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Abstract
In a wide variety of applications including online advertising,
contractual hiring, and wireless scheduling, the controller is
constrained by a stringent budget constraint on the available
resources, which are consumed in a random amount by each
action, and a stochastic feasibility constraint that may impose
important operational limitations on decision-making. In this
work, we consider a general model to address such problems,
where each action returns a random reward, cost, and penalty
from an unknown joint distribution, and the decision-maker
aims to maximize the total reward under a budget constraint
B on the total cost and a stochastic constraint on the time-
average penalty. We propose a novel low-complexity algo-
rithm based on Lyapunov optimization methodology, named
LyOn, and prove that for K arms it achieves O(

√
KB logB)

regret and zero constraint-violation when B is sufficiently
large. The low computational cost and sharp performance
bounds of LyOn suggest that Lyapunov-based algorithm de-
sign methodology can be effective in solving constrained ban-
dit optimization problems.

Introduction
Multi-armed bandits (MAB) have been predominantly used
to model exploration-and-exploitation problems since its in-
ception (Robbins 1952; Lai and Robbins 1985; Berry and
Fristedt 1985). As a consequence of the universality of the
dilemma, bandit algorithms have found a broad range of ap-
plications from medical trials and adaptive routing to server
allocation (Bubeck, Cesa-Bianchi et al. 2012). In many ap-
plications of interest, the controller is required to satisfy
multiple constraints while achieving the optimal expected
total reward under a given finite budget.

To take one example, in fair resource allocation problems,
such as task scheduling or contractual hiring, each arm (e.g.,
a user or a social group) must receive at least a given frac-
tion of the total budget (e.g., total time) while maximizing
the total reward. Other examples from diverse domains, such
as wireless resource allocation, online advertising, etc., also
take this form (see examples after problem formulation for
more discussion). In order to solve fundamental learning ap-
plications such as these, a fast and effective constrained ban-
dit optimization framework is required.
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This motivates us in this paper to formulate and solve the
following budget-constrained bandit problem in a stochastic
setting. Each arm pull takes a random and arm-dependent
resource (e.g. time, energy, etc.) from the budget, and the
decision-making process continues until the total consumed
resource exceeds a given budget B > 0. At the end of each
arm pull, the controller receives a random reward and a ran-
dom penalty. The objective of the controller is to maximize
the expected total reward subject to an inequality constraint
on the average penalty per unit resource consumption.

Main Contributions
In this work, we tackle the aforementioned general con-
strained optimization problem with bandit feedback, and
propose a novel Lyapunov-based design methodology to de-
velop efficient algorithms that achieve sharp convergence re-
sults. Our main contributions can be summarized as follows:

• General model: We consider a generic constrained ban-
dit optimization problem which: (i) incorporates random
costs for each action; (ii) is subject to a stringent budget
(knapsack) constraint; and (iii) has stochastic feasibility
constraints as required by many applications.

• Lyapunov methodology for bandit optimization: Based
on a Lyapunov-drift minimization technique from
stochastic control, we design novel low-complexity ban-
dit algorithms with provably sharp convergence proper-
ties. This approach suggests a general design methodol-
ogy that can be utilized in other constrained bandit opti-
mization scenarios.

• Analysis techniques: We also employ new analysis tech-
niques for the reward maximization problem subject to
stochastic and knapsack constraints based on a combi-
nation of renewal theory, stochastic control, and bandit
optimization.

Related Work
Knapsack-constrained bandit problem was considered in
(Badanidiyuru, Kleinberg, and Slivkins 2013), where the
objective of the controller is to maximize the expected
total reward under a stringent budget constraint. The au-
thors proposed a learning algorithm with O(

√
B) problem-

independent regret. Bandit algorithms with O(log(B))
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problem-dependent regret bounds were proposed under var-
ious extensions of the knapsack-constrained bandit mod-
els (Tran-Thanh et al. 2012; Flajolet and Jaillet 2015; Xia
et al. 2015, 2016; Cayci, Eryilmaz, and Srikant 2019, 2020).
These works differ from ours in that, while the controller
is constrained by stringent knapsack constraints, stochastic
feasibility constraints are not accommodated.

