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Abstract
The simple temporal problem (STP) is one of the most influ-
ential reasoning formalisms for representing temporal infor-
mation in AI. We study the problem of resolving inconsis-
tency of data encoded in the STP. We prove that the prob-
lem of identifying a maximally large consistent subset of
data is NP-hard. In practical instances, it is reasonable to as-
sume that the amount of erroneous data is small. We there-
fore parameterize by the number of constraints that need to
be removed to achieve consistency. Using tools from param-
eterized complexity we design fixed-parameter tractable al-
gorithms for two large fragments of the STP. Our main al-
gorithmic results employ reductions to the Directed Subset
Feedback Arc Set problem and iterative compression com-
bined with an efficient algorithm for the Edge Multicut prob-
lem. We complement our algorithmic results with hardness
results that rule out fixed-parameter tractable algorithms for
all remaining non-trivial fragments of the STP (under stan-
dard complexity-theoretic assumptions). Together, our results
give a full classification of the classical and parameterized
complexity of the problem.

Introduction
The simple temporal problem (STP) proposed by Dechter
et al. (1991) is one of the most influential temporal reason-
ing formalisms in AI. The STP is used intensively in plan-
ning and scheduling (Barták, Morris, and Venable 2014), but
is also used, for instance, in medical applications (Anselma
et al. 2006) and for coordination of agent teams (Barbulescu
et al. 2010). Moreover, the STP is an important compo-
nent in more expressive formalisms such as disjunctive vari-
ants of STPs (Barber 2000), formalisms for handling un-
certainty (Vidal and Ghallab 1996), and frameworks for
analysing multi-agent systems (Boerkoel and Durfee 2013).

The STP is a special case of the constraint satisfac-
tion problem (CSP) with constraints a ≤ x1 − x2 ≤ b,
where a, b ∈ Q ∪ {−∞,∞} and x1, x2 are variables with
domain Q.1 The CSP for the STP is solvable in poly-
nomial time (Dechter, Meiri, and Pearl 1991). Unfortu-
nately, large real-world datasets are prone to errors stem-
ming from contradictory sources of information, noise in the
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1This is the most basic definition of the STP and variations ap-
pear in the literature. We will discuss this in more detail in Sec. .

measurements, human mistakes etc. (for further motivation
see (Condotta, Nouaouri, and Sioutis 2016; Chomicki and
Marcinkowski 2005; Bertossi and Chomicki 2004) and the
references therein). Thus, it is a natural computational prob-
lem to identify a maximum consistent subset of the data: this
is the maximum constraint satisfaction problem (MAXCSP).
In the AI literature, MAXCSP has recently been considered
in the context of spatial and temporal reasoning (Condotta,
Nouaouri, and Sioutis 2016; Condotta et al. 2016). The com-
plementary problem of finding minimum correction sets has
also been an object of recent studies (Marques-Silva et al.
2013; Liffiton and Sakallah 2008). We show that MAXCSP
for the STP is surprisingly hard: the problem is NP-hard
for all sets of allowed constraints except for a class of triv-
ially solvable constraints. However, the quest for efficient
algorithms is not hopeless: under the reasonable assumption
that the amount of erroneous data is small, we can employ
tools from parameterized complexity to design efficient al-
gorithms for “almost” consistent STPs.

In parameterized complexity (Downey and Fellows 1999;
Flum and Grohe 2006) the running time of algorithms is
measured in terms of a parameter k ∈ N as well as the in-
put size n. Many important problems are NP-hard on gen-
eral instances and are thus computationally intractable (un-
der the assumption that P 6= NP). However, realistic problem
instances are not chosen arbitrarily. When the parameter is
small compared to the instance size, an algorithm confining
the combinatorial explosion to this parameter can still be ef-
ficient in practice. The most favourable parameterized com-
plexity class is FPT, which consists of all fixed-parameter
tractable problems, i.e. problems decidable in f(k) · nO(1)

time, where f is a computable function. A less favourable
option is the complexity class XP, which contains all prob-
lems decidable in nf(k) time, i.e. the problems solvable in
polynomial time when k is fixed. Clearly, FPT ⊆ XP holds,
and this inclusion is strict (see e.g. (Flum and Grohe 2006,
Corr. 2.26)). It is significantly better if a problem is in FPT
than in XP, since the order of the polynomial factor in the
former case does not depend on the parameter.

With this in mind, we consider the dual problem of
MAXCSP where we remove the minimum number of con-
straints in order to achieve consistency. We let the pa-
rameter k be the number of constraints that need to be
removed and the corresponding parameterized problem is
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called ALMOSTCSP. The shift from the maximisation prob-
lem MAXCSP to the minimisation problem ALMOSTCSP
allows us to directly use the tools of parameterized complex-
ity, since we want to keep k small. One should note that these
two problems are equivalent from the viewpoint of classical
complexity so, for instance, the ALMOSTCSP problem for
the STP is NP-hard just like the MAXCSP problem is.

