
A Divide and Conquer Algorithm for Predict+Optimize with Non-convex
Problems

Ali Ugur Guler1, Emir Demirović2, Jeffrey Chan3, James Bailey1, Christopher Leckie1, Peter J.
Stuckey4

1 University of Melbourne,
2 TU Delft,

3 RMIT University,
4 Monash University

aguler@student.unimelb.edu.au, E.Demirovic@tudelft.nl, jeffrey.chan@rmit.edu.au, baileyj@unimelb.edu.au,
caleckie@unimelb.edu.au, peter.stuckey@monash.edu

Abstract
The predict+optimize problem combines machine learning
and combinatorial optimization by predicting the problem co-
efficients first and then using these coefficients to solve the
optimization problem. While this problem can be solved in
two separate stages, recent research shows end to end mod-
els can achieve better results. This requires differentiating
through a discrete combinatorial function. Models that use
differentiable surrogates are prone to approximation errors,
while existing exact models are limited to dynamic program-
ming, or they do not generalize well with scarce data. In
this work we propose a novel divide and conquer algorithm
based on transition points to reason over exact optimization
problems and predict the coefficients using the optimization
loss. Moreover, our model is not limited to dynamic program-
ming problems. We also introduce a greedy version, which
achieves similar results with less computation. In compari-
son with other predict+optimize frameworks, we show our
method outperforms existing exact frameworks and can rea-
son over hard combinatorial problems better than surrogate
methods.

Introduction
Machine Learning (ML) models are usually trained to make
accurate predictions by minimizing errors, such as mean
squared error (MSE). These predictions can then be used
as coefficients in other decision making processes, such as
a combinatorial optimization problem. The performance of
these predictions is evaluated by their ability to lead to
the correct decisions. Such evidence based decision making
arises in many fields like transportation, healthcare, security
and education (Horvitz and Mitchell 2010). Consequently,
there has been growing interest in ML models for use in op-
timization problems. These models try to predict coefficients
of the optimization problem in such a way that even if the
predictions are less accurate, they lead to better decisions.
This paradigm is called predict then optimize (Elmachtoub
and Grigas 2017) or predict+optimize (PPO) (Demirovic
et al. 2020). In this paper we propose a new framework for
PPO to learn coefficients by directly reasoning over discrete
combinatorial problems.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Motivation: Traditionally, predictions are the end goal of
ML models. A regression model aims to minimize predic-
tion errors. If the model makes perfect predictions, it also
leads to the optimal decision. However all models are prone
to errors. When there are errors in predictions, MSE does
not necessarily represent the performance of the decisions
(Ifrim, O’Sullivan, and Simonis 2012). A PPO framework
trains parameters with the optimization objective, and can
model the underlying problem better. Although PPO can
improve decision making, it requires learning through hard,
usually non differentiable and discrete functions.

Specialized frameworks called semi-direct methods can
be used to approximate and minimize the optimization loss
for specific problems. These frameworks depend on assump-
tions of the constraint configurations, and are hard to modify
for different constraint sets and problems. We aim to build a
general framework, a direct method, to understand and rea-
son over an arbitrary optimization problem. Direct methods
are not trivial for combinatorial problems. One way to differ-
entiate through combinatorial problems is to use surrogates
or relaxations. However, current surrogate models implic-
itly assume that the relaxed underlying problem will show
convex behaviour. For a combinatorial problem this is not
guaranteed and in cases where the underlying problem is not
convex, gradient descent methods with the relaxed function
will induce an approximation error to the optimization ob-
jective (Thapper and Živnỳ 2018).

Reasoning over a non convex function is challenging to do
in polynomial time and requires more resources than a typi-
cal optimization problem. Demirovic et al. (2020) proposed
a linear model to directly reason over the exact optimiza-
tion loss of combinatorial problems defined by dynamic pro-
gramming (DP). It makes use of the DP solution to find the
transition points where small changes in predictions result
in different optimal solutions and thus maps the piecewise-
linear function (PWLF) of the combinatorial space. Linear
models are widely used in machine learning and their sim-
ple structure is suitable for explainable AI applications and
helps training the models faster. However state of the art
combinatorial solvers are usually faster than the DP solu-
tion and in many cases where it is not feasible to scale a
DP solution, a dedicated solver scales better. Moreover for

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

3749



any new problem and constraint set a new DP solution has
to be formulated and this slows down the application of the
framework to new problems.

We propose a novel framework, DNL, to directly reason
over the exact optimization loss without solver restrictions.
This model can be used with state of the art solvers. Our
framework also builds upon the idea of extracting the tran-
sition points. However, unlike the DP solution, we use a
numerical approach to extract transition points. We show
that the predicted objective is a convex PWLF and use this
knowledge to apply a divide and conquer algorithm to iden-
tify transition points. Our contributions are as follows:

• For problems with linearly parameterized coefficients
and linear objectives, we show the predicted objective
value is convex.

• We propose a novel direct PPO framework to reason
over the exact non-convex optimization problem based
on PWLF mapping without solver restrictions.

• We introduce a greedy method to map the PWLF, with
similar performance to the full method and with lower
complexity.

• We evaluate on 0-1 knapsack problems and a schedul-
ing problem, and compare with the previous state of
the art competing approaches. We show our divide and
conquer approach achieves identical results to the DP
model at knapsack benchmarks and scales better for
larger problems. We also demonstrate that for hard non-
convex problems DNL performs better than a non-linear
exact model SPO-Forest (Elmachtoub, Liang, and Mc-
Nellis 2020) and is more robust compared to state of
the art surrogate models SPO-Relax (Mandi et al. 2020),
QPTL (Wilder, Dilkina, and Tambe 2019), IntOpt (Mandi
and Guns 2020), DP (Demirovic et al. 2020)).

