
Finding Backdoors to Integer Programs: A Monte Carlo Tree Search Framework
Elias B. Khalil1, 2, Pashootan Vaezipoor3, 4, Bistra Dilkina5

1Department of Mechanical & Industrial Engineering, University of Toronto
2Scale AI Research Chair in Data-Driven Algorithms for Modern Supply Chains

3Department of Computer Science, University of Toronto
4Vector Institute for Artificial Intelligence

5Department of Computer Science, University of Southern California
khalil@mie.utoronto.ca, pashootan@cs.toronto.edu, dilkina@usc.edu

Abstract

In Mixed Integer Linear Programming (MIP), a (strong)
backdoor is a “small” subset of an instance’s integer vari-
ables with the following property: in a branch-and-bound pro-
cedure, the instance can be solved to global optimality by
branching only on the variables in the backdoor. Construct-
ing datasets of pre-computed backdoors for widely used MIP
benchmark sets or particular problem families can enable new
questions around novel structural properties of a MIP, or ex-
plain why a problem that is hard in theory can be solved
efficiently in practice. Existing algorithms for finding back-
doors rely on sampling candidate variable subsets in various
ways, an approach which has demonstrated the existence of
backdoors for some instances from MIPLIB2003 and MI-
PLIB2010. However, these algorithms fall short of consis-
tently succeeding at the task due to an imbalance between
exploration and exploitation. We propose BaMCTS, a Monte
Carlo Tree Search framework for finding backdoors to MIPs.
Extensive algorithmic engineering, hybridization with tradi-
tional MIP concepts, and close integration with the CPLEX
solver have enabled our method to outperform baselines on
MIPLIB2017 instances, finding backdoors more frequently
and more efficiently.

1 Introduction
Hard discrete optimization problems arise in a very wide
range of application domains. While the theoretical com-
puter science approach focuses on the design of algorithms
with approximation guarantees, many real problems are not
amenable to such analyses. In the artificial intelligence and
operations research communities, on the other hand, much
of the focus is on deriving algorithms that can efficiently
produce high-quality solutions (even if without approxima-
tion bounds) and/or optimality guarantees (even when the
worst-case running time is exponential). In this work, we fo-
cus on the latter class of approaches, in particular the branch-
and-bound procedure for the exact solution of Mixed Integer
Programming (MIP) problems. MIP solvers are celebrated
for their ability to solve problems with hundreds of thou-
sands to millions of variables and constraints, a feat which
the theory would suggest to be impossible in a reasonable
amount of time. Yet, little is known about why realistic in-

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

stances of NP-Hard MIPs can be solved relatively efficiently
in practice.

The existence of backdoor sets provides one possible an-
swer to this puzzle of empirical tractability in exact MIP
solving. This was first reported by Dilkina et al. (2009) who
showed that backdoors of sizes 10–20 did exist for some
instances (of MIPLIB2003 (Achterberg, Koch, and Martin
2006)) with many hundreds to thousands of integer vari-
ables. The intuition is simple: if one need only branch on a
handful of integer variables to solve a MIP instance to global
optimality (or declare it as infeasible), then it is not diffi-
cult to imagine that a full-fledged MIP solver would be able
to solve that instance without much branching. This moti-
vates the design of algorithms for finding backdoors, with
the following potential use cases: (i) Discovering heretofore
unknown structural properties for a family of MIP instances,
e.g., a new variant of an independent set or facility location
problem, by data-mining backdoors from a large number of
instances; (ii) Constructing datasets of pre-computed back-
doors that can then be used to train machine learning mod-
els for quickly identifying these crucial sets on similar but
unseen instances and branching on them for a quick solving
time; (iii) Directly using the backdoor for branching, assum-
ing that the backdoor in question can be computed quickly
in advance; such a use case, if realized, could speed up solv-
ing times substantially for instances that are challenging for
current branching strategies in state-of-the-art MIP solvers.

How, then, does one find backdoors? We will denote the
desired backdoor size by K ∈ N+. Despite negative compu-
tational complexity results (e.g., Szeider (2005) shows that
finding backdoors for SAT requires time exponential in K,
even for fixed K), some heuristics have been developed.
Dilkina et al. (2009) used two forms of random sampling:
independent uniform sampling of K integer variables, and
independent biased sampling of K integer variables to favor
ones that are more fractional (i.e., with fractional parts closer
to 0.5) in the solution of the Linear Programming (LP) re-
laxation of the MIP. Candidate sets are sampled (in parallel)
and used for branching in a MIP solver; if global optimal-
ity is attained, then a backdoor has been found. The biased
sampling strategy proved much more effective than uniform.
While useful as a proof-of-concept, random sampling is a
pure exploration strategy which cannot use knowledge from
previous draws to focus future ones towards more promising

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

3786

candidate sets.
Fischetti and Monaci (2011) propose another strategy that

leverages the following basic fact about (bounded) mixed
0–1 problems: the set of extreme points (vertices) of the
LP-feasible region includes all integer-feasible points. The
branch-and-bound tree that results from branching on a
strong backdoor must have leaf nodes whose LPs are ei-
ther infeasible or have integer-feasible optima. This leads to
the following equivalent definition for a strong backdoor: a
small set B of 0–1 variables such that each fractional vertex
has at least one of its fractional variables in B. If one could
enumerate all (exponentially many) fractional vertices, then
a Set Covering Problem (SCP) can be formulated to find a
backdoor. In practice, the fractional vertices are collected
progressively in batches by executing branch-and-bound us-
ing the current candidate backdoor. An SCP is solved at each
iteration until all fractional vertices have been “covered” or
an early termination criterion is met. This method can be ex-
tended heuristically for general MIPs. Fischetti and Monaci
(2011) demonstrate that this method’s candidate backdoors,
which cover many but rarely all fractional vertices, can lead
to smaller trees if selected as branching variables early on
in the search. However, because (i) there can be many frac-
tional vertices and (ii) the order in which they are explored
is arbitrary (see (Fischetti and Monaci 2014; Fischetti 2014)
for a discussion), it is unclear if the information that this
method uses is actually conducive to backdoors in practice,
i.e., it may be “exploiting” too aggressively. Additionally, if
one is interested in backdoors of size at most K (as is the
case in this paper), this approach may be unable to produce
a solution as the SCP requires covering all of the collected
fractional vertices.