The classical complexity of ALMOSTCSP for finite-
domain problems has been studied by Khanna et al. (2000),
sometimes under the name MINCSP, and the complexity
of ALMOSTCSP is known for all sets of relations over
the Boolean (two-valued) domain. Furthermore, the AL-
MOSTCSP problem over the Boolean domain has received
much attention from the parameterized complexity com-
munity (Razgon and O’Sullivan 2009; Kim et al. 2021).
A full understanding of the parameterized complexity of
ALMOSTCSP for Boolean relations is unfortunately not
within sight—the parameterized complexity is very difficult
to analyse. In the STP, variables need to be assigned rational
values, so the problem is over an infinite domain. The meth-
ods for finite-domain ALMOSTCSP are not directly applica-
ble here and we thus need to use other approaches.

A brute-force approach that iterates over all k-subsets of
constraints shows that ALMOSTCSP over the STP is solv-
able in nO(k) time and the problem is thus in XP. We iden-
tify two fragments of the STP for which ALMOSTCSP is
fixed-parameter tractable. The first fragment contains one-
sided relations x1 − x2 ≤ a with a ∈ Q≥0 and the equality
constraint x1−x2 = 0. The second fragment contains equa-
tion relations a ≤ x1−x2 ≤ awith a ∈ Q, which are equiv-
alent to x1 − x2 = a. We show that besides these two frag-
ments, the subclasses of the STP are either trivially solvable
or not fixed-parameter tractable under standard complexity-
theoretic assumptions. We thus obtain a full classification of
the parameterized complexity of the STP. Our proofs com-
bine recent results such as the fpt algorithms for DIRECTED
SUBSET FEEDBACK ARC SET and EDGE MULTICUT by
Chitnis et al. (2015) and Xiao (2010), respectively, and hard-
ness results for linear inequalities by Göke et al. (2019).

The paper is organised as follows. Section provides pre-
liminaries on parameterized complexity, constraint satisfac-
tion and the STP. We then analyse the complexity of AL-
MOSTCSP for one-sided and equation relations in Section .
Based on these results, we present a complete classification
of both classical and parameterized complexity in Section .
We conclude with a discussion of the results and present
some open questions in Section .

Preliminaries
In this section we provide necessary technical background.

Parameterized Complexity
A parameterized problem is a subset of Σ∗ × N, where Σ
is the input alphabet. Definitions of the parameterized com-
plexity classes that we need – FPT and XP – can be found in
the introduction. Reductions between parameterized prob-
lems need to take the parameter into account. To this end,
we use parameterized reductions (or fpt-reductions). Con-
sider two parameterized problems L1, L2 ⊆ Σ∗ × N. A

mapping P : Σ∗ × N → Σ∗ × N is a parameterized re-
duction from L1 to L2 if (1) (x, k) ∈ L1 if and only
if P ((x, k)) ∈ L2, (2) the mapping can be computed in
f(k) · nO(1) time for some computable function f , and (3)
there is a computable function g : N → N such that for all
(x, k) ∈ Σ∗ × N, if (x′, k′) = P ((x, k)), then k′ ≤ g(k).
In Section , we prove that certain problems are not in FPT.
The class W[1] contains all problems that are fpt-reducible
to INDEPENDENT SET parameterized by the solution size,
i.e. the number of vertices in the independent set. Showing
W[1]-hardness (by an fpt-reduction) for a problem rules out
the existence of an fpt algorithm under the standard assump-
tion that FPT 6= W[1].

Constraint Satisfaction
A constraint language A is a set of relations over a domain
A. Each relation R ∈ A has an associated arity r ∈ N and
R ⊆ Ar. All relations considered in this paper are binary. An
instance I of CSP(A) consists of a set of variables V (I) and
a set of constraints C(I) of the form R(x, y), where R ∈ A
and x, y ∈ V (I). An assignment ϕ : V (I) → A satisfies a
constraint R(x, y) if (ϕ(x), ϕ(y)) ∈ R and violates R(x, y)
if (ϕ(x), ϕ(y)) /∈ R.
CSP(A)

INSTANCE: An instance I of CSP(A).
QUESTION: Does I admit a satisfying assignment?

The value of an assignment ϕ for I is the number of con-
straints in C(I) satisfied by ϕ. For any subset of constraints
X ⊆ C(I), let I −X denote the instance with V (I −X) =
V (I) andC(I−X) = C(I)\X . The (parameterized) almost
constraint satisfaction problem (ALMOSTCSP) is defined as
follows:
ALMOSTCSP(A)

INSTANCE: An instance I of CSP(A) and an integer k.
PARAMETER: k.
QUESTION: Is there a set X ⊆ C(I) such that |X| ≤ k and
I −X is satisfiable?

Given an instance 〈I, k〉 of ALMOSTCSP(A), the set X
can be computed with |C(I)| calls to an algorithm for AL-
MOSTCSP(A). Hence, we can view ALMOSTCSP(A) as
a decision problem without loss of generality. Addition-
ally note that if ALMOSTCSP(A) is in XP (or in FPT),
then CSP(A) must be polynomial-time solvable: an in-
stance I of CSP(A) is satisfiable if and only if the instance
〈I, 0〉 of ALMOSTCSP(A) is a yes-instance, and instances
of the form 〈I, 0〉 are solvable in polynomial time if AL-
MOSTCSP(A) is in XP.

Two problem instances are equivalent if both are yes-
instances or no-instances. Note that we do not require the
instances to be based on the same computational problem.