Related Work
The standard approach to PPO is to separately solve the pre-
diction problem and then the optimization problem. Com-
bined approaches are a relatively new focus. Bengio (1997)
showed that hand crafted models for financial portfolio opti-
mization can perform better than a standard loss function.
Kao, Roy, and Yan (2009) proposed using a combination
of Empirical Optimization and ordinary least squares loss
to improve performance for decision driven machine learn-
ing. Lim, Shanthikumar, and Vahn (2012) define relative re-
gret in the context of portfolio optimization. Elmachtoub
and Grigas (2017) define the general Smart Predict and Op-
timize (SPO) loss, which we call the regret in our paper.
They propose a linear relaxation, SPO+ loss, to train ma-
chine learning models. Their work shows SPO+ loss can be
used to achieve improved performance for constrained lin-
ear programming problems. Amos and Kolter (2017) pro-
pose to transform the optimization loss into a quadratic
problem using KKT equations. Donti, Amos, and Kolter
(2017) show that performance can be improved by using se-
quential quadratic programming (QP) to compute the new
loss, and train the model with respect to it. Wilder, Dilk-
ina, and Tambe (2019) extend the QP approach to linear

programming problems. Ferber et al. (2020) extend the ap-
proach of Wilder, Dilkina, and Tambe (2019) to directly ap-
ply to mixed integer programming by using pure cutting
plane methods to solve the MIP, resulting in an LP suffi-
cient to define the MIP optimally. Mandi and Guns (2020)
show logarithmic regularization terms can also be used in-
stead of quadratic terms. Mandi et al. (2020) also show that
SPO+ loss can be used as a surrogate loss for relaxations of
combinatorial problems. Elmachtoub, Liang, and McNellis
(2020) train decision trees with exact regret. This approach
predicts problem sets as a whole and is not flexible with
outlying problem sets. It requires prior knowledge and pre-
processing to have reliable results. Luo et al. (2020) propose
a specialised framework to optimize virtual machine provi-
sioning. Black-box end to end frameworks are also used to
differentiate and learn combinatorial problems (Bello et al.
2016), (Li, Chen, and Koltun 2018), (Niculae et al. 2018).
Pogančić et al. (2020) use a black-box approach to predict
optimal solutions from coefficient features. Demirovic et al.
(2019a) investigate the knapsack problem from a PPO per-
spective and show how ranking methods can be applied to
it. Similarly Demirovic et al. (2019b) introduce transition
points for ranking problems. The direct inspiration of our
work is that of Demirovic et al. (2020), which shows how
to optimize parameters in a learning model directly using
regret, as long as the optimization problem has a DP formu-
lation. They build a PWLF using the DP formulation that
identifies transition points, where the regret changes. In this
work we extend this approach to arbitrary optimization prob-
lems by using numerical methods to find the transition points
of the regret.

Divide and Learn
Transition points are model parameter values where small
perturbations cause a change in the result of the prediction
performance. Our Divide and Learn (DNL) 1 framework first
extracts these transition points within the search region for
all problem sets in a batch and then compares the transition
points within themselves to find the optimal model param-
eters. The algorithm uses coordinate descent to iteratively
update all the model parameters (Alg. 1). In this section we
formally define the preliminaries and transition points, and
detail the technical properties of the DNL framework.

Algorithm 1: DNL algorithm

1: procedure COORDINATE DESCENT(θθθ)
2: For Model Parameters βββ and features θθθ
3: βββ ← initialize with regression
4: for all θθθbatch ∈ θθθ do
5: for all βi ∈ βββ do
6: Define constants, Ci, for coordinate descent
7: Ci ←

∑
j 6=i θj ∗ βj

8: T ← Extract Transition Points(θi, βi, Ci)
9: βopt ← Compare Transitions(T, θi, Ci)

10: βi ← step towards βopt

1https://github.com/Patyrn/Divide-and-Learn

3750



Preliminaries
We now formally define the PPO problem. Given a set of
objective coefficients vvv, we define a linear objective combi-
natorial problem as:

s(vvv) ≡ xxx = argmax
xxx∈C

xxxTvvv (1)

where C is a finite combinatorial solution space (usually de-
scribed implicitly), i.e., the constraints are known and fixed,
and the variables have finite domains. The oracle s(vvv) finds a
solution that maximizes the objective value of the optimiza-
tion problem given objective coefficients vvv. In PPO settings
objective coefficients are not known beforehand and fore-
casts, vpvpvp(θθθ,βββ), are predicted using features θθθ and parameters
βββ. We show the solution of the new parameterized optimiza-
tion problem as

s(vpvpvp) ≡ xpxpxp = argmax
xxx∈C

xxxTvpvpvp (2)

Regret: We measure the performance of PPO frameworks
using regret. Regret is defined as the cost of making sub-
optimal decisions with incorrect coefficient predictions. If
we define xxx∗ = s(vvv) as the optimal solution of an op-
timization problem with true objective coefficients vvv, and
xpxpxp = s(vpvpvp) as the optimal solution of an optimization prob-
lem with predicted objective coefficients vpvpvp, then:

Regret : R(vpvpvp, vvv) = xxx∗Tvvv − xpxpxpTvvv (3)

The true optimal value xxx∗Tvvv is the boundary for the pre-
dicted decisions. The optimal objective value with predicted
coefficients xpxpxpTvvv can never exceed the true optimal. There-
fore the minimum value of regret is zero, and it is achieved
when the predicted optimal solution, xpxpxp, is equal to a true
optimal solution, xxx∗. The PPO problem is to find βββ that
minimizes R(vpvpvp, vvv).

Transition points: Note that parameterised regret is a
piecewise function. The predicted coefficients vpvpvp can only
affect regret by changing the solution of the optimization
problem. These changes are not continuous and only hap-
pen at specific boundaries of the βββ values. Assume for the
moment a single (unfixed) parameter β. We call the param-
eter values βt where small perturbations change the opti-
mal solution as the transition points of the piecewise regret
function. Note that for any two points between consecutive
transition points βti < β1 < β2 < βti+1

, xpxpxp(β1) = xpxpxp(β2),
therefore R(β1) = R(β2). This suggests mapping the op-
timization problem by identifying intervals defined by the
transition points. Then we can choose any value in those in-
tervals to train model parameters.