Contributions Thus far, we have argued (i) that finding
backdoors is beneficial for a variety of tasks and (ii) that
existing algorithms either explore or exploit too much. To-
wards a more general, effective, and extensible backdoor
search algorithm, we propose BaMCTS (short for “Back-
door MCTS”), a Monte Carlo Tree Search (MCTS) frame-
work for finding backdoors to MIPs. Our contributions can
be summarized as follows:

1. Backdoor Search as MCTS: We contribute the first
such formulation of the problem. BaMCTS can balance
exploration and exploitation by design, is conceptually
simple and easy to implement, and is extensible in a plug-
and-play fashion.

2. Tight Integration with MIP Domain Knowledge: To
enable a scalable and effective solution, we customize the
high-level MCTS procedure to the MIP setting through
the use of domain-specific reward functions, action scor-
ing functions and elimination rules, and careful engineer-
ing that is tightly coupled with CPLEX, a widely used
MIP solver.

3. Extensive Empirical Evaluation: reveals that
BaMCTS vastly outperforms the sampling strategy
of Dilkina et al. (2009), finding “better” backdoors
in a shorter amount of time on instances from the
MIPLIB2017 Benchmark set (Gleixner et al. 2021). We
also show that branching on such sets of variables results

in smaller search trees or optimality gaps compared to
CPLEX with its default branching.

2 Related Work
Backdoors for Combinatorial Problems The notion of
backdoors was first introduced by Williams, Gomes, and
Selman (2003) for SAT, where it was observed that practical
SAT instances often have a small tractable structures. Over
the years many approaches were proposed to find backdoors
in the SAT context (Paris et al. 2006; Kottler, Kaufmann,
and Sinz 2008; Li and Van Beek 2011). Observing the con-
nection between SAT and MIP, Dilkina et al. (2009) gener-
alized the concept of backdoors from SAT to MIP and pro-
posed random sampling as a method for finding backdoors.
Fischetti and Monaci (2011) proposed another strategy for
MIP, which to our knowledge remains the state-of-the-art to
this day in the MIP context.

MCTS and Applications MCTS has seen a surge of in-
terest thanks to its great success particularly in solving two-
player games (Silver et al. 2017). This has led to many at-
tempts in solving combinatorial optimization problems us-
ing MCTS by translating the problem into a game. In par-
ticular, UCT has been used to guide MIP solvers (Sabhar-
wal, Samulowitz, and Reddy 2012) and to solve Quanti-
fied Constraint Satisfaction Problems (QCSP) (Satomi et al.
2011). Bertsimas et al. (2014) applied MCTS to the chal-
lenging problem of Dynamic Resource Allocation (DRA)
and showed that it can greatly improve problem-specific
baselines on large scale instances. The Travelling Salesman
Problem (TSP), another classical problem, was addressed
in Rimmel, Teytaud, and Cazenave (2011) via a version of
Monte Carlo search with some success. Bandit Search for
Constraint Programming (BaSCoP) (Loth et al. 2013) ap-
plied MCTS to improve the tree-search heuristics of Con-
straint Programmin (CP) solvers and showed significant im-
provements on the depth-first search on certain CP bench-
marks. More recent works involve successful application of
the “neural” MCTS of AlphaZero to solve a variety of NP-
Hard graph problems (Abe et al. 2019), as well as solving
First-Order Logic descriptions of combinatorial problems
(Xu, Kadam, and Lieberherr 2021).

The difference between our setting and a typical combi-
natorial optimization problem is that our reward function is
an expensive black box, namely one that requires running
a MIP solver for a limited number of steps, as opposed to
an analytical objective function; this makes our setting more
challenging because evaluations are time-consuming.

3 Technical Background
3.1 Branch-and-Bound for MIP
We are concerned with Mixed Integer Linear Programming
(MIP) problems of the form:

z∗ = min{cTx|Ax ⩽ b, x ∈ Rn, xj ∈ Z ∀j ∈ I},

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and the non-empty
set I ⊆ {1, ..., n} indexes the integer variables. The vectors
in the set XMIP = {x ∈ Rn|Ax ⩽ b, xj ∈ Z ∀j ∈ I}

3787

are integer-feasible solutions. An integer-feasible (or simply
feasible) solution x∗ ∈ XMIP is optimal if cTx∗ = z∗.

A MIP can be solved by branch and bound (Cook 2012),
an exact algorithm that divides the original MIP into sub-
problems organized in a binary tree; see Nemhauser and
Wolsey (1988) for a textbook exposition. At each node of
the tree, an LP relaxation of the sub-problem is solved. If
the resulting solution xN of the LP relaxation at a node N
is integral, then it is also a feasible solution to the MIP, i.e.,
xN ∈ XMIP . If such an integral solution has an objective
value that is better than the best one found so far, it is re-
ferred to as the incumbent, maintaining that designation un-
til a better solution is found. Otherwise, the node is either
pruned, if its lower bound is greater than the incumbent’s
value, or branched on, resulting in two child nodes that are
added to the queue of nodes to be processed.

Pseudocosts are historical quantities, aggregated for each
variable during the search, that represent the amount by
which a node’s LP relaxation value has been tightened when
branching on a given variable. A higher pseudocost score
indicates that branching on a variable typically helps make
progress towards proving optimality. As such, pseudocosts
are at the heart of most typical branching strategies that are
used in MIP solvers (Achterberg, Koch, and Martin 2005;
Achterberg and Berthold 2009; Hendel 2015).