The Simple Temporal Problem
Let S be the set consisting of the relations

Ra,b = {(x1, x2) ∈ Q2 | a ≤ x1 − x2 ≤ b}

for endpoints a ∈ Q ∪ {−∞} and b ∈ Q ∪ {∞} such that
a ≤ b, (a, b) 6= (−∞,∞). CSP(S) is known as the Simple
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Temporal Problem, and subsets A ⊆ S are simple temporal
languages. To aid readability, we may denote the constraint
Ra,b(x, y) by a ≤ x − y ≤ b. Furthermore, if a = −∞,
we may instead write x − y ≤ b, if b = ∞, we may write
x− y ≥ a, and if a = b, we may write x− y = a. We adopt
the convention that ±∞+ c = ±∞ and ±∞ · c = ±∞ for
all c ∈ Q>0.

To check whether an instance I of CSP(S) is satisfiable,
one may examine the directed edge-weighted distance graph
∆I = (V,A,w). This graph is constructed by letting V =
V (I) and, for each constraint a ≤ x−y ≤ b inC(I), adding
arcs (x, y), (y, x) to A with weights w(x, y) = b, w(y, x) =
−a. Arcs of infinite weight are not added to A.
Theorem 1 (Theorem 3.1 in Dechter et al. (1991)). An in-
stance I of CSP(S) is satisfiable if and only if ∆I has no
directed cycles of negative weight.

The existence of a negative cycle in a directed weighted
graph can be checked in polynomial time (e.g. see (Cormen
et al. 2009, Chapter 24)), so CSP(S) is also polynomial-
time solvable. The fact below follows from Theorem 1.
Corollary 2. Let 〈I, k〉 be an instance of ALMOSTCSP(S),
and define 〈Ic, k〉 for some c ∈ Q>0 by multiplying the
endpoints in every constraint of C(I) by c. Then 〈I, k〉 and
〈Ic, k〉 are equivalent.

Another useful lemma lets us find assignments to satisfi-
able instances of CSP(S) based on the distance graph.
Lemma 3 (Corollary 3.2 in Dechter et al. (1991)). Let I be
a satisfiable instance of CSP(S). Add a zero variable z to
V (I) and constraints v − z ≥ 0 for all v ∈ V (I). Now
define an assignment ϕ : V (I) → Q by letting ϕ(v) for all
v ∈ V (I) equal the length of the shortest path from z to v in
∆I . Then ϕ satisfies I .

The composition of two binary relations R1, R2 ⊆ D2

over a domain D is defined as R1 ⊕R2 = {(x1, x2) ∈ D2 |
∃y ∈ D, R1(x1, y)∧R2(y, x2)}. To derive the composition
of two simple temporal relations Ra,b and Ra′,b′ , note that
a ≤ x1 − y ≤ b and a′ ≤ y − x2 ≤ b′ imply a + a′ ≤
x1 − x2 ≤ b + b′. Hence, Ra,b ⊕ Ra′,b′ = Ra+a′,b+b′ . The
sum of two constraints Ra,b(x, y) and Ra′,b′(y, z) is defined
as Ra+a′,b+b′(x, z).

One-sided and Equation Relations
Our ultimate goal is to study the classical and parameter-
ized complexity of ALMOSTCSP(A) for all simple tempo-
ral languages A. To simplify the structure of our presenta-
tion, we begin by studying the complexity of ALMOSTCSP
for two large fragments of S: the one-sided relations and
the equation relations. The one-sided relations are S≥ =
{Ra,∞, R−∞,−a | a ∈ Q≥0} ∪ {R0,0} and the equation
relations are S= = {Ra,a | a ∈ Q}. We show that the prob-
lems are NP-hard in Section and continue by proving that
they admit fpt algorithms in Section

NP-Hardness Results
We start with one-sided relations and reduce in polynomial-
time from the following NP-hard problem (Karp 1972).

DIRECTED FEEDBACK ARC SET (DFAS)
INSTANCE: A directed graph D = (V,A) and an integer k.
QUESTION: Is there a set X ⊆ A of at most k arcs such that
(V,A \X) is acyclic?

Lemma 4. If there is a relation Ra,∞ ∈ A for some a > 0,
then ALMOSTCSP(A) is NP-hard.

Proof. Given an instance 〈D, k〉 withD = (V,A) of DFAS,
we construct an instance 〈I, k〉 of ALMOSTCSP(A) by let-
ting V (I) = V , and for each arc (u, v) ∈ A, adding the
constraint v−u ≥ a to C(I). Clearly, this can be performed
in polynomial time.

Observe that the graph D coincides with the distance
graph ∆I without weights. Furthermore, all weights in the
distance graph ∆I equal −a, so every cycle has negative
weight. Therefore, 〈I, k〉 is a yes-instance if and only if ∆I

(and hence D) has a feedback arc set of size at most k.

Our reduction for equation relations is from another well-
known NP-hard problem (Garey, Johnson, and Stockmeyer
1976).
MAXIMUM CUT (MAXCUT)
INSTANCE: A graph G = (V,E) and an integer t ∈ N.
QUESTION: Is there a colouring χ : V → {0, 1} such that
χ(u) 6= χ(v) for at least t edges {u, v} ∈ E?

Lemma 5. If there is a relation Ra,a ∈ A for some a 6= 0,
then ALMOSTCSP(A) is NP-hard.