As an extension of (Badanidiyuru, Kleinberg, and
Slivkins 2013), finite-armed bandit problem with stochas-
tic feasibility constraints was considered in (Agrawal and
Devanur 2014), and a UCB-type algorithm with O(

√
B) re-

gret and O(1/
√
B) constraint-violation was proposed. This

setting was extended to episodic Markov decision processes
in (Qiu et al. 2020), and similar order results for regret and
constraint-violation were obtained. In these models, each ac-
tion incurs a unit cost. Furthermore, the proposed algorithms
in (Agrawal and Devanur 2014) require solving a convex
optimization / linear programming problem at each stage.
Our model accommodates random cost, which is subject to
a knapsack constraint, in addition to the stochastic feasibil-
ity constraint. Based on Lyapunov optimization theory, we
develop computationally-efficient iterative algorithms .

Lyapunov optimization methods have been widely used
in stochastic network optimization and queueing systems
(see (Neely 2012, 2010; Georgiadis, Neely, and Tassiulas
2006) and references therein). This methodology was later
used in convex optimization problems (Yu and Neely 2020)
with known gradients. In these approaches, a predominant
assumption is that the random system state is known to the
controller prior to its decision, therefore the existing meth-
ods do not work for online learning setting where the con-
troller does not have the system state or the system statistics
before making a decision.

Lyapunov optimization methods were first used in the
context of online learning in (Cayci, Gupta, and Eryilmaz
2020), where the goal of the controller is to maximize the
total utility as a function of each arm’s time-average reward
subject to a knapsack constraint under delayed experts feed-
back. Our work extends (Cayci, Gupta, and Eryilmaz 2020)
in that we consider bandit feedback and also incorporate
stochastic feasibility constraints in this paper. Some recent
works (Liu et al. 2020, 2021), which utilized Lyapunov-drift
methods for online learning, studied the online-dispatching
and linear bandits with cumulative constraints. Our work
substantially differs from these works in that we incorpo-
rate knapsack budget constraints and random costs per arm
selection.

Constrained Reward Maximization Problem
with Bandit Feedback

We consider a finite-armed bandit problem with K > 1
arms, and the set of arms denoted by K = {1, 2, . . . ,K}.
If arm k is chosen at nth epoch, it incurs a cost of Xn,k,
yields a reward ofRn,k, and returns a penalty of Yn,k, where
the outcome of the joint random vector (Xn,k, Rn,k, Yn,k) is
learned via bandit feedback at the end of each arm decision.
We assume that the random process {(Xn,k, Rn,k, Yn,k) :
n ≥ 1} is independent and identically distributed over n,

and independent across different arms for all k ∈ K. For
simplicity, we assume that Xn,k, Rn,k, Yn,k ∈ [0, 1] for all
n, k, which can be easily extended to general sub-Gaussian
random variables by using the same techniques used in this
paper. The controller has a total budget B > 0 at the be-
ginning of the process, and tries to maximize the expected
cumulative reward under time-average constraints on the
penalties by sampling the arms wisely under this budget con-
straint.

Note that stochastic constraints and budget constraints
imply completely different system dynamics. Violation of
a budget constraint immediately stops the decision-making
process. On the other hand, the stochastic constraints are
aimed to be satisfied asymptotically, while instantaneous vi-
olations do not stop the decision-making process.

First, we introduce the causal policy space.

Definition 1 (Causal Policy). Let π be a policy that yields
a sequence of arm pulls {Iπn ∈ K : n ≥ 1}. Under π, the
history until epoch n is the following filtration:

Fπn = σ({(Iπj , Xj,k, Rj,k, Yj,k) : Iπj = k, 1 ≤ j ≤ n}),
(1)

where σ(Z) denotes the sigma-field of a random variable Z.
We call an algorithm π causal if π is non-anticipating, i.e.,
{Iπn = k} ∈ Fπn−1 for all k, n.