3.2 Backdoors for MIP
Given a MIP instance defined by the tuple (A, b, c, I), a
strong backdoor of size K ≪ |I| is a set of integer vari-
ables B, |B| = K,B ⊂ I such that branching exclusively
on variables from B results in a provably optimal solution
or a proof of infeasibility. We will consider order-sensitive
strong backdoors, where B is an ordered set: a variable at
rank i must be branched on before variables of rank j > i.
The order in which the backdoor variables are considered
for branching can affect the performance of the solver’s pri-
mal heuristics, which in turn affects pruning in branch-and-
bound. We refer to Dilkina et al. (2009) for a detailed dis-
cussion of why order matters in practice in MIP solvers.
Throughout the paper, we will use the term “candidate back-
door” to refer to an ordered set of integer variables that is be-
ing assessed but that may or may not be a strong backdoor.

3.3 Monte Carlo Tree Search (MCTS)
MCTS is a randomized algorithm for sequential games with
a finite horizon and a finite number of actions n (Browne
et al. 2012). At every step of a two-player game, MCTS
seeks to identify the next action to take so as to maximize
the probability of winning the game. It does so by building
out an n-ary tree in which the root node represents the cur-
rent state of the game, each edge represents a valid action,
and a child node represents the extension of its parent’s state
by playing the action of the corresponding edge. Associated
with each terminal state is a scalar reward value.

Because the complete search tree is exponential in size,
MCTS is organized into four key steps that can together nav-
igate the exploration-exploitation trade-off in a sensible way,
building out only a partial search tree that is sufficient for
identifying a good next action. The four steps are:

(a) Selection: Given the current search tree, this step deals
with selecting the nodes in a depth-first dive from
the root. Upper Confidence Trees (UCT) (Kocsis and
Szepesvári 2006) is a widely used scoring rule that com-
bines the average observed reward of a node (or state)
with a function of the number of visits to the node; nodes
with large average rewards and/or small visit counts ob-
tain high UCT scores, balancing exploration and ex-
ploitation. The latter is controlled by an appropriately
tuned hyperparameter.

(b) Expansion: When the selected node has only a subset of
its potential children as nodes in the current search tree,
one can choose to expand the selected node’s child set
by creating a node for a new action. When the number of
possible actions is large, Progressive Widening (Coulom
2007; Couëtoux et al. 2011) is used to limit the branching
factor of the tree and focus on expanding only frequently-
visited (likely more promising) nodes. To select a new
action to expand with, uniform sampling may be used.
A more “exploitative” expansion would select an action
that has led to high-reward children in other nodes of the
search tree.

(c) Simulation: Following the depth-first dive from the root
through a sequence of selections (and possibly a final ex-
pansion), a non-terminal node may be reached. Because
rewards are only observed in terminal states, e.g., when
the game concludes and a winner is declared, simulation
is used to traverse the state space from the node in ques-
tion to a terminal state, without consolidating this sub-
path into the search tree. Typically, one picks actions ran-
domly until a terminal state is reached.

(d) Backpropagation: Following the simulation, a reward
is collected. Backpropagation refers to the credit assign-
ment process whereby the reward is passed on to the
nodes along the depth-first path in the tree that led to the
observed reward. A sum-backup rule is commonplace:
each node accumulates rewards every time it is selected.
Alternatively, a more aggressive max-backup rule keeps
track of the maximum observed reward, see (Sabharwal,
Samulowitz, and Reddy 2012) for example.

The four-step loop is repeated until a termination condition
(e.g., time limit) is reached, following which the action cor-
responding to the highest-reward or most visited child of the
root node is “played”. The opponent responds, and the pro-
cess is repeated starting with a new search tree representing
the updated state of the game.

4 BaMCTS1

Rather than treat MCTS as a black-box algorithm, we in-
stantiate it for the backdoor search setting by incorporating
as much domain knowledge about MIP solving as possible.

We are given a MIP instance defined by the tuple
(A, b, c, I) and assume a user-defined bound on the back-
door size, K ∈ N+; K ≪ |I| should be seen as a small con-

1Our implementation of BaMCTS can be found at: https://
github.com/lyeskhalil/backdoorsearch

3788

stant on the order of 5 to 10, which would imply a branch-
and-bound tree with hundreds of nodes.

We view backdoor search as a single-player, deterministic
constraint satisfaction game. The goal is to find an order-
sensitive strong backdoor that satisfies the size-K constraint
on the backdoor size.

We now define two key elements of MCTS for the back-
door setting. Let P (I,K) denote the set of all permutations
of all subset of the integer set I that have size at most K.
For example, if K = 2 and I = {1, 2, 3} then P (I,K) =
{(), (1), (2), (3), (1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}.

• State: A state S ∈ P (I,K) is a permutation of the vari-
ables s.t. |S| ≤ K. A state is terminal iff |S| = K. The
root of the MCTS tree corresponds to the empty state ().

• Action: Given a non-terminal state S, a valid action is
the index i ∈ I of an integer variable such that i /∈ S.
Taking action i in state S means that i is appended to
the end of the ordered set S, leading to a new state S′ ∈
P (I,K), |S′| = |S| + 1 in which the first |S| variables
are the same as those in S.

4.1 Building Blocks
Candidate Evaluation Consider a terminal state Ŝ. To
evaluate this candidate, a MIP solver is used to check if it is
a backdoor. In particular, we instrument the CPLEX solver
to (i) branch only on variables in Ŝ, terminating the branch-
and-bound if either the instance is solved (i.e., a backdoor
has been found) or branching is no longer possible for at
least one subproblem (a leaf node on the frontier of the
branch-and-bound tree); (ii) respect the ordering implied by
Ŝ; (iii) collect auxiliary data such as pseudocosts and search
completion information that will be useful for action selec-
tion and reward computation.