Example 1. Consider a knapsack problem with three items
valued at v1 = 2, v2 = 1, v3 = 3 . The capacity is enough
for two items. The objective coefficients (e.g., selling price of
each item) are unknown but the features: θθθ1 = [−1, 3], θθθ2 =
[0, 1], θθθ3 = [1, 1] are known. We have a linear model to pre-
dict prices from the features. Its parameters areβββ = [β1, β2]
and vpi = β1 ∗ θi1 + β2 ∗ θi2 + c where i ∈ Z, 0 < i < 4. As-
sume β2 is fixed and equals 1 and for simplicity the constant

c equals 0. We can express the predicted objective coeffi-
cients with linear functions (see Fig 1a), vp1 = −β1 + 3,
vp2 = 1, vp3 = β1 + 1. From Fig 1a and 1b we see that
although vp changes with β1, there are only three different
solutions (xxx ∈ {(1, 1, 0), (1, 0, 1), (0, 1, 1)}) provided by the
solver. Each solution represents a sum of linear functions of
the chosen items. By combining all separate linear functions,
we represent the solution space as a piecewise linear func-
tion (PWLF) seen in Fig. 1b.

In Example 1 there are two transition points: β1 = 0,
β1 = 2. We can express the solution space as:


vp1, vp2 ≥ vp3,xpxpxp = [1, 1, 0] β1 ≤ 0

vp1, vp3 ≥ vp2,xpxpxp = [1, 0, 1] 0 ≤ β1 ≤ 2

vp2, vp3 ≥ vp1,xpxpxp ≡ [0, 1, 1] 2 ≤ β1
We define the predicted optimal value (POV) and true op-

timal value (TOV), for fixed feature value θθθ:

POV (βββ) = xpxpxp
Tvpvpvp

TOV (βββ) = xpxpxp
Tvvv

Note that the predicted coefficients do not directly affect
the true objective value shown in Figure 1c. However the
transition points of the predicted PWLF are exactly the same
as the transition points of the discrete, true objective. There-
fore identifying the transition points of the predicted func-
tion can dramatically reduce the effort to map the real ob-
jective function.

Convex Search Space
Our framework Divide and Learn (DNL) predicts coeffi-
cients with a linear prediction model. Here we show that for
linear models and an arbitrary optimization problem with a
linear objective function, the predicted objective value is a
convex piecewise function. An optimization problem has a
linear objective function when the relationship between the
solution vector and the coefficients is linear:

Obj(xxx,vvv) = xxxT · vvv (4)

Here the predicted coefficients are parameterised linear
functions

vp = βββT · θθθ + c (5)
where c is a constant. This is the same restriction
as Demirovic et al. (2020). Equations 4 and 5 mean that the
POV of the optimization problem can be expressed as a sum
of linear functions.

We discuss the properties of POV assuming βββ is a sin-
gleton β. Since we use coordinate descent to reason about
POV and update one parameter at a time, this is the only
case we are interested in.
Lemma 1. POV is a piecewise linear function (Appx. A.1).
Lemma 2. POV is a convex function (Appx. A.2).
Corollary 1. For any three values β1 < β2 < β3, the points
(β1, POV (β1)), (β2, POV (β2)), (β3, POV (β3)) are not
collinear iff there is a transition point βt in the range β1 <
βt < β3 (Appx. A.3).

3751



-1 0 1 2 3

1

2

3

4

β

vp

1

v

β+1

=
2

=
3

3-βvp=1 3
pv

p 1

1 1

(a) Predicted coeffi-
cient (vpvpvp)

-1 0 1 2 3

vp1 p2+

POV

...

5

4

vp1 p3+ vp2 p2+

β1

(b) Predicted opti-
mal value (POV)

-1 0 1 2 3

v1+v2

TOV

...

5

4

3

v1+v3 v2+v3

β1

(c) True optimal
value (TOV)

Figure 1: Piecewise function construction

1

2

3

4

5

-1 0 1 2 3
β

1

-3 -2

POV

(a) Sample points
with large and uni-
form steps. Transi-
tion point in [-2,1]

1

2

3

4

5

-1 0 1 2 3
β

1

-3 -2

POV

(b) Decrease the
step size and nar-
row the interval to
[-1.5,0.5]

1

2

3

4

5

-1 0 1 2 3
β

1

-3 -2

POV

(c) Two transition
points in the inter-
vals [-1.25,-0.75], [-
0.25,0.25]

Figure 2: Divide and conquer algorithm

Transition Point Extraction
We propose a numerical approach to extract transition points
without any solver restrictions. Our approach works for any
optimization problem with a linear objective and fixed con-
straints.

Divide and conquer: From Corollary 1, we know that if
three arbitrary points of the POV are not collinear, there is at
least one transition point between those points. When we de-
crease the distance between these three values, we can accu-
rately identify the location of transition points. The simplest
way to extract transition points is to sample the POV with a
fixed step size, and compare collinearity of three consecutive
points. This brute force method is infeasible for many prob-
lems. For long intervals without transition points, a small
step size is redundant. With these insights we apply a di-
vide and conquer algorithm to sample the POV. First we split
the search region with ten uniformly spread points, then we
test collinearity of these points. If there are points that are
not collinear, the intervals these points define are marked as
transition intervals. A transition interval is an interval with
at least one transition point. Then we proceed to decrease
the step size as: stepn+1 = stepn

10 and sample the transition
intervals. Finally we repeat finding transition intervals, re-
ducing the step size until the step size reaches a desired min-
imum. By starting with a large step size and iteratively re-
ducing it, we identify long intervals without transition points
with minimal processing (Fig 2).

