23
24
25
26
27
28
29

20 21 22 23 24 25 26 27 28 29

50X

5X

2X

T
B
E

CD

ESR<10
10≤ESR<100
100≤ESR

(c) Solving time: CD vs TBE

20
21
22
23
24
25
26
27
28
29

20 21 22 23 24 25 26 27 28 29

5X

2X

T
B
E

CT

(d) Solving time: CT vs TBE

Figure 4: Results of table benchmarks.

ial). We use scatter plots to compare the solving time of TBE
with CD and CT. Each dot in Figures 4c and 4d denotes an
instance, while the diagonal lines with the label 2X, 5X or
50X mean that the TBE algorithm is 2X, 5X or 50X faster
than CD or CT.

Figure 4a shows the effectiveness of the rules in reduc-
ing the size of the TBE with “DTBE+All Rules” being the
most effective. Figure 4b with the time ratio shows that the
DTBE propagator is competitive with CD, while the TBE
propagator is the fastest propagator on 71% of instances.
TBE can be up to 12 (98) times faster than the CT (CD)
algorithms. We found that the more the reduction rules re-
duce the TBE (larger ESR), the greater the speedup of TBE
over CD. The TBE constraints generated using all rules can
be up to 2166 times smaller than the original DTBE con-
straints. The solver performance is shown in Figure 4c, we
can see the solving time ratio between TBE and CD is con-
sistent with ESR. On most instances with “100 ≤ESR”, the
TBE can be 50X faster than CD. We turn to the CT com-
parison, Figure 4d, TBE is faster than CT on most of the
instances and only slightly slower on a few. The average
CPU time of Algorithm 1 is only 0.43s, thus, TBE can over-
all outperform the CT algorithm for non-trivial instances.
Comparing with existing results, the results in (Verhaeghe,
Lecoutre, and Schaus 2018, 2019) show that CD is outper-
formed by CT for table benchmarks. In contrast, our results
here outperform both CD and CT on table benchmarks.

Related Work
Cheng and Yap proposed the first MDD GAC algorithm
MDDc (Cheng and Yap 2010) using a depth-first search
strategy. Later, various incremental algorithms, such as in-
cremental MDD (Gange, Stuckey, and Szymanek 2011) and
MDD4R (Perez and Régin 2014), were proposed to avoid
redundant traversal. Comparing to table GAC algorithms,
MDD GAC algorithms can be more efficient when the MDD
constraints are compact, but there is a large gap between the
MDD representation’s compression ratio and when it out-
performs table propagators. Recent works show table GAC
algorithms using bitwise operations can overall outperform
MDD GAC algorithms on a large set of benchmarks (Wang
et al. 2016; Demeulenaere et al. 2016).

In order to reduce the gap, Verhaeghe et al. proposed

the MDD GAC algorithm CD (Verhaeghe, Lecoutre, and
Schaus 2018) using ideas from CT. The CD algorithm has
been also extended with some alternative representations
of MDDs, such as semi-MDDs (Verhaeghe, Lecoutre, and
Schaus 2018) and basic smart MVDs (Verhaeghe, Lecoutre,
and Schaus 2019). Although CD and its variants can be
faster than the MDD4R algorithm and reduce the gap, CT
still overall outperforms CD and its variants on a large set
of benchmarks (see the experimental results in (Verhaeghe,
Lecoutre, and Schaus 2018, 2019)). The BCT GAC propa-
gator proposed in this paper is the first algorithm, enforcing
GAC on MDD constraints, which is shown to overall out-
perform the state-of-the-art table GAC algorithm CT.

We are not aware of any binary encoding for MDD con-
straints. The most related work is the HVE encoding of ta-
ble constraints. As shown in (Wang and Yap 2019, 2020),
the state-of-the-art AC propagator HTAC on HVE instances
has similar performance to CT. Recently, the table constraint
binary encoding BE (Wang and Yap 2020) also overall out-
performs CT. However, BE changes the constraint structures
and consistency levels, i.e. it is more than a table GAC prop-
agator. Furthermore, the MDD constraint covers the scenar-
ios when we need ad-hoc constraints but tables are not prac-
tically feasible.

Conclusion
Ordered Multi-valued Decision Diagram (MDD) is more
compact than its table representation, but the state-of-the-
art table GAC propagator CT still overall outperforms MDD
GAC propagators. In order to reduce the large gap between
the MDD representation’s compression ratio and efficiency
of MDD GAC propagators, we propose a new representation
of MDD constraints called BCT. BCTs can be exponentially
smaller than MDDs when representing some constraints. We
first use DTBE to encode any MDD as a BCT constraint, and
then reduce the BCT constraint by eliminating, merging and
reconstructing some hidden variables. We also give a BCT
GAC propagator using bitwise operations to enforce GAC
on the MDD constraints encoded as BCT constraints. Ex-
perimental results on a large set of benchmarks show that
BCT constraints are very compact and BCT GAC propaga-
tor outperforms the state-of-the-art MDD GAC propagator
CD and table GAC propagator CT.