Reward Shaping The goal – finding an order-sensitive
strong backdoor – suggests a binary reward function in
which a value of 1 is assigned to a terminal state during
MCTS iff a backdoor is found, after which the search ter-
minates because the goal has been achieved. However, this
sparse reward structure makes any form of focused search
impossible, an issue that we will tackle by using an appro-
priate reward function which assigns an informative score to
a terminal state that is not a backdoor.

A good reward function is one that gives a large, but not
maximal, value to a candidate which satisfies most of the
conditions that define a strong backdoor. What are those
“conditions”? Following backdoor candidate evaluation us-
ing the MIP solver, a (potentially incomplete) branch-and-
bound tree (not to be confused with the MCTS tree) can be
observed. For the candidate to be a backdoor, all leaf nodes
of the tree must be closed, i.e., they must have LP relaxations
that are either infeasible, integer-feasible, or fathomed by
bound; these are the conditions that must be simultaneously
satisfied. Now consider a candidate which satisfies most but
not all leaf node conditions. The tree weight (Kilby et al.
2006) is a scoring function that maps a branch-and-bound
tree to a value in [0, 1]. When all integer variables are bi-
nary, the tree weight is defined as the fraction of binary as-

signments that belong to a closed leaf node; a strong back-
door would have a tree weight of 1 because all leaf nodes
are closed and thus all binary assignments are covered. Im-
portantly, the tree weight achieves our desired criterion for a
good reward function: it can give meaningful scores to can-
didate backdoors that are not true strong backdoors but that
eliminate many binary assignments.

Consider the (binary) search tree of branch-and-bound
for a mixed-binary integer program, and let Tk denote the
tree at the k-th iteration, i.e., after k nodes have been ex-
panded. Let Fk denote the subset of tree nodes that are “fi-
nal” or fathomed due to their LP relaxations being infeasi-
ble, mixed-binary feasible, or worse in value than the best
integer-feasible solution’s value at the time they were ex-
panded. The tree weight assigns to each node v ∈ Fk a
weight of 2−d(v), where d(v) is the depth of v. The total
tree weight of tree Tk then writes:

tree-weight(Tk) =
∑
v∈Fk

2−d(v).

At the start of branch-and-bound, no nodes have been
fathomed and so F0 = ∅, tree-weight(T0) = 0. This func-
tion strictly increases with more fathomed nodes. We refer
to section 4.3 of (Hendel et al. 2021) for further details and
an illustrative example, and note that other tree search com-
pletion metrics therein could potentially be used instead of
tree weight.

The Role of Pseudocosts Pseudocosts are historical quan-
tities aggregated for each variable during the search. The up-
wards (downwards) PC of a variable xj is the average unit
objective gain taken over upwards (downwards) branchings
on xj in previous nodes; we refer to this quantity as Ψ+

j

(Ψ−
j). Pseudocost branching at node N with LP solution x̌

consists in computing values:

PCj = score
(
(x̌j − ⌊x̌j⌋)Ψ−

j , (⌈x̌j⌉ − x̌j)Ψ
+
j

)
and choosing the variable with the largest such value. Typi-
cally, the product is used to combine the downwards and up-
wards values. One standard way to initialize the pseudocost
values is by applying strong branching once for each integer
variable, at the first node at which it is fractional (Linderoth
and Savelsbergh 1999). We will refer to this PC strategy
with strong branching initialization as pseudocost branch-
ing (PC).

As mentioned earlier, pseudocosts play a big role in most
MIP branching strategies. Because the definition of a back-
door relies on branching, it is natural to consider ways in
which pseudocosts can help steer BaMCTS towards promis-
ing variables. Indeed, we will show a bit later how pseu-
docosts can serve as global scores for actions (variables).
Those global scores are then naturally incorporated into the
selection and expansion steps of MCTS. For now, we em-
phasize that BaMCTS tracks the pseudocosts resulting from
each backdoor candidate evaluation. We then maintain, for
each variable, a running average of its pseudocost score
across all candidate evaluations that involved the variable.

3789

Action Space Reduction We would like BaMCTS to scale
to MIPs with tens or hundreds of thousands of integer vari-
ables. However, the MCTS tree grows fast with the number
of integer variables, which may hamper progress. To reduce
the action space, we leverage the empirical observation that
only a few of the integer variables take on fractional val-
ues in the solution of the LP relaxation of the MIP; for in-
stance, Berthold (2014) shows that, on average across 159
instances from older MIPLIB instance libraries, 71.7% of
the integer variables are integer in the LP relaxation solu-
tion. Rather than work with the full integer set I , we restrict
the action space to the subset Ifrac ⊆ I of variables that are
fractional in the LP relaxation of the MIP instance. While
heuristic, this restriction has some grounds in empirical MIP
solving and reduces the action space dramatically.

4.2 Instantiating the Four Steps
Selection We adopt a variant of the UCT selection rule,
inspired by Gaudel and Sebag (2010), that adds a global ac-
tion score (average pseudocosts in our case) to UCT’s typi-
cal elements. Consider an MCTS search tree node (or state)
S whose child node S′ is being assessed; assume S′ extends
S with variable i ∈ Ifrac.

We let TS denote the number of visits to node S;
EXP(S, S′) denotes the exploration score of S′, which is
large when TS′ is much smaller than TS ; µ̂S′ denotes the
current average reward of state S′; rS′ is the vector of re-
wards that have been observed in the subtree rooted at S′

and σ2(rS′) is its variance. Our final scoring function for
node selection is given by (1):

SCORE(S, S′) = (1−αPC)UCTscore(S, S
′)+αPCP̂Ci. (1)

With αPC ∈ [0, 1), the scoring function is a convex combi-
nation of a UCT-type score for state S′ and the average pseu-
docost score P̂Ci of variable i. The latter may be interpreted
as a RAVE score following (Gelly and Silver 2007). To ar-
rive at the final scoring function, we define the exploration
score (based on the standard UCT formula), the variance
score (based on the UCB1-Tuned of Auer, Cesa-Bianchi,
and Fischer (2002)), UCT without variance, UCT with vari-
ance, and the UCT score which is one of the two preceding
scores depending on the value of use variance, respec-
tively:

EXP(S, S′) =
√
ln (TS)/TS′

VAR(S′) =

√
min

{1

4
, σ2(rS′) + EXP(S, S′)

}
UCT(S, S′) = µ̂S′ + C · EXP(S, S′)

UCTvar(S, S
′) = µ̂S′ + C · EXP(S, S′) · VAR(S′)

UCTscore(S, S
′) =

{
UCTvar(S, S

′) if use variance,

UCT(S, S′) otherwise.