Proof. By Corollary 2, it suffices to show NP-hardness for
R1,1 ∈ A (scaling by |a| implies hardness for any a 6= 0).
We present a polynomial-time reduction from MAXCUT to
this problem. Given an instance 〈(V,E), t〉 of MAXCUT,
let 〈I, 2|E| − t〉 be the instance of ALMOSTCSP(A) with
V (I) = V and C(I) = {x − y = 1, y − x = 1 | {x, y} ∈
E}. It is easy to verify that 〈(V,E), t〉 and 〈I, 2|E| − t〉 are
equivalent.

Fixed-parameter Tractability
We will now present fpt algorithms for one-sided and equa-
tion relations. The fpt algorithm for one-sided relations
works by a reduction to DIRECTED SUBSET FEEDBACK
ARC SET problem, which is known to be in FPT (Chitnis
et al. 2015). The algorithm for equation relations is based on
iterative compression and uses an fpt algorithm for EDGE
MULTICUT (Xiao 2010) as a subroutine.

One-sided Relations To show that ALMOSTCSP(S≥) is
in FPT, we reduce it to the following problem:
DIRECTED SUBSET FEEDBACK ARC SET (DSFAS)
INSTANCE: A directed graph D = (V,A), a set S ⊆ A and
an integer k
PARAMETER: k.
QUESTION: Is there a set X ⊆ A of at most k arcs such that
(V,A \X) has no directed cycle containing an arc from S?

The difference from the usual DFAS is that we are given
a subset of arcs S and the goal is to destroy only the cycles
intersecting S.
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Theorem 6 (Chitnis et al. (2015)). DSFAS is solvable in
2k

3 · nO(1) time, and thus is in FPT.

Theorem 7. ALMOSTCSP(S≥) is in FPT.

Proof. Given an instance I of ALMOSTCSP(S≥), first re-
place every constraint of the form x− y = 0 with x− y ≥ 0
and y − x ≥ 0. This step yields an equivalent instance since
every assignment satisfies either x − y ≥ 0 or y − x ≥ 0,
while satisfying both implies that x − y = 0. Now con-
struct the distance graph ∆I = (V,A,w). By Theorem 1,
satisfiability of an instance of the STP depends only on
the existence of negative cycles in ∆I . For each constraint
Ra,∞(x, y) ∈ C(I), we have one edge (x, y) in ∆I with
weight −a ≤ 0. Hence, deleting a constraint Ra,∞(x, y)
from C(I) corresponds to removing the arc (x, y) from ∆I .
By Theorem 1, a set X of constraints such that I − X is
satisfiable corresponds to a set AX of arcs in ∆I such that
(V,A \ AX , w) has no negative cycles. Let A<0 be the set
of negative-weight arcs in ∆I . Clearly, any negative cycle in
∆I contains an arc fromA<0. Moreover, any cycle that does
not intersect A<0 has zero weight. Thus, AX is a directed
A<0-feedback arc set in ∆I . Apply Theorem 6 to check if
such a set of at most k arcs exists in 2k

3 · nO(1) time.

Equation Relations We now consider equation relations.
We start with a graph-theoretic satisfiability criterion for
CSP(S=). The primal graph GI = (V,E) has V = V (I)
and E = {{u, v} | R(u, v) ∈ C(I)}. Given GI , con-
struct a weight function wI : V × V → Q by setting
wI(u, v) = −wI(v, u) = a for each constraint u− v = a in
C(I). For other pairs of variables, set wI to∞. If C(I) con-
tains two contradictory constraints u−v = a and u−v = b,
then I is not satisfiable, and wI is not well defined.

An (x, y)-walk in an undirected graph (V,E) is a
sequence of (not necessarily distinct) vertices Z =
(z1, z2, . . . , z`) such that z1 = x, z` = y, and {zi, zi+1} ∈
E for all i ∈ {1, . . . , ` − 1}. The reversal of Z is the
(y, x)-walk (z`, z`−1, . . . , z1). Given a weight function w :

V ×V → Q, the weight of Z is w(Z) =
∑`−1
i=1 w(zi, zi+1).

If the weights of all (x, y)-walks in G are equal, then the
distance from x to y is well defined with respect to w (the
distance is infinite if no (x, y)-walk exists). If the distance
is well defined for all pairs of vertices in G, then G is an
exact-distance graph with respect to w. We omit mentioning
the weight function when it is clear from the context. The
next observation follows from the definitions above.

Observation 8. An instance I of ALMOSTCSP(S=) is sat-
isfiable if and only if wI is well defined and GI is an exact-
distance graph with respect to wI .

We use an algorithm for the following problem as a sub-
routine for solving ALMOSTCSP(S=).
EDGE MULTICUT
INSTANCE: An undirected graph G = (V,E), a set U ⊆ V 2

and an integer k.
PARAMETER: k + |U |.
QUESTION: Is there a set X ⊆ E such that |X| ≤ k and
(V,E \X) has no (s, t)-walk for any {s, t} ∈ U?

We say that {s, t} ∈ U are terminal pairs and that X
separates s, t for all such pairs. When U is clear from the
context, we simply call X a multicut. The problem EDGE
MULTICUT is in FPT.
Theorem 9 (Xiao (2010)). For every instance 〈G,U, k〉 of
EDGE MULTICUT, in 2O(|U | log k+k)·nO(1) time one can find
a multicut of size k, or prove that no such multicut exists.
This problem is thus in FPT.