3857

Acknowledgements
This work was supported in part by the National Research
Foundation Singapore under its AI Singapore Programme
[AISG-RP-2018-005] and grant T1 251RES2024

References
Beldiceanu, N.; and Contejean, E. 1994. Introducing global
constraints in CHIP. Mathematical and computer Modelling,
20(12): 97–123.
Bessiere, C.; Stergiou, K.; and Walsh, T. 2008. Domain fil-
tering consistencies for non-binary constraints. Artificial In-
telligence, 172(6-7): 800–822.
Briggs, P.; and Torczon, L. 1993. An efficient representation
for sparse sets. ACM Letters on Programming Languages
and Systems (LOPLAS), 2(1-4): 59–69.
Cheng, K.; and Yap, R. H. C. 2010. An MDD-based gen-
eralized arc consistency algorithm for positive and negative
table constraints and some global constraints. Constraints,
15(2): 265–304.
Cheng, K. C.; and Yap, R. H. 2006. Applying Ad-hoc Global
Constraints with the case Constraint to Still-Life. Con-
straints, 11(2-3): 91–114.
Dechter, R.; and Pearl, J. 1989. Tree clustering for constraint
networks. Artificial Intelligence, 38(3): 353–366.
Demeulenaere, J.; Hartert, R.; Lecoutre, C.; Perez, G.; Per-
ron, L.; Régin, J.-C.; and Schaus, P. 2016. Compact-Table:
efficiently filtering table constraints with reversible sparse
bit-sets. In International Conference on Principles and
Practice of Constraint Programming, 207–223.
Dolan, E. D.; and Moré, J. J. 2002. Benchmarking opti-
mization software with performance profiles. Mathematical
programming, 91(2): 201–213.
Gange, G.; Stuckey, P. J.; and Szymanek, R. 2011. MDD
propagators with explanation. Constraints, 16(4): 407.
Katsirelos, G.; and Walsh, T. 2007. A compression algo-
rithm for large arity extensional constraints. In International
Conference on Principles and Practice of Constraint Pro-
gramming, 379–393.
Lecoutre, C.; and Vion, J. 2008. Enforcing arc consistency
using bitwise operations. Constraint Programming Letters,
2: 21–35.
Michel, L.; and Van Hentenryck, P. 2012. Activity-based
search for black-box constraint programming solvers. In
International Conference on Integration of Constraint Pro-
gramming, Artificial Intelligence, and Operations Research,
228–243.
Perez, G.; and Régin, J.-C. 2014. Improving GAC-4 for ta-
ble and MDD constraints. In International Conference on
Principles and Practice of Constraint Programming, 606–
621.
Perez, G.; and Régin, J.-C. 2015. Efficient operations on
MDDs for building constraint programming models. In In-
ternational Joint Conference on Artificial Intelligence, 374–
380.

Pesant, G. 2004. A regular language membership constraint
for finite sequences of variables. In International Confer-
ence on Principles and Practice of Constraint Program-
ming, 482–495.
Rossi, F.; Petrie, C. J.; and Dhar, V. 1990. On the Equiv-
alence of Constraint Satisfaction Problems. In European
Conference on Artificial Intelligence, 550–556.
Srinivasan, A.; Ham, T.; Malik, S.; and Brayton, R. K.
1990. Algorithms for discrete function manipulation. In
IEEE/ACM International Conference on Computer-Aided
Design, 92–95.
Stergiou, K.; and Walsh, T. 1999. Encodings of Non-Binary
Constraint Satisfaction Problems. In AAAI Conference on
Artificial Intelligence, 163–168.
Verhaeghe, H.; Lecoutre, C.; and Schaus, P. 2018. Compact-
MDD: Efficiently Filtering (s)MDD Constraints with Re-
versible Sparse Bit-sets. In International Joint Conference
on Artificial Intelligence, 1383–1389.
Verhaeghe, H.; Lecoutre, C.; and Schaus, P. 2019. Extend-
ing Compact-Diagram to Basic Smart Multi-Valued Variable
Diagrams. In International Conference on Integration of
Constraint Programming, Artificial Intelligence, and Oper-
ations Research, 581–598.
Wang, R.; Xia, W.; Yap, R. H. C.; and Li, Z. 2016. Opti-
mizing Simple Tabular Reduction with a Bitwise Represen-
tation. In International Joint Conference on Artificial Intel-
ligence, 787–795.
Wang, R.; and Yap, R. H. C. 2019. Arc Consistency Re-
visited. In International Conference on Integration of Con-
straint Programming, Artificial Intelligence, and Operations
Research, 599–615.
Wang, R.; and Yap, R. H. C. 2020. Bipartite Encoding:
A New Binary Encoding for Solving Non-Binary CSPs.
In International Joint Conference on Artificial Intelligence,
1184–1191.
Yap, R. H. C.; Xia, W.; and Wang, R. 2020. Generalized Arc
Consistency Algorithms for Table Constraints: A Summary
of Algorithmic Ideas. In AAAI Conference on Artificial In-
telligence, 13590–13597.

3858