To conclude, we note that the scoring function has three
hyperparameters whose effects will be analyzed experimen-
tally in the next section:

• αPC ∈ [0, 1): the weight accorded to the global pseudo-
cost average;

• C ∈ R>0: the exploration weight;
• use variance ∈ {True, False}: a boolean that deter-

mines whether UCT with or without variance is used.

Expansion Besides the traditional uniform random expan-
sion rule, we consider a deterministic best score expansion
rule which simply expands using the available action (vari-
able) with the largest average pseudocost score. Together,
these two rules cover a wide range along the exploration-
exploitation spectrum.

Simulation We opt to proceed with random simulation as
described in the preceding section.

Backpropagation We consider both the sum and max-
backup rules here. While the latter is typically considered to
be overly aggressive and wasteful (of reward information),
it is quite suitable for our setting and allows for a form of fo-
cused local search: if a high-reward candidate has been ob-
served in a node’s subtree, a max-backup encourages more
future visits to the same node. This may lead to slight modi-
fications to the candidate that bring about improved rewards.

4.3 Algorithm Engineering
Our implementation of BaMCTS exploits certain properties
of the backdoor search problem to speed it up. One such
property is that the root node of the branch-and-bound tree
of each candidate evaluation is the same. Because solv-
ing the LP relaxation of the root node is typically much
more time-consuming than other subproblems’, we instru-
ment CPLEX to solve the root LP once for all in advance
and reuse its solution in subsequent evaluations. Rather than
simulate and evaluate a single candidate at a time, we lever-
age the independence between the simulations to execute
them and the candidate evaluation, in parallel.

5 Experiments
To evaluate our method, we designed a set of experiments
to answer the following questions: 1) Backdoor Extrac-
tion: Can BaMCTS find backdoors with better tree weight
values (or rewards) compared to the biased random sam-
pling of Dilkina et al. (2009)? 2) Sensitivity Analysis: How
sensitive is BaMCTS to its hyperparameters? 3) Suitability
of Tree Weight as a Reward Function: Is branching on
higher tree weight backdoors conducive to smaller search
trees or (for instances that are not solved to optimality within
a time limit) a smaller optimality gap? In other words, is tree
weight a legitimate reward function for BaMCTS?

5.1 Experimental Setup
Instances We conducted our experiments on the MI-
PLIB2017 Benchmark set (Gleixner et al. 2021) that con-
tains 240 instances. We only considered the 164 mixed-
binary instances, i.e., instances with no general integer vari-
ables, due to the ease of implementation of the tree weight
for binary problems; extension to general integer variables is
possible. We presolved the instances in advance to eliminate
redundant variables and constraints, and also let CPLEX

3790

0.0 0.2 0.4 0.6 0.8 1.0
Biased

0.0

0.2

0.4

0.6

0.8

1.0

B
a
M
C
T
S

0 500 1000 1500 2000 2500
Wall-clock Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

R
ew

ar
d

(T
re

e
W

ei
gh

t)

bnatt400

Biased

BaMCTS

0 5000 10000 15000
Wall-clock Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

R
ew

ar
d

(T
re

e
W

ei
gh

t)

trento1

Biased

BaMCTS

Figure 1: (left) BaMCTS outperforms Biased in finding backdoors with higher (mean) reward: most instances fall above the
diagonal. (middle) & (right) BaMCTS attains higher rewards faster than Biased on two representative instances.

generate cuts at the root node; the resulting preprocessed in-
stance was used instead of the original in all subsequent pro-
cedure, as presolving and root cuts are both standard steps
in MIP solving, indepedently of any backdoor search. Some
instances were excluded due to either memory issues during
presolving or being solved at the root node without branch-
ing, reducing the final dataset size down to 142 instances.

Baselines We compared BaMCTS against two baselines:
Biased and our implementation of SetCover from Fis-
chetti and Monaci (2011). Each run consisted of two phases:
backdoor search and backdoor-guided MIP solving.

Protocol for Backdoor Search For the search phase, each
method was given a budget of 5 hours per instance. We
recorded the sequence of improving backdoors found by
each method on every instance, particularly the backdoor
with the highest tree weight. For a fair comparison, we
tasked all methods to find backdoors of a specific size K.
Naturally, it is trivial to find large backdoors (at the extreme,
the full integer set is a backdoor) but their usefulness in
the downstream MIP solving phase diminishes as they get
larger. We report our results for backdoor size of K = 8;
however, we experimented with other backdoor sizes in the
5-10 range and the results still carry.

Protocol for MIP Solving In the second phase, we solved
the same instance for one hour using CPLEX, but instru-
mented the solver to prioritize branching on the backdoor
variables in the order they are given; this was achieved using
CPLEX’s branching priority feature. To mitigate CPLEX’s
randomness w.r.t. arbitrary initial conditions (Lodi and Tra-
montani 2013), we solve each instance with 3 random seeds.

BaMCTS Hyperparameters To test the sensitivity of
BaMCTS, we sampled 30 hyperparameter configurations out
of 128 configurations implied by the grid over:

• Backup ∈ {sum,max};
• Expansion Type ∈ {Best Score,Uniform};
• use variance ∈ {True, False};
• αPC ∈ {0.00, 0.01, 0.10, 0.50};

• Exploration Parameter (C) ∈ { 1√
2
, 1,

√
2, 2,

√
3}.