The set of all causal policies is denoted as Π. We denote
the variables at epoch n under policy π as Xπ

n = Xn,Iπn ,
Rπn = Rn,Iπn and Y πn = Yn,Iπn . The total cost incurred in
n epochs under an causal policy π ∈ Π is a controlled ran-
dom walk which is defined as Sπn =

∑n
i=1X

π
i . The decision

process under a policy π continues until the budget B is de-
pleted. We assume that the reward corresponding to the final
epoch during which the budget is depleted is gathered by
the controller. Thus, the total number of pulls under π is a
random variable that is defined as follows:

Nπ(B) = inf
{
n ≥ 1 : Sπn > B

}
. (2)

Note that the total number of pulls Nπ(B) is a stopping
time adapted to the filtration {(Fπn ) : n ≥ 0}. Accordingly,
the cumulative reward under a policy π can be written as
follows:

REWπ(B) =

Nπ(B)∑
n=1

Rπn. (3)

Then, we can write the generic problem formulation consid-
ered in this paper as follows:

sup
π∈Π

E[REWπ(B)],

subject to: E

[
1

B

Nπ(B)∑
n=1

Y πn

]
≤ c. (4)

Definition 2 ((Pseudo) Regret and constraint-violation). Let
πOpt be the solution of (4) and OPT(B) = E[REWπOpt(B)].
For any causal policy π ∈ Π and a budget B > 0 level, the
(pseudo) regret, REGπ(B), and constraint-violation,Dπ(B),
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are defined as follows:

REGπ(B) = OPT(B)− E[REWπ(B)], (5)

Dπ(B) = E

[
1

B

Nπ(B)∑
n=1

Y πn

]
− c. (6)

The objective of this paper is to design low-complexity
bandit algorithms that are guaranteed to give a low regret
and a vanishing constraint-violation level that decays rapidly
with the budget level B, in the absence of any statistical
knowledge on the costs, rewards, and penalties. The generic
problem (4) has numerous applications in communications,
control, operations research and management, whereby op-
timal decision-making under data scarcity and uncertainty is
common. Next, we provide a detailed application in wireless
scheduling in next generation networks, and refer the reader
to Appendix for other example applications for contractual
hiring, and online advertising.

Application to Next Generation Wireless Scheduling
with Quality-of-Service Guarantees: Next-generation
wireless technologies are required to serve a highly dy-
namic population of users with stringent quality-of-service
(QoS) guarantees (such as low delay (Khalek, Caramanis,
and Heath 2014)) over ultra-high frequency bands with non-
traditional statistical and temporal characteristics (Rappa-
port et al. 2015). As such, existing estimation and allocation
techniques that rely strongly on persistent users and slowly-
changing nature and known statistical models of channel
conditions are no longer suitable for use in this new ultra-
wideband communication paradigm. The controller is re-
quired to learn how to optimize the throughput subject to
QoS guarantees by using the ARQ (bandit) feedback re-
ceived after each transmission.

This calls for the design of time/energy-constrained point-
to-point communication solutions over K parallel memo-
ryless channels with unknown and diverse statistical char-
acteristics. In particular, each connection starts with a to-
tal time or energy budget of B units. The transmission
of nth packet over the kth channel consumes a random
amount ofXn,k resource (e.g., transmission time or energy),
yields a reward (e.g., throughput) Rn,k and incurs a penalty
Yn,k upon completion of transmission. In this context, Yn,k
is a generic penalty that will be used in modeling time-
average quality-of-service guarantees. As an example, con-
sider delay-constrained communication, where the arriving
packets should be transmitted in a timely manner. Then, for a
given deadline level d ∈ [0, 1], we let Yn,k = I{Xn,k > d},
which counts the number of packets that are delayed for
more than d time units. For a given time or energy budget B
and a quality-of-service constraint c, the optimization prob-
lem (4) leads to throughput maximization subject to a guar-
antee on the time-average number of delayed packets. Note
that many other QoS criteria, such as the fraction of dropped
packets, can be modeled in a similar manner, which implies
the generality of this approach.

Outline of the Lyapunov-Based Design
Methodology and Main Results

In this work, we develop a low-complexity online algorithm
for solving the generic constrained reward maximization
problem (4) by employing a Lyapunov-drift minimization
methodology. Since this methodology may be of indepen-
dent value, in this section we provide an outline of its main
steps along with an informal discussion of the key results we
obtained under them.

(i) Characterization of the Asymptotically-Optimal Sta-
tionary Randomized Oracle: The optimization problem
we defined is a variant of the unbounded knapsack problem,
and it is known that similar stochastic control problems are
PSPACE-hard (Badanidiyuru, Kleinberg, and Slivkins 2013;
Papadimitriou and Tsitsiklis 1999). We propose a station-
ary randomized policy π∗ in Definition 4 that achieves (see
Proposition 1) O(1) regret and O(1/B) constraint-violation
gap. This proves that the stationary policy is asymptotically
optimal as the budget B goes to infinity.