Our fpt algorithm uses iterative compression. This
method was introduced by Reed et al. (2004) and a compre-
hensive treatment can be found in (Cygan et al. 2015, Chap-
ter 4). The method uses a compression routine that takes a
problem instance together with a solution (in our case, a sub-
set of constraints) and either calculates a smaller solution or
verifies that the provided one has minimum size. An optimal
solution is then computed by iteratively building up the in-
stance while improving the solution at each step. If the com-
pression routine is in FPT, then the whole algorithm is also
in FPT. An important property of iterative compression is
that having access to a solution (albeit one that is too large)
provides useful structural information about the instance. In
our particular case, this lets us reduce the compression step
to solving multiple instances of the following problem.
DISJOINT ALMOSTCSP(S=)

INSTANCE: An instance I of CSP(S=), a set W ⊆ C(I)
such that I − W is satisfiable and |W | ≤ k + 1, and an
integer k.
PARAMETER: k.
QUESTION: Is there X ⊆ C(I) \W such that |X| ≤ k and
I −X is satisfiable?

Here the input contains the instance 〈I, k〉 and a solution
W . The goal is to find another solution X of size at most k
that is disjoint from W .

We now describe Algorithm 1, which solves the
ALMOSTCSP(S=) problem. Let 〈I, k〉 be an instance of
ALMOSTCSP(S=). The procedure EQSOLVER receives
V (I), C(I) and k as input. It maintains two subsets
C ′,W ⊆ C(I) such that C ′ \W is satisfiable and |W | ≤ k.
Constraints from C(I) are added to C ′, and when |W | > k,
the procedure calls the compression routine EQCOMPRESS.
If compression is not possible, then C ′ is not satisfiable, so
neither is C(I), and the algorithm returns NO. If the invari-
ant is maintained when C ′ = C(I), then it returns YES.

The input to EQCOMPRESS is a set of variables V , a set
of constraints C, an integer k, and a subset W ⊆ C of size
k + 1 such that C \ W is satisfiable. The routine checks
whether C contains a subset X such that C \ X is satis-
fiable and |X| ≤ k: if so, then it returns X , otherwise it
returns NO. In order to do so, it branches over all ways X
may intersect W : for all S ⊆ W such that |S| ≤ k, the al-
gorithm constructs the instance 〈V,C \ S,W \ S, k − |S|〉
of DISJOINT ALMOSTCSP(S=) and applies EQDISJOINT.
If there is a set X ′ ⊆ (C \ S) of size k − |S| such that
C \ (S ∪ X ′) is satisfiable, then X = S ∪ X ′ is a com-
pressed solution. If no such solution is found for any S, then
the algorithm returns NO.

The procedure EQDISJOINT receives a set of variables V ,
a set of constraints C, a subset W ⊆ C such that C \W is
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Algorithm 1: Solving ALMOSTCSP(S=).

1: function EQSOLVER(V,C, k)
2: C ′ ← ∅, W ← ∅
3: for all c ∈ C do
4: C ′ ← C ′ ∪ {c}, W ←W ∪ {c}
5: if |W | = k + 1 then
6: W ← EQCOMPRESS(V,C ′,W, k)
7: if no W was found then
8: return NO
9: return YES

10: function EQCOMPRESS(V,C,W, k)
11: for i ∈ {0, . . . , k} do
12: for all S ⊆W such that |S| = i do
13: X ← EQDISJOINT(V,C \ S,W \ S, k − i)
14: if X was found then
15: return X
16: return NO

17: function EQDISJOINT(V,C,W, k)
18: G← primal graph of (V,C \W )
19: VW ← all variables in constraints of W
20: T ← {{u, v} | u, v ∈ VW , u 6= v}
21: for all U ⊆ T do
22: EX ← EDGEMULTICUT(G,U, k)
23: if EX was found then
24: X ← constraints corresponding to EX
25: if C \X is satisfiable then
26: return X
27: return NO

satisfiable and an integer k and seeks X ⊆ (C \W ) of size
at most k such that C \X is satisfiable.

If EQDISJOINT solves DISJOINT ALMOSTCSP(S=) in
fpt time, then ALMOSTCSP(S=) is also in FPT (see e.g.
(Cygan et al. 2015, Chapter 4.2)).

Theorem 10. DISJOINT ALMOSTCSP(S=) is in FPT and
therefore so is ALMOSTCSP(S=).

Proof. Let 〈I,W, k〉 be an instance of DISJOINT
ALMOSTCSP(S=). Let GI = (V,E) be the primal
graph and let the wI be the weight function defined ear-
lier. For all C ⊆ C(I), let EC denote the set of edges
corresponding to the constraints in C. Let VW be the set
of vertices incident to edges in EW . Consider a subset of
constraints X ⊆ C(I) \ W . By Observation 8, I − X is
satisfiable if and only if the distance between all pairs of
vertices in GI−X is well defined. We claim that it is enough
to fulfil this condition only for the vertices in VW .

Claim 10.1. If the distance in GI−X from u to v is well
defined for all u, v ∈ VW , then GI−X is an exact-distance
graph.