For each configuration, we ran BaMCTS for one hour. We
then selected the configuration with the highest mean tree
weight. That single configuration (bottom row, Table 1) was
then used for the 5-hour backdoor search introduced earlier.

Hardware All experiments were conducted on a large
CPU cluster. All MIP solving runs use a single core with
an 8GB memory limit and a 1-hour time limit. Backdoor
search runs for both BaMCTS and Biased use 10 cores in
parallel with a variable memory limit, capped at 63GB, that
is proportional to the instance’s size on disk, and a 5-hour
time limit for the selected hyperparameter configuration.

5.2 Results
Backdoor Extraction Performance Figure 1 compares
the performance of BaMCTS vs. Biased in terms of
the quality of the backdoors they find within the 5-hour
time limit per instance. BaMCTS clearly outperformed
Biased, leading to discovery of higher tree weight back-
doors on many more instances. This is further demon-
strated in the top-right plot of Figure 2. There, we observe
that BaMCTS with even 1 hour time budget (blue) gen-
erally outperformed Biased with 5 hour budget (green).
BaMCTS with 5 hour budget (red) further widened the gap.
Note that SetCover does not depend on tree weight as a
reward and is thus not comparable with BaMCTS here.

Sensitivity Analysis The box-plots of Figure 2 show the
per-instance sensitivity of BaMCTS to the set of 30 hyper-
parameter configurations we tested. The instances are sorted
by median reward from low (hard instances) to high (easy
instances). Even though we observe quite high sensitivity
for some instances, for the majority of them most configu-
rations obtain similar reward. Figure 3 shows all 30 hyper-
parameter configurations for BaMCTS as well as the aver-
age reward that each configuration achieved over the entire
dataset. Most of the configurations resulted in average re-
ward in the range of [0.28, 0.35], indicating that at least on
average (across all instances) there is not a substantial vari-
ability in terms of the reward, and BaMCTS can be used out
of the box with default hyperparameter values and achieve
a reasonable performance. Note that MIPLIB2017 is quite

3791

Reward
0.0 0.2 0.4 0.6 0.8 1.0

Figure 2: Box-plots showing the distribution of rewards for
each instance over the 30 hyperparameter configs. Instances
are sorted based on median reward, hard (red) to easy (blue).
top-right: Reward comparison between Biased (green)
and BaMCTS run with 1 (blue) & 5 (red) hours.

Backup Expansion use
variance

αPC Exp. C Mean
Rewardmax

sum

uniform

best score

True

False
0.22

0.28

0.34

1√
2

1

√
2

2

√
3

0.0

0.1

0.2

0.3

0.4

0.5

10 23 22 1 13 24

Figure 3: BaMCTS is robust w.r.t. hyperparameter changes.
Each curve in the figure represents a hyperparameter con-
figuration (30 total) and indicates the values taken by that
config as well as the obtained mean reward after running
BaMCTS with that config on the dataset for 1 hour. Notice
the concentration of rewards within the [0.28, 0.35] band.
This shows that for most configs the reward does not change
drastically. The highlighted curves represent the best and
worst performing configs (see Table 1 bellow).

Backup Exp.
Type

use
variance αPC C

Mean
Reward

10 max Uniform False 0.00
√
2 0.208

23 sum Uniform False 0.50 1/
√
2 0.286

22 max Uniform False 0.00 2 0.289
20 sum Uniform True 0.10 2 0.291
11 max Uniform True 0.00 2 0.293
19 max Uniform False 0.01 1/

√
2 0.295

21 sum Uniform False 0.00
√
2 0.297

16 sum Uniform False 0.50
√
3 0.304

12 max Uniform True 0.50 2 0.304
7 max Uniform True 0.00

√
3 0.306

3 max Uniform False 0.01
√
3 0.307

9 max Uniform True 0.10 2 0.313
0 sum Uniform False 0.01 2 0.313

17 sum Uniform False 0.50 1 0.315
6 sum Uniform True 0.00

√
2 0.315

26 max Uniform True 0.01 1/
√
2 0.320

2 max Uniform True 0.00 1/
√
2 0.322

4 sum Best False 0.00 2 0.327
25 max Best False 0.01 1 0.330
15 max Best True 0.50 2 0.332
5 max Best False 0.01

√
3 0.333

8 sum Best False 0.01
√
3 0.337

1 max Best False 0.50
√
2 0.337

13 max Best False 0.10 1 0.343
24 max Best True 0.01 1 0.351

Table 1: All BaMCTS parameter configurations sorted by
mean reward (tree weight); higher is better.

diverse and it is likely that testing on a more homogeneous
dataset would result in even lower parameter sensitivity.

Tree Weight and Branch-and-Bound Tree Size Table 2
summarizes the MIP solving results with a 1-hour time limit.
CPX–def is CPLEX 12.10.0 with traditional branch-and-
bound (i.e., with CPLEX’s “dynamic search” turned off);

3792

seed 1 (47, 56, 4) seed 2 (45, 61, 7) seed 3 (46, 60, 6)

CPX
–def

CPX
–BaMCTS

CPX
–def

CPX
–BaMCTS

CPX
–def

CPX
–BaMCTS

of nodes
(solved by both) 6902.7 6097.7 6173.8 5030.1 7744.9 7001.9

total time
(solved by both) 179.5 175.9 156.6 138.3 169.4 156.8

optimality gap
(not solved by either) 23/56 33/56 24/61 37/61 20/60 40/60

of instances
(solved by one method) 3 1 4 3 3 3

Table 2: Summary of MIP solving results. “seed 1 (47, 56,
4)” means that for this seed, 47 instances were solved by
both CPX–def and CPX–BaMCTS, 56 were not solved by
either within 1 hour, and 4 were solved by only one of the
two. Geometric means are reported for “# of nodes” and “to-
tal time”; the number of wins/losses are reported for “opti-
mality gap”. The better method for each metric is in bold.