Multivariate model: We described an extraction method
for a singleton βββ. In reality multivariate models are widely
used to predict these coefficients. It is possible to find the
transition points of multivariate PWLFs, but the number of
transition points can increase exponentially. We use coordi-

nate descent to transform a high dimensional linear model
into a one dimensional model. We find transition points
for each singleton βββ separately (Wright 2015). For a pa-
rameter vector βββ = [β1, ..., βm], coordinate descent iter-
ates over βββ. In each iteration one parameter, βk, is con-
sidered as a variable, and the rest are fixed as a constant,
vp = βk · θk +

∑
n6=k βn · θn. Then for each parameter

we consecutively perform transition point extraction and pa-
rameter updates. After all transition points are identified we
update the parameters as explained in the next section.

Parameter Update: In a PPO setting a dataset is a col-
lection of multiple problem sets. Each problem set has the
same constraints, but with different coefficients. We predict
unknown coefficients for each problem set with the same
model parameters βββ, and the goal is to train model parame-
ters to minimize the average regret across all problem sets.
For a dataset of size N , and coefficient vector vvv, the dataset
is denoted D = {vvv(1), ..., vvv(N)}. We choose the model pa-
rameters βββ to minimize the average regret R.

βββ ≡ argmin
1

N

N∑
n=0

R(vvv(n), vpvpvp
(n))

Transition point comparison: We express the TOV of
each problem set as a piecewise function. The extraction
method provides the transition points of each problem set.
Let T (i) = {β(i)

t1 , ...β
(i)
tL } be the set of transition points

of size L for problem set i. We construct the intervals of
the piecewise function as I(i) = {[β(i)

tl
, β

(i)
t(l+1)

], 0 < l <

L, l ∈ Z}. To find the optimal model parameters for prob-
lem set i, we calculate the TOV for each interval and pick
the best interval. A single sample point for each interval is
enough to calculate the TOV and we choose the mid points
of the intervals. Let Imid represent the set of mid points then
β
(i)
opt = argmin

β∈I(i)mid

R(vvv(i), vpvpvp
(i)). The optimal parame-

ter for each problem set can be different. To find the optimal
parameters over all problem sets, we compare every interval
from each problem set.

βopt ≡ argmin

β∈
N⋃

i=1

I
(i)
mid

1

N

N∑
n=0

R(vvv(n), vpvpvp
(n))

With coordinate descent we perform these comparisons for
each parameter and update the parameters individually. We
use mini-batches to train the model parameters. A mini-
batch represents a subset of problem sets. When using mini-
batches we construct a quasi-gradient in the direction of the
global minimum of that particular mini-batch. Then we up-
date the model parameters with the quasi gradient. For a

mini-batch i: βnew = βold + learning rate · β
(i)
opt−βold

|β(i)
opt−βold|

Greedy Methods: To extract transition points and com-
pare them, we repeatedly solve an optimization problem.
Many optimization problems are NP-hard, and large prob-
lems can be expensive to work with. Therefore we propose
a greedy method to partially extract transition points.

Divide and Learn Greedy (DNL-Greedy): Our divide
and conquer algorithm repeatedly compares the collinearity

3752



of POV samples and there can be many redundant transi-
tion points. We propose a greedy extraction method to stop
the extraction at the first transition point βt that improves
TOV over the old parameter βold. We prioritize searching re-
gions around the old model parameter. We observed that al-
though TOV is not a convex function, the optimal model pa-
rameters can be clustered in similar regions. Our motivation
with this greedy method is to quickly iterate over parameters
and bypass redundant sampling for the first iterations. Note,
even for non convex problems the greedy method can find
the global minimum. DNL-Greedy uses only one transition
point for each problem set, and reduces comparison com-
plexity by solving N2 optimization problems, and the num-
ber of transition points has minimal effect on the compari-
son complexity. We show empirically DNL-Greedy achieves
similar performance to the full method, and reduces the run
time.

Coordinate descent: DNL uses coordinate descent to
train model parameters to maximize the TOV. TOV is not
a convex function and in order to find the true optimal point
we need to test each transition point of the function. There-
fore coordinate descent may result in a loss of optimality.
This can be overcome by using a multi-dimensional divide
and conquer algorithm for multivariate models, however we
believe the trade off of an exponential increase in transition
points is not worth the more accurate representation of the
problem space.

Evaluation and Discussion
We experiment on two optimization problems: 0-1 knap-
sack and scheduling. We compare four exact models: DNL,
DNL-Greedy, SPO-Forest (Elmachtoub, Liang, and McNel-
lis 2020), dynamic programming (DP) (Demirovic et al.
2020), three surrogate models: SPO-Relax (Mandi et al.
2020), QPTL (Ferber et al. 2020), IntOpt (Mandi and Guns
2020) and an ML model: ridge regression.

Dataset: We use the dataset from the ICON energy chal-
lenge (Simonis et al. 2014) for both knapsack and schedul-
ing problems. The same dataset was used in previous work
on PPO (Mandi et al. 2020; Demirovic et al. 2020). Data
samples are collected from real electricity prices every 30
minutes, from November 2011 to January 2013. In total
there are 37877 data samples, each 48 data samples, rep-
resenting a day, form a problem set. Therefore we use 789
optimization problems to train PPO models.

Methodology: We split the dataset into 70% training set,
10% validation set and 20% test set, resulting in 552, 79
and 157 optimization problems for training, validation and
testing. As the dataset is small, we further split the data set
into 5 folds to capture the whole distribution. For each fold
we train the models 10 times and use the iteration with the
least validation regret. Due to the sparsity of data and the
combinatorial problem, we observed high variance for all
models, including regression. To give a clear representation
of the performance, we chose to normalize the regrets with
respect to a baseline: regression. We report the normalized
mean regret and one standard deviation across folds. Even
with normalized regrets, there can be high variance between

folds and for scheduling problems we also report the number
of folds where a PPO model outperforms the baseline model.