Proof of Claim (Sketch). Pick u, v ∈ V and two distinct
(u, v)-walks A and B in GI−X . If neither A nor B has
an edge from EW , then both walks are present in GI−W .
Since GI−W is exact-distance, wI(A) = wI(B). Now sup-
pose A = (a1, . . . , a`) and there is an i ∈ {1, . . . , ` − 1}

u v

A

B

s t

Figure 1: Two (u, v)-walks A and B, where A contains an
edge {s, t}.

such that ai = s, ai+1 = t, and {s, t} ∈ EW . We illus-
trate the situation in Figure 1. Examination of the (t, s)-walk
t
A−→ v

B−→ u
A−→ s proves that wI(A) = wI(B). �

We continue by characterising a solution to 〈I,W, k〉 by
its separation properties in GI−W . Suppose X is disjoint
fromW and I−X is satisfiable. By Observation 8,GI−X is
an exact-distance graph. Let dX(u, v) and dW (u, v) denote
the distance from u to v in GI−W and GI−X , respectively.
We claim that if dX(u, v) 6= dW (u, v) for some vertices u
and v, then EX separates u, v in GI−W . If not, there is a
(u, v)-walk that is present in both GI−W and GI−X , con-
tradicting the assumption that GI−X is exact-distance. The
following claim can be proved by an inductive argument.

Claim 10.2. Let Y ⊆ C(I) \ W such that, for all u, v ∈
VW , the cutEY separates u, v inGI−W wheneverEX does.
Then I − Y is satisfiable.

Hence, it suffices to guess which pairs u, v ∈ VW to sep-
arate in GI−W and to find a small multicut. Since |EW | =
k + 1, there are at most 2k + 2 vertices in VW , and at most
O(k2) pairs of elements in VW . There areO(2k

2

) choices of
terminal setsU and we call the EDGE MULTICUT subroutine
with 〈G(I −W ), U, k〉 for every possible U . Given a multi-
cut EX for some U , we return X if I − X is satisfiable. If
no appropriate X is found, then 〈I,W, k〉 is a no-instance.

By Theorem 9, EDGE MULTICUT can be solved in
2O(k2 log k) · nO(1) time when the number of terminal pairs
isO(k2). We invoke the subroutine 2O(k2) times, so the run-
ning time of the algorithm is 2O(k2 log k) · nO(1).

Complexity Classification
We will next complete the classical and parameterized com-
plexity classification of ALMOSTCSP(A) for all simple
temporal languages A. We start by defining implementa-
tions, which are a tool we use for proving hardness results.

Implementations
Given functions f : A → B and g : A′ → B, where A ⊆
A′, we say that g extends f if g(a) = f(a) whenever a ∈ A.

Definition 11. (based on Khanna et al. (2000)) A collec-
tion of constraints K over a set of primary variables x1, x2
and auxiliary variables y1, . . . , yp is an implementation of a
constraint R(x1, x2) if
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(1) for every assignment to x1, x2 that satisfiesR(x1, x2),
there is an extension to y1, . . . , yp that satisfies all con-
straints in K, and

(2) for every assignment to x1, x2 that does not satisfy
R(x1, x2), every extension to y1, . . . , yp satisfies at most
|K| − 1 constraints in K. Moreover, there is an extension
that satisfies exactly |K| − 1 constraints in K.

If the constraints in K are from a constraint language A,
then K is an implementation of R in A.

Example. Consider the simple temporal language {R1,2}. It
implements the relation R2,4. The implementation requires
an auxiliary variable y and consists of two constraints: 1 ≤
x1 − y ≤ 2 and 1 ≤ y − x2 ≤ 2. If both are satisfied, then
2 ≤ x1 − x2 ≤ 4 holds. Setting y = x1 + 1 lets us always
satisfy the first constraint.

The next lemma (which follows directly from the defini-
tion) is particularly useful for proving hardness results.

Lemma 12. Let K be an implementation of relation
R in a constraint language A. Given an instance of
ALMOSTCSP(A∪ {R}) with m constraints and parameter
k, we can find an equivalent instance of ALMOSTCSP(A)
with the same parameter in O(|K|m) time.

Easy calculations show that a simple temporal language
implements the composition of any pair of its relations.

Proposition 13. Let Ra,b, Ra′,b′ be a pair of (not nec-
essarily distinct) relations in a simple temporal language
A. Then, their composition Ra,b ⊕ Ra′,b′ (which equals
Ra+a′,b+b′ ) can be implemented in A.

Reductions
The starting point of our reductions is the following result.

Theorem 14. ALMOSTCSP({R−∞,1, R1,∞}) is NP-
hard (Sankaran 1993) and W[1]-hard (Göke, Mendoza Ca-
dena, and Mnich 2019)

We also use the following fact about STPs, which can be
proved with the aid of Lemma 3.

Proposition 15. Any satisfiable instance I of
CSP({R−∞,a, Ra,∞}) with a ∈ N and n variables
admits a satisfying assignment assigning integer values
between a and an, inclusive.

With these results in hand, we first prove hardness re-
sults for ALMOSTCSP(A) in two special cases (Lemma 16).
Later, we show that these two cases are sufficient to fully
classify ALMOSTCSP for the STP (Theorems 17 and 18).

Lemma 16. Let A ⊆ S . If one of the following holds for
some a, b ∈ Q>0, then ALMOSTCSP(A) is W[1]-hard: (a)
Ra,∞, R−∞,b ∈ A or (b) Ra,b ∈ A and a < b.