results with “dynamic search” are similar. CPX–BaMCTS is
CPLEX 12.10.0 with branching priorities defined by the best
backdoor found for that instance by the best hyperparame-
ter configuration of BaMCTS (configuration 24 in Table 1).
Of the initial 142 instances, we restrict the MIP solving
here to 115 instances for which BaMCTS found at least one
backdoor candidate with non-zero tree weight. Within each
random seed, the instances are partitioned into three sets:
(i) instances solved by both methods: here we compare the
shifted geometric means of the number of nodes and total
time (lower is better; see page 33 of (Hendel 2015) for fur-
ther discussion of the suitability of this metric), with shifts
100 and 10, respectively; (ii) instances that are not solved
by either method: here the optimality gap after the 1-hour
limit tells us which method made more progress; we count
the number of instances for which each method achieved
a smaller gap (higher is better); and (iii) instances that are
solved by only one of the methods: here we simply count
the number of wins for each method (higher is better).

Table 2 shows that CPX–BaMCTS wins on the first three
metrics consistently across the three seeds, with an average
reduction of 700 to 1100 in the number of nodes. The last
metric (final row) records two wins for CPX–def and one
tie, but it is over 4 to 7 instances out of more than 110. We
have also used the two-sided Wilcoxon signed-rank test, as
described in (Hendel 2014), to compare the distribution of
values for the three metrics, and have found the correspond-
ing p-values to be typically small, implying that the observed
values for these metrics come from distributions with differ-
ent medians for each of CPX–def and CPX–BaMCTS; this
agrees with the conclusions from Table 2.

The fact that branching with the best backdoor found by
BaMCTS typically leads to better MIP solving (smaller num-
ber of nodes, smaller optimality gaps, etc.) confirms that tree
weight is an informative reward signal for backdoor search.

Lastly, we note that we have attempted to compare against
the SetCover method of Fischetti and Monaci (2011) on
the MIP solving metrics. However, SetCover fails to re-
turn a size-8 backdoor for half of the 142 instances, requir-

100 101 102 103 104 105

Number of fractional variables in Root Relaxation

0.0

0.2

0.4

0.6

0.8

1.0

B
a
M
C
T
S

,
b

es
t

re
w

ar
d

Figure 4: Scatter plot of the number of fractional variables
in the MIP root LP relaxation solution vs. the best reward
(i.e., tree weight) found by our method.

ing more variables to cover fractional vertices. This makes it
difficult to compare BaMCTS to SetCover; modifications
to the latter are necessary but are out of scope for this paper.

Impact on Total Time While Table 2 shows that branch-
ing with the backdoors found by our method result in only
small reductions in total time, we note that: (1) this reduc-
tion is consistent across the three seeds and is in the 2-
10% range, which is non-trivial for standard MIPLIB2017
Benchmark instances; and (2) the experiment aims primar-
ily at showing that branching with the backdoors translates
into a smaller number of nodes, a metric for which improve-
ments are larger. Because CPLEX is not open-source, we
are unable to control its behavior beyond its callbacks, but
we believe that further total time speedups may be achieved
with tighter integration with the internal solver code.

Tree Weight vs. Number of Variables Given the wide
range of tree weight values that were observed as a result
of backdoor search, we were interested in whether only in-
stances with small action spaces, i.e., a small number of inte-
ger variables that are fractional in the solution of the root LP
relaxation of branch-and-bound tree, were associated with
tree weights (rewards) that are close to 1. Figure 4 shows
that is not the case at all: the tree weight values are spread
across the wide range of values on the horizontal axis, hence
our results are not biased towards “easy” small instances.

6 Conclusion
In this paper we proposed BaMCTS, a Monte Carlo Tree
Search framework for finding strong backdoors in MIPs and
demonstrated through our experiments its merits relative to
earlier backdoor search algorithms in MIP literature. We
hope that this paper would motivate further research in this
direction and position MCTS as a viable approach in finding
MIP backdoors. One particularly interesting future direction
is to apply this technique on more homogeneous families of
instances instead of MIPLIB to discover inherent structures
for those problem families by studying their backdoors. We
are planning to release our code to streamline these efforts.

3793

Acknowledgements
Elias B. Khalil acknowledges support from the Scale AI Re-
search Chair Program and an NSERC Discovery Grant. Bis-
tra Dilkina acknowledges support from NSF AI Institute for
Advances in Optimization Award #2112533.

References
Abe, K.; Xu, Z.; Sato, I.; and Sugiyama, M. 2019. Solv-
ing NP-Hard Problems on Graphs with Extended AlphaGo
Zero. arXiv preprint arXiv:1905.11623.
Achterberg, T.; and Berthold, T. 2009. Hybrid Branching.
In CPAIOR, 309–311. Springer.
Achterberg, T.; Koch, T.; and Martin, A. 2005. Branching
Rules Revisited. Operations Research Letters, 33(1): 42–
54.
Achterberg, T.; Koch, T.; and Martin, A. 2006. MIPLIB
2003. Operations Research Letters, 34(4): 361–372.
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-Time
Analysis of the Multiarmed Bandit Problem. Machine learn-
ing, 47(2): 235–256.
Berthold, T. 2014. Rens. Mathematical Programming Com-
putation, 6(1): 33–54.
Bertsimas, D.; Griffith, J. D.; Gupta, V.; Kochenderfer,
M. J.; Mišić, V. V.; and Moss, R. 2014. A Comparison
of Monte Carlo Tree Search and Mathematical Optimiza-
tion for Large Scale Dynamic Resource Allocation. arXiv
preprint arXiv:1405.5498.
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A Survey of Monte
Carlo Tree Search Methods. IEEE Transactions on Compu-
tational Intelligence and AI in games, 4(1): 1–43.
Cook, W. 2012. Markowitz and Manne + Eastman + Land
and Doig = Branch and Bound. Optimization Stories, 227–
238.
Couëtoux, A.; Hoock, J.-B.; Sokolovska, N.; Teytaud, O.;
and Bonnard, N. 2011. Continuous Upper Confidence Trees.
In International Conference on Learning and Intelligent Op-
timization, 433–445. Springer.
Coulom, R. 2007. Computing “Elo Ratings” of Move Pat-
terns in the Game of Go. ICGA journal, 30(4): 198–208.
Dilkina, B.; Gomes, C. P.; Malitsky, Y.; Sabharwal, A.; and
Sellmann, M. 2009. Backdoors to Combinatorial Optimiza-
tion: Feasibility and Optimality. In International Conference
on Integration of Constraint Programming, Artificial Intelli-
gence, and Operations Research, 56–70. Springer.
Fischetti, M. 2014. BRANCHstorming (Brainstorming
About Tree Search). http://www.dei.unipd.it/∼fisch/papers/
slides/2014%20ISCO%20%5bplenary%20Fischetti%
20BRANCHstorming%5d.pdf. Accessed: 2022-04-13.
Fischetti, M.; and Monaci, M. 2011. Backdoor Branching.
In International Conference on Integer Programming and
Combinatorial Optimization, 183–191. Springer.
Fischetti, M.; and Monaci, M. 2014. Exploiting Erraticism
in Search. Operations Research, 62(1): 114–122.