Knapsack problem: We consider a 0-1 knapsack
problem of n items: given a capacity limit, W , item
weights w = [w1, w2..., wn], we have to predict item
values vvv = [v1, v2..., vn]. A 0-1 solution vector xxx =
argmax(xxxT ·w≤W ) xxx

T · vvv decides the chosen items.
We run knapsack experiments for both unit weights and

varying weights. Knapsack problems with high correlation
between item values and weights are harder to solve than
those with weak correlations (Pisinger 2005). We generate
exactly correlated knapsack problems by choosing weight
values in {3, 5, 7}, and multiplying by the true energy price
to generate their true value. We experiment on varying ca-
pacity limits from 5% to 90%. For unit knapsack the ca-
pacity limits range from 5-45 (10%-90%) and for weighted
knapsack the capacity limits range from 12-220 (5%-90%).

Scheduling: The scheduling problems are modified ver-
sions of the ICON challenge (Mandi et al. 2020), (Simonis
et al. 2014). There are M machines and N jobs. Each ma-
chine can run at most 2 jobs at a given time slot. Each job
has a power consumption Pn and a duration Dn. Jobs are
not restricted by an earliest starting time and a latest finish-
ing time and can be allocated to any of the 48 time slots.
A job can only be run on one machine, and once a job is
being processed it cannot be split. All jobs have to be fin-
ished in the 24 hour period. The goal of the scheduling is
to maximize the energy cost. Energy prices are not known
beforehand and have to be predicted. For the experiments
we constructed benchmarks with identical jobs with dura-
tion Dn = 4 time slots. We vary the machine numbers from
1 to 3 and jobs from 1 to 10.

Experiments
The models are trained with Intel(R) Xeon(R) Gold 6254
CPU @ 3.10GHz processors using 8 cores with 3.10 Ghz
clock speed. We use Gurobi Optimization 2022 to solve
knapsack and scheduling problems. For the knapsack prob-
lems max training time is set to 4000 seconds (≈ 1 hour).
For scheduling problems max training time is set to 12000
seconds (≈ 3.3 hours). Refer to Appx. B for detailed hyper
parameter configurations. We use early stopping for all PPO
models (Bishop 2006), and use the iteration with the least
validation regret. We warmstart model parameters with re-
gression (Pratt and Jennings 1996).

Unit knapsack: The unit knapsack problem (Figure 3a) is
a simple optimization problem and there is no significant dif-
ference between regression and transition point based PPO
methods, DNL, DNL-Greedy and DP. Note that identical
performance between DNL and DP is expected as they both
use the same transition points. We see that numerical ap-
proximations of the DNL frameworks are enough to train
parameters as good as the exact locations. SPO-Forest has
sub-optimal performance, but its performance increases as
the capacity of the knapsack problem increases. Similarly,
surrogate models also fail to capture the knapsack prob-
lem and perform worse than regression. Surrogate models
and SPO-Forest also have significantly higher variance when
compared to DNL, DNL-Greedy and DP.

3753



5 20 25 35 40

Capacities

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
T
e
st

 R
e
g

re
t

Knapsack-Unit Weights

Regression
DP
DNL-Greedy
DNL SPO-Relax

QPTL
IntOpt
SPO-Forest

(a) Unit Knapsack: normalized mean and one standard deviation.
Graph is truncated at 2 for readability. See Appx. E.2 for all capac-
ities

12 24 96 196 220
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

T
e
st

 R
e
g

re
t

Knapsack Weighted

Capacities

(b) Weighted Knapsack: normalized mean and one standard devia-
tion. The legend is the same as (Fig 3a). Graph is truncated at 2 for
some instances for readability. See Appx. E.2 for all capacities

Figure 4: Knapsack Benchmarks

Weighted knapsack: Weighted knapsack is harder than
the unit knapsack, and we see benefits of PPO frameworks
better. Transition point methods DNL, DNL-Greedy and DP
outperform regression for all capacities, and the improve-
ment is significant at capacities 12, 196 and 220. As for the
unit knapsack problem the DNL and DP frameworks have
similar performance. On capacity 96, DP cannot train un-
der the time limit, and DNL frameworks outperform DP.
SPO-Forest outperforms regression only for capacities 12,
196 and 220. QPTL and Intopt performs well for small ca-
pacities and SPO is worse than regression for all capacities.
Other frameworks have higher variance than DNL and DP.

Scheduling: Scheduling problems are more complex
than both the unit and the weighted knapsack problems.
Scheduling problems also do not have a feasible DP solu-
tion and the DP framework is not applicable. DNL-Greedy
outperforms regression for most of the benchmarks, and the
only time its performance is significantly worse is with the
2 Machines and 2 Jobs benchmark (Appx. E.1) . To the best
of our knowledge the only other exact method applicable
for these scheduling problems is SPO-Forest, and its perfor-
mance is sub-optimal compared to all other methods. QPTL
also falls behind compared to SPO-Relax and DNL-Greedy,
and in many benchmarks is worse than regression. IntOpt
performs similar to normal regression and has less vari-
ance among surrogates for complex scheduling tasks. DNL-
Greedy outperforms SPO-Relax for all benchmarks with
3 machines (Table 1). Moreover SPO-Relax shows higher

variance than DNL-Greedy for a majority of the bench-
marks, especially for problems with more than one machine.
DNL-Greedy also outperforms regression more consistently
compared to SPO-Relax: DNL-Greedy improves 4.1, 3.8,
and 4.2 folds on average for benchmarks with 1, 2 and 3
machines, and SPO-Relax improves 3.9, 3, and 3 folds.

Surrogates and Combinatorial Reasoning: Differen-
tiable surrogates reason over non-differentiable combinato-
rial problems with an approximation error. The relaxations
can misrepresent problem spaces with large discrete jumps.
We experimented on both problem spaces with small jumps
such as unit knapsack, high capacity weighted knapsack and
1 machine scheduling problems, and with large jumps such
as low capacity weighted knapsack problems and 3 ma-
chines scheduling problems.