Proof. We assume that a, b are integers (by Corollary 2 and
scaling), so ALMOSTCSP({Rab,∞, R−∞,ab}) is W[1]-hard
by Theorem 14.

(a) By Proposition 13, the relation Rab,∞ can be imple-
mented in A by composing Ra,∞ b − 1 times. Similarly,
R−∞,ab can be implemented by composing R−∞,b a − 1
times. Since a and b are fixed, Lemma 12 implies that there

is an fpt-reduction from ALMOSTCSP({Rab,∞, R−∞,ab})
to ALMOSTCSP(A).

(b) We give an fpt-reduction from ALMOSTCSP(
{Rab,∞, R−∞,ab}) to ALMOSTCSP(Ra,b). Let 〈I, k〉 be an
instance with n variables. By Proposition 15, we can re-
strict our attention to integer assignments ϕ : V (I) →
{ab, . . . , abn}. Observe that for arbitrary variables x1, x2,
we have −ab(n − 1) ≤ ϕ(x1) − ϕ(x2) ≤ ab(n − 1).
Hence, we can replace ∞ in all constraints of I by a value
greater than ab(n − 1) and obtain an equivalent instance.
This implies that to prove W[1]-hardness, it suffices to show
that A implements Rab,abc and R−abd,ab for c, d ≥ n − 1.
Choose c = nb− na+ 1 and d = nb− na− 1 and observe
that, by integrality, b − a ≥ 1, nb − na ≥ n and therefore
c > d ≥ n− 1.

We prove that A implements Rab,abc; the proof for
R−abd,ab is analogous. Consider the collection of constraints

a · abn ≤ z − y ≤ b · abn, (1)
a · b(an− 1) ≤ z − x ≤ b · b(an− 1), (2)
a · a(an− 1) ≤ z − x ≤ b · a(an− 1). (3)

The relations used above are obtained by composing Ra,b,
so they are implemented in A by Proposition 13. We claim
that (1)–(3) is an implementation of

ab ≤ x− y ≤ abc. (4)
Both (2) and (3) hold only if z − x = ab(an − 1). On one
hand, if (1) also holds, then substituting z = x+ab(an− 1)
into (1) shows that together these constraints imply (4). On
the other hand, one can always choose the value for z such
that z = x + ab(an − 1) independently of the value of y,
satisfying (2) and (3). Hence, A implements Rab,abc.

This completes the reduction and the correctness proof.
To estimate the running time, note that the total size of each
implementation is O(n). By Lemma 12, the reduction can
be implemented in O(mn) time, where m = |C(I)|.

We are now ready to complete the classical complexity
classification. Let S0 = {Ra,b ∈ S | a ≤ 0 and b ≥ 0},
i.e. the set of relations that contain the tuple (0, 0). Every
instance of CSP(S0) is satisfiable by setting all variables to
0, so all instances of ALMOSTCSP(S0) are yes-instances.
Theorem 17. If A ⊆ S and A * S0, then
ALMOSTCSP(A) is NP-hard.

Proof. Let Ra,b ∈ A \ S0. The following is an exhaustive
list of possible cases:

1. a = −∞ and b ∈ Q<0,
2. a ∈ Q>0 and b =∞,
3. a = b, a ∈ Q \ {0},
4. 0 < a < b <∞,
5. −∞ < a < b < 0.

Note that Cases 1 and 2 are equivalent (by consid-
ering R−b,−a) as are Cases 4 and 5. NP-hardness in
Cases 1 and 2 follows by Lemma 4, while in Case 3
it follows by Lemma 5. For Cases 4 and 5, note
that ALMOSTCSP({R−∞,1, R1,∞}) is NP-hard by Theo-
rem 14, and the reduction to ALMOSTCSP({Ra,b}) in the
proof of Lemma 16b runs in polynomial time.
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Theorem 18. Let A ⊆ S .

(i) If A ⊆ S0, then ALMOSTCSP(A) is constant-time
solvable.

(ii) If A 6⊆ S0 only contains one-sided relations, then
ALMOSTCSP(A) is NP-hard and it is in FPT.

(iii) If A 6⊆ S0 only contains equation relations, then
ALMOSTCSP(A) is NP-hard and it is in FPT.

(iv) Otherwise, ALMOSTCSP(A) is NP-hard and W[1]-
hard.

Proof. The NP-hardness results are established in Theo-
rem 17, so we concentrate on the parameterized complexity.
Case (i) holds since every instance of ALMOSTCSP(S0) is a
yes-instance. Cases (ii) and (iii) are Theorems 7 and 10, re-
spectively. For Case (iv), we proceed by exhausting all pos-
sible sub-cases. If Ra,b ∈ A such that Ra,b /∈ S0∪S=∪S≥,
then either 0 < a < b < ∞ or −∞ < a < b < 0 so
ALMOSTCSP(A) is W[1]-hard by Lemma 16b. Otherwise,
define S ′� = S� \ {R0,0} for � ∈ {0,=,≥}. Observe that
A contains two relationsRa,b andRa′,b′ such that one of the
following holds:

(1) Ra,b ∈ S ′= and Ra′,b′ ∈ S ′≥.
(2) Ra,b ∈ S ′0 \ {R0,∞, R−∞,0} and Ra′,b′ ∈ S ′=.
(3) Ra,b ∈ S ′0 \ {R0,∞, R−∞,0} and Ra′,b′ ∈ S ′≥ \
{R0,∞, R−∞,0}.