Gaudel, R.; and Sebag, M. 2010. Feature Selection as a
One-Player Game. In International Conference on Machine
Learning, 359–366.
Gelly, S.; and Silver, D. 2007. Combining Online and Of-
fline Knowledge in UCT. In Proceedings of the 24th inter-
national conference on Machine learning, 273–280.
Gleixner, A.; Hendel, G.; Gamrath, G.; Achterberg, T.; Bas-
tubbe, M.; Berthold, T.; Christophel, P.; Jarck, K.; Koch,
T.; Linderoth, J.; et al. 2021. MIPLIB 2017: Data-Driven
Compilation of the 6th Mixed-Integer Programming Library.
Mathematical Programming Computation, 1–48.
Hendel, G. 2014. Empirical Analysis of Solving Phases in
Mixed Integer Programming. Master’s thesis, Technische
Universität Berlin.
Hendel, G. 2015. Enhancing MIP Branching Decisions by
Using the Sample Variance of Pseudo Costs. In Integration
of AI and OR Techniques in Constraint Programming, vol-
ume 9075, 199 – 214. In press.
Hendel, G.; Anderson, D.; Le Bodic, P.; and Pfetsch, M. E.
2021. Estimating the Size of Branch-and-Bound Trees. IN-
FORMS Journal on Computing.
Kilby, P.; Slaney, J.; Thiébaux, S.; Walsh, T.; et al. 2006.
Estimating Search Tree Size. In Proc. of the 21st National
Conf. of Artificial Intelligence, AAAI, Menlo Park.
Kocsis, L.; and Szepesvári, C. 2006. Bandit based Monte-
Carlo Planning. In ECML, 282–293. Springer.
Kottler, S.; Kaufmann, M.; and Sinz, C. 2008. Computa-
tion of Renameable Horn Backdoors. In International Con-
ference on Theory and Applications of Satisfiability Testing,
154–160. Springer.
Li, Z.; and Van Beek, P. 2011. Finding Small Backdoors in
SAT Instances. In Canadian Conference on Artificial Intel-
ligence, 269–280. Springer.
Linderoth, J. T.; and Savelsbergh, M. W. 1999. A Compu-
tational Study of Search Strategies for Mixed Integer Pro-
gramming. INFORMS Journal on Computing, 11(2): 173–
187.
Lodi, A.; and Tramontani, A. 2013. Performance Variabil-
ity in Mixed-Integer Programming. Tutorials in Operations
Research: Theory Driven by Influential Applications, 1–12.
Loth, M.; Sebag, M.; Hamadi, Y.; and Schoenauer, M. 2013.
Bandit-based Search for Constraint Programming. In In-
ternational Conference on Principles and Practice of Con-
straint Programming, 464–480. Springer.
Nemhauser, G. L.; and Wolsey, L. A. 1988. Integer and
Combinatorial Optimization. John Wiley & Sons.
Paris, L.; Ostrowski, R.; Siegel, P.; and Sais, L. 2006. Com-
puting Horn Strong Backdoor Sets Thanks to Local Search.
In 2006 18th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI’06), 139–143. IEEE.
Rimmel, A.; Teytaud, F.; and Cazenave, T. 2011. Optimiza-
tion of the Nested Monte-Carlo Algorithm on the Traveling
Salesman Problem with Time Windows. In European Con-
ference on the Applications of Evolutionary Computation,
501–510. Springer.

3794

Sabharwal, A.; Samulowitz, H.; and Reddy, C. 2012. Guid-
ing Combinatorial Optimization with UCT. In International
conference on integration of artificial intelligence (AI) and
operations research (OR) techniques in constraint program-
ming, 356–361. Springer.
Satomi, B.; Joe, Y.; Iwasaki, A.; and Yokoo, M. 2011. Real-
Time Solving of Quantified CSPs based on Monte-Carlo
Game Tree Search. In Twenty-Second International Joint
Conference on Artificial Intelligence.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the Game of Go Without Human
Knowledge. Nature, 550(7676): 354–359.
Szeider, S. 2005. Backdoor Sets for DLL Subsolvers. Jour-
nal of Automated Reasoning, 35(1-3): 73–88.
Williams, R.; Gomes, C. P.; and Selman, B. 2003. Back-
doors to Typical Case Complexity. In IJCAI, volume 3,
1173–1178.
Xu, R.; Kadam, P.; and Lieberherr, K. 2021. First-Order
Problem Solving through Neural MCTS based Reinforce-
ment Learning. arXiv preprint arXiv:2101.04167.

3795