There are 48 time slots in a problem set. For scheduling
problems each job has identical duration: 4 time slots. Each
machine is also identical and can run two jobs simultane-
ously. When there is one machine and two jobs, 4 to 8 time
slots can be allocated. If the problem set has few outlying
high values, the difference between the optimal decision and
other feasible solutions will be large and the regret function
will have large discrete jumps. Whereas for the benchmark
with 1 machine and 10 jobs, 20 to 40 time slots are going to
be allocated. As the job number is increased the difference
between the optimal solution and other feasible solutions
will decrease gradually and the problem space will have
smaller discrete jumps. Similarly the problem space will be
more jagged when the number of machines are increased.
We see a similar narrative for the knapsack problem: when
capacities are increased the regret will have smaller discrete
jumps. SPO-Relax performs relatively better for unit knap-
sack problems than weighted knapsack and its performance
improves as the capacity increases for weighted knapsack
problems. Similarly SPO-Relax has good performance and
small variance for scheduling problems with 1 machine and
high job counts (appx. E.1). However its performance drops
sharply when the machine numbers increase or the job num-
bers decrease. In contrast, DNL-Greedy can reason over
both smooth and jagged problem spaces, and improves re-
gret even for hard combinatorial problems like the weighted
knapsack benchmarks and scheduling problems with high
machine counts.

PPO problems can have small datasets, and this is further
magnified by grouping data samples into problem sets. The
ICON data set has 37,877 data samples, which is reduced
to 789 problem sets with a problem set size of 48 samples.
Therefore PPO models should be robust against scarce data.
Surrogate models show significantly larger variance across
folds than DNL-Greedy and they are more sensitive to the
data distribution. This large variance is observed with unit
and weighted knapsack benchmarks and is especially pro-
nounced for scheduling problems with higher machines. For
benchmarks with three machines, surrogate models other
than IntOpt have high variance, more than triple that of
DNL. For scheduling problems with 3 machines, QPTL is
comparable to SPO-Relax, for others QPTL is outperformed
by both SPO-Relax and DNL.

Reliability: PPO problems can be volatile and users may

3754



DnL-Greedy SPO-Relax QPTL SPO-Forest IntOpt
Jobs 2 Machines
1 0.73±0.33 (5) 1.41±1.36 (3) 1.27±0.29 (1) 19.39±9.86, (0) 1.1±0.43 (3)
3 0.82±0.2 (4) 0.88±0.47 (4) 1.21±0.4 (2) 19.39±9.86 (0) 0.99±0.14 (4)
5 0.84±0.14 (4) 1.0±0.43 (3) 1.08±0.24 (3) 4.59±1.4 (0) 1.02±0.15, (3)
7 1.0±0.19 (2) 0.97±0.36 (2) 1.08±0.31 (3) 4.44±0.93 (0) 1.0±0.15 (3)
10 0.99±0.14 (2) 0.87±0.14 (3) 1.07±0.36 (3) 4.27±0.69 (0) 0.93+0.08 (3)
Folds 38 30 22 0 31
Jobs 3 Machines
1 0.73 ± 0.33 (4) 1.13±0.96 (3) 1.28±0.7 (2) 19.39±9.86 (0) 1.25±0.34 (2)
3 0.87±0.14 (4) 1.26±1.14(4) 1.02±0.44 (0) 19.39±9.86 (0) 1.02±0.19 (3)
5 0.81±0.1 (5) 1.5±1.6 (3) 1.44±0.67 (2) 19.39±9.86 (0) 0.92±0.14 (3)
7 0.9±0.17 (3) 1.38±0.78 (3) 1.32±0.43 (2) 5.58±1.84 (0) 1.07+0.19 (2)
10 0.84±0.12 (5) 0.89±0.3 (3) 0.96±0.11 (3) 4.32±0.7 (0) 1.03+0.17 (2)
Folds 42 31 24 0 28

Table 1: Normalized mean regret and one stds and number of improved folds for scheduling benchmarks. Mean regret ± std
(number folds improved over regression) is the metric used to demonstrate the performance. At the bottom of the table we also
report the total number of improved folds for each number of machines. The regret values are normalized with respect to the
baseline ridge regression. Values under 1 represent the cases where the model performs better than the baseline regression.
Values over 1 represent the cases when the model performs worse than the regression. See Appx. E.1 for all machines and jobs.

be concerned about a reliable framework for sensitive de-
cision problems. We have highlighted two reasons for the
unpredictability of PPO problem spaces: the combinatorial
nature of the problem and data scarcity. Usually it is only
possible to see if a model fits a problem after training and
testing a model. The surrogates’ reliability drops and their
performance variance increases when the combinatorial na-
ture of the problem increases such as the harder schedul-
ing problems. In contrast DNL-Greedy preserves its perfor-
mance even with increasing machines and improves 4.1, 3.8
and 4.2 folds on average for benchmarks with 1, 2 and 3
machines.

Our benchmarks are systematically constructed to ob-
serve the response of the PPO frameworks to different types
of decision problems. In a realistic scenario, it is extremely
hard to predict when the problem space is near convex. Un-
like the surrogate methods, DNL consistently outperforms
regression for both knapsack and scheduling benchmarks,
and in the worst case is at least as good as the regres-
sion baseline. The only benchmark it significantly under-
performs on is scheduling benchmark with 2 jobs and 2 ma-
chines, whereas surrogate models are outperformed by re-
gression for both knapsack problems and for all scheduling
benchmarks with 3 machines. Therefore if a PPO framework
is to be chosen for an unknown decision problem and an un-
known dataset, DNL can be chosen for its likelihood to be at
least as good as a traditional method.

SPO-Forest and DNL: SPO-Forest is the state of the art
direct PPO method based on decision trees. It is limited
to problems with linear objectives. In our benchmarks its
performance is sub-optimal compared to other models. Un-
like other models SPO-Forest uses a multi-output regression
model to predict all the items in a problem set. Therefore
the item predictions are not independent, and features of
one item can affect forecasts of multiple items. On one hand
this general structure might capture the complex interdepen-
dent relationships, on the other hand fully understanding

12 24 48 72 96 120 144 172 196 220

101

102

103
R

u
n
 T

im
e
 P

e
r 

E
p

o
ch

(s
)

Weighted Knapsack Runtime (DP vs DNL-Greedy)

Dnl-Greedy

DP

Capacities

Figure 5: Training time comparison of DNL and DP to train
an epoch in log scale(s). DNL is magnitudes order faster
than DP and is more robust against high capacity problems.

combinatorial problems requires larger data-sets (Yehuda,
Gabel, and Schuster 2020). Many PPO applications have
small numbers of problem sets to train with. SPO-Forest
over-fits the average problem set distribution and has dif-
ficulties understanding the direct relationship between fea-
tures and individual items (Appx. D). Therefore it is sensi-
tive to the outliers in problem sets and potentially requires a
larger data-set to generalize well.