Fix ` ∈ N. Then the relations R1 = R`a+a′,`b+b′
and R2 = R`a′+a,`b′+b are implemented in A by com-
posing ` copies of Ra,b with Ra′,b′ , and ` copies of
Ra′,b′ with Ra,b, respectively. By Proposition 13 and
Lemma 12, if ALMOSTCSP(A ∪ {R1, R2}) is W[1]-hard,
then ALMOSTCSP(A) is also W[1]-hard. With this obser-
vation in mind, we can prove Cases (1)–(3). We present
the proof for Case (1); the other two are similar. Assume
without loss of generality that a, a′ ≥ 0 (otherwise, use
R−b,−a or R−b′,−a′ , respectively). We then have a = b,
a > 0, a′ ≥ 0 and b′ = ∞. First, implement the relation
Ra+a′,b+b′ = Ra+a′,∞ and note that a+ a′ > 0. Now con-
sider R−b,−a instead, choose the smallest ` ∈ N such that
a′− `b < 0 and implement Ra′+`(−b),b′+`(−a) = Ra′−`b,∞.
The two implemented relations have infinity as the right
endpoint, while left endpoints are of opposite sign, hence
Lemma 16a implies W[1]-hardness in this case.

Conclusion and Discussion
We have classified the classical and parameterized com-
plexity of the ALMOSTCSP(A) problem for constraint lan-
guages A containing relations of the type {(x1, x2) ∈
Q2 | a ≤ x1 − x2 ≤ b}, where a, b ∈ Q ∪ {−∞,∞}.
These relations appear in all formulations of the STP, but
there are more liberal variants containing unary relations
a ≤ x ≤ b, the disequality relation, or strict inequalities (see
also (Gerevini and Cristani 1997) and (Koubarakis 1992)).
The CSP for these problems is tractable just like for the
basic STP. However, full complexity classifications of the
corresponding ALMOSTCSP problems do not follow imme-
diately from our results. If we, for instance, consider STPs
with unary relations, then a preliminary analysis shows that

new tractable classes appear and the classification becomes
more complex. It is an obvious research direction to anal-
yse such more expressive formalisms. One may continue by
studying ALMOSTCSP for polynomial-time solvable frag-
ments of the many extensions of STPs (Kumar 2005; Bar-
ber 2000; Oddi and Cesta 2000; Stergiou and Koubarakis
2000; Jonsson and Bäckström 1998; Dechter, Meiri, and
Pearl 1991). Another way forward is to analyse other for-
malisms such as Allen’s (1983) interval algebra and the RCC
family of spatial algebras (Randell, Cui, and Cohn 1992).

The fact that ALMOSTCSP(A) and the dual problem
MAXCSP(A) are NP-hard for most choices of A raises
the question of whether approximation algorithms are useful
for the STP. First of all, we need to keep in mind that AL-
MOSTCSP and MAXCSP may behave quite differently from
an approximation viewpoint and it is not obvious which
problem is most suitable in a given situation. ALMOSTCSP
for linear equations over Q is obviously related to equation
relations. It has been studied by Arora et al. (1997), who
showed that approximation within any constant factor is NP-
hard. This hardness result does not directly carry over to the
STP due to the restricted nature of equations expressible in
the STP. Berman and Karpinski (2002) presented a random-
ized polynomial-time algorithm with sublinear approxima-
tion ratio for this problem and it is (naturally) applicable to
equations expressible in the STP. The approximability of the
corresponding MAXCSP problem is not well understood ei-
ther, but it (or variants of it) has been addressed in the liter-
ature (Amaldi and Kann 1995; Nutov and Reichman 2008).
For one-sided relations, Amaldi and Kann (1998, p. 245)
point out that ALMOSTCSP({x − y ≥ 1}) cannot be ap-
proximated to within some constant factor constant c > 1
(unless P = NP), but that it can be approximated within
O(log n log log n), where n is the number of variables. The
problem MAXCSP({x − y ≥ 1}), on the other hand, can
be approximated within a factor of 2, but not within every
constant factor (Amaldi and Kann 1995).

There is a variant of approximation that may be interest-
ing for the STP: robust approximation. Given an instance
with at most an ε-fraction of unsatisfiable constraints, a ro-
bust approximation algorithm seeks an assignment satisfy-
ing a (1 − g(ε))-fraction of the constraints, where g satis-
fies g(0) = 0 and limε→0 g(ε) = 0. In a sense, robust ap-
proximation deals with the multiplicative error, while our
approach focuses on the additive error. Robust approxima-
tion has been studied extensively in the CSP literature (Barto
and Kozik 2016; Dalmau and Krokhin 2013; Guruswami
and Zhou 2012; Kun et al. 2012), but this work is mainly
directed towards finite-domain CSPs. However, there is a
highly interesting result for infinite-domain CSPs: the robust
approximability of every language that is first-order defin-
able in the infinite-domain Point Algebra (Vilain, Kautz, and
van Beek 1990) has been determined (Tamaki and Yoshida
2014). This indicates that the tools needed for analysing the
robust approximability of STPs and related formalisms may
be available.
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