Run Time
Exact methods deliver better combinatorial reasoning by
solving the combinatorial problem multiple times. However
this results in longer training times. Our frameworks, DNL
and DNL-Greedy, trains faster than the previous transition
points model DP. On the other hand exact models are slower
than surrogate models. The regression model has negligi-
ble training time compared to predict+optimize models. In
this section we compare the run times between different pre-
dict+optimize models DP, SPO-Relax, QPTL, SPO-Forest
and regression.

DNL and DP: The main advantage of DNL over DP is

3755



Models Performance Time
Near-Convex Non-Convex

Unit Knapsack Easy Scheduling Knapsack Hard Scheduling
Regression Very High High High Average Very Short
DP Very High High Very High N/A Very Long
DNL-Greedy Very High High Very High Very High Long
SPO-Forest Low Low Moderate Very Low Average
SPO Moderate Very High Low Average Short
QPTL Moderate Average Low Low Short
INTOPT Low Average Very Low Average Short

Table 2: Summary of effectiveness of methods. The comparisons are made with relative performance. For accurate representa-
tions see to Figures 3b, 3a and Table 1.

that DNL can be used with state of the art solvers and signif-
icantly improves training time per epoch. Therefore it can be
applied with optimization problems that may not be feasible
with the DP method. DNL trains faster than DP for all capac-
ities of knapsack problems and the difference is more strik-
ing for larger capacities (Figure 5). If we look at the time of
early stopping (Appx. C), we see that for very low capacities
DP stops earlier than DNL. However for larger problems DP
doesn’t scale as well as DNL. At weighted knapsack bench-
mark with capacity 96 and unit knapsack benchmark with
capacity 40 DP returns 0s training time. Counter intuitively
this is due to the long training times. DP cannot finish an
epoch under 4000 seconds and therefore training terminates
without any iteration.

DNL and SPO-Forest: DNL runs faster than SPO-Forest
for all knapsack problems (Appx. C). We use a larger search
space for scheduling benchmarks and SPO-Forest is faster
than DNL (Appx. C). Although SPO-Forest runs faster at
scheduling benchmarks, it’s regret performance is signif-
icantly worse than a simple regression whereas DNL im-
proves regret over regression.

DNL and Surrogate Models: Surrogate models reason
over a differentiable surrogate of the combinatorial prob-
lem and do not have to solve the decision problem as many
times as the exact methods. Therefore they are significantly
faster than exact models. However this comes with the cost
of not being able to reason over the real combinatorial space
and for hard problems they may have larger regret than re-
gression. SPO-Relax is the fastest model for all scheduling
benchmarks (Appx. C). For unit knapsack problems DNL
is faster than QPTL and for weighted knapsack problems
there isn’t a clear difference between run times of QPTL and
DNL (Appx. C). QPTL and IntOpt are faster than DNL for
scheduling (Appx. C), however like SPO-Forest it has no re-
gret improvement over DNL.

Summary: The DNL framework significantly improves
the training time compared to the previous DP approach
by using a novel divide and conquer method that can be
used with any state of the art solver (Fig 5). However DNL
framework requires more time to train compared to surro-
gate models. Surrogate models build a gradient using a con-
vex surrogate. With this convexity assumption they can up-
date the model parameters with a single solver call and they
can be trained faster than the exact models that require mul-
tiple calls to the solver. Our weighted knapsack and more

complex scheduling experiments suggest that when there is a
discrepancy between the non convex real solution space and
the surrogates, the surrogate models will have sub-optimal
performance. We believe reasoning over non convex under-
lying problems are likely to require non polynomial time and
multiple solver calls are necessary for good performance.

Problems that prioritize performance over training cost
benefit from using an exact method, as they are more reliable
in the case of a non-convex underlying problem. For prob-
lems that are known to behave like a convex problem surro-
gates may be preferable. However in such cases we observed
that a simple regression may also result in a similar or bet-
ter performance (Table 2). Even the fastest surrogate model
needs to solve a non polynomial combinatorial problem and
is significantly slower than a standard regression model.
Therefore it is likely that if a user is choosing a PPO method
over a standard ML model, they are concerned with perfor-
mance over cost. The DNL method provides an alternative
to surrogate models for reliable improvement. Table 2 sum-
marises the trade-offs between performance and run time of
the various methods on different problem classes.

Conclusion
PPO problems are challenging due to the combinatorial na-
ture of the optimization problem. We propose a new divide
and conquer method to extract transition points and train pa-
rameters using regret, rather than a surrogate or a relaxation.
In contrast to the previous DP method, our methods can be
applied with any state of the art solvers. Our framework out-
performs regression and surrogates for weighted knapsack
problems and harder scheduling problems. We also show
that DNL is more robust to changes in the scheduling for-
mulation. We next plan to experiment with nonlinear frame-
works and transition points for stronger models.

Acknowledgements
This research was funded (partially or fully) by the Aus-
tralian Government through the Australian Research Coun-
cil (Grant Number: DP170103174) and was supported by
The University of Melbourne’s Research Computing Ser-
vices and the Petascale Campus Initiative. We use Gurobi
version 2022 Academic License, a commercial MIP solver,
to solve the optimization problems.

3756



References
Amos, B.; and Kolter, J. Z. 2017. OptNet: differentiable
optimization as a layer in neural networks. In Proceedings
of the 34th International Conference on Machine Learning-
Volume 70, 136–145.
Bello, I.; Pham, H.; Le, Q. V.; Norouzi, M.; and Bengio,
S. 2016. Neural combinatorial optimization with reinforce-
ment learning. arXiv preprint arXiv:1611.09940.
Bengio, Y. 1997. Using a financial training criterion rather
than a prediction criterion. International Journal of Neural
Systems, 8(04): 433–443.
Bishop, C. M. 2006. Pattern recognition and machine learn-
ing. springer.
Demirovic, E.; Bailey, J.; Chan, J.; Guns, T.; Kotagiri, R.;
Leckie, C.; and Stuckey, P. J. 2019a. A Framework for Pre-
dict+Optimise with Ranking Objectives: Exhaustive Search
for Learning Linear Functions for Optimisation Parame-
ters. In Kraus, S., ed., Proceedings of the 28th International
Joint Conference on Artificial Intelligence, 1078–1085. IJ-
CAI Press.
Demirovic, E.; Stuckey, P. J.; Bailey, J.; Chan, J.; Leckie,
C.; Ramamohanarao, K.; and Guns, T. 2019b. Predict+ Op-
timise with Ranking Objectives: Exhaustively Learning Lin-
ear Functions. In IJCAI, 1078–1085.
Demirovic, E.; Stuckey, P. J.; Guns, T.; Bailey, J.; Leckie,
C.; Kotagiri, R.; and Chan, J. 2020. Dynamic Programming
for Predict+Optimise. In Conitzer, V.; and Sha, F., eds., Pro-
ceedings of the Thirty-Fourth AAAI Conference on Artificial
Intelligence (AAAI-20), 1441–1451. AAAI Press.
Donti, P.; Amos, B.; and Kolter, J. Z. 2017. Task-based
end-to-end model learning in stochastic optimization. In
Advances in Neural Information Processing Systems, 5484–
5494.
Elmachtoub, A.; Liang, J. C. N.; and McNellis, R. 2020.
Decision trees for decision-making under the predict-then-
optimize framework. In International Conference on Ma-
chine Learning, 2858–2867. PMLR.
Elmachtoub, A. N.; and Grigas, P. 2017. Smart” predict,
then optimize”. arXiv preprint arXiv:1710.08005.
Ferber, A.; Wilder, B.; Dilkina, B.; and Tambe, M. 2020.
MIPaaL: Mixed Integer Program as a Layer. In AAAI, 1504–
1511.
Horvitz, E.; and Mitchell, T. 2010. From data to knowledge
to action: A global enabler for the 21st century. Computing
Community Consortium, 1.
Ifrim, G.; O’Sullivan, B.; and Simonis, H. 2012. Properties
of energy-price forecasts for scheduling. In International
Conference on Principles and Practice of Constraint Pro-
gramming, 957–972. Springer.
Kao, Y.-h.; Roy, B. V.; and Yan, X. 2009. Directed regres-
sion. In Advances in Neural Information Processing Sys-
tems, 889–897.
Li, Z.; Chen, Q.; and Koltun, V. 2018. Combinatorial opti-
mization with graph convolutional networks and guided tree
search. In Advances in Neural Information Processing Sys-
tems, 539–548.

Lim, A. E.; Shanthikumar, J. G.; and Vahn, G.-Y. 2012. Ro-
bust portfolio choice with learning in the framework of re-
gret: Single-period case. Management Science, 58(9): 1732–
1746.
Luo, C.; Qiao, B.; Chen, X.; Zhao, P.; Yao, R.; Zhang, H.;
Wu, W.; Zhou, A.; and Lin, Q. 2020. Intelligent Virtual Ma-
chine Provisioning in Cloud Computing. In Bessiere, C., ed.,
Proceedings of the Twenty-Ninth International Joint Confer-
ence on Artificial Intelligence, IJCAI-20, 1495–1502. Inter-
national Joint Conferences on Artificial Intelligence Organi-
zation. Main track.
Mandi, J.; and Guns, T. 2020. Interior Point Solving
for LP-based prediction+ optimisation. arXiv preprint
arXiv:2010.13943.
Mandi, J.; Guns, T.; Demirovic, E.; and Stuckey, P. J. 2020.
Smart Predict-and-Optimize for hard combinatorial opti-
mization problems. In Conitzer, V.; and Sha, F., eds., Pro-
ceedings of the Thirty-Fourth AAAI Conference on Artificial
Intelligence (AAAI-20), 1603–1610. AAAI Press.
Niculae, V.; Martins, A.; Blondel, M.; and Cardie, C.
2018. SparseMAP: Differentiable Sparse Structured Infer-
ence. In International Conference on Machine Learning,
3799–3808.
Pisinger, D. 2005. Where are the hard knapsack problems?
Computers & Operations Research, 32(9): 2271–2284.
Pogančić, M. V.; Paulus, A.; Musil, V.; Martius, G.; and Ro-
linek, M. 2020. Differentiation of Blackbox Combinatorial
Solvers. In International Conference on Learning Represen-
tations.
Pratt, L.; and Jennings, B. 1996. A survey of connectionist
network reuse through transfer. In Learning to learn, 19–43.
Springer.
Simonis, H.; O’Sullivan, B.; Mehta, D.; Hurley, B.; and
De Cauwer, M. 2014. Energy-Cost Aware Schedul-
ing/Forecasting Competition.
Thapper, J.; and Živnỳ, S. 2018. The limits of SDP relax-
ations for general-valued CSPs. ACM Transactions on Com-
putation Theory (TOCT), 10(3): 1–22.
Wilder, B.; Dilkina, B.; and Tambe, M. 2019. Melding the
data-decisions pipeline: Decision-focused learning for com-
binatorial optimization. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 33, 1658–1665.
Wright, S. J. 2015. Coordinate descent algorithms. Mathe-
matical Programming, 151(1): 3–34.
Yehuda, G.; Gabel, M.; and Schuster, A. 2020. It’s not what
machines can learn, it’s what we cannot teach. In Inter-
national Conference on Machine Learning, 10831–10841.
PMLR.

3757