Our Lyapunov-based policy design are broken into the
following two steps:

(ii) Offline Lyapunov-Drift-Minimizing Policy Design:
We first consider the ‘offline’ setting with known reward,
cost, and penalty statistics. There, we introduce a virtual
queue {Qπn} that is updated as: Qπn+1 = max{0, Qπn +
Y πn − (c − δ)Xπ

n}, with a design choice δ ∈ [0, c), which
keeps track of the constraint-violation level under policy
π over decisions n ≥ 1. Then, under this queue dynam-
ics, we propose a quadratic Lyapunov drift-minimizing pol-
icy πLyOff in Definition 6 that achieves (cf. Proposition 2)
O((δ+1/V )B) regret andO(V/B−δ) constraint-violation
gap, where V > 0 is a design parameter. With the particular
selection of V = Θ(

√
B) and δ = Θ(1/

√
B), we can guar-

antee O(
√
B) regret and zero constraint-violation for πLyOff

with sufficiently large B.

(iii) Online Lyapunov-Drift-Minimizing Policy Design:
Then, we return to the original ‘online’ setting with un-
known statistics, and develop a low-complexity empirical
Lyapunov-drift minimizing policy πLyOn that integrates con-
fidence bounds of proposed empirical estimator with the
queueing dynamics from the offline case. Then, the main
result of the paper (cf. Theorem 1) establishes that πLyOn
achieves O(

√
KB logB + B(1 + δ logB)/V + Bδ +

K logB) regret and O(K logB/B + V/B − δ) constraint-
violation level. With the particular selection of design pa-
rameters as V = Θ(

√
B logB) and δ = Θ(

√
logB/B),

we guarantee O(
√
KB logB) regret and zero constraint-

violation for πLyOn with sufficiently large B.
The online analysis is especially complicated by the

fact that the cumulative reward and penalty processes form
stopped and controlled random walks. To address the asso-
ciated challenge, we combine techniques from renewal the-
ory and Martingale concentration inequalities (Wainwright
2019) to find a high probability upper bound for Nπ(B).
Additionally, for the online policy with unknown statistics,
we carefully integrate empirical concentration inequalities
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(Cayci, Eryilmaz, and Srikant 2020) with hitting time anal-
ysis for Martingales (Hajek 1982) as well as Lyapunov drift
analysis (Neely 2012) to bound REWπ(B) and Dπ(B).

Asymptotically-Optimal Stationary
Randomized Oracle Design

As a tractable benchmark, in this section, we consider ap-
proximation algorithms with provably good performance.

Definition 3 (Reward Rate and Penalty Rate). Consider a
stationary randomized policy π = π(p) for a given prob-
ability mass function p = (p1, p2, . . . , pK), which takes
action k with probability pk independent from the history.
Then, under π(p), the reward rate and penalty rate are de-
fined as:

r(p) =

∑
k∈K pkE[R1,k]∑
k∈K pkE[X1,k]

, y(p) =

∑
k∈K pkE[Y1,k]∑
k∈K pkE[X1,k]

,

(7)

Intuitively, if an arm is chosen persistently according to
the stationary randomized policy π(p) until the budget B >
0 is depleted, the cumulative reward becomes r(p)B+o(B)
and cumulative penalty becomes y(p)B + o(B). Moreover,
whenever E[R2

1,k] < ∞ and E[Y 2
1,k] < ∞ (trivially true for

bounded random variables), the additive o(B) term is O(1)
in both cases by Lorden’s inequality (Asmussen 2008).

In the following, we prove that a stationary random-
ized policy achieves O(1) optimality gap with constraint-
violation vanishing at a rate of O(1/B).

Definition 4 (Optimal Stationary Randomized Policy, π∗).
Let p∗ be the solution to the following optimization problem:

max
p∈∆K

{r(p), subject to: y(p) ≤ c} .

where ∆K is the K-dimensional probability simplex. The
optimal stationary randomized policy, denoted by π∗, pulls
arm k with probability p∗k independently at each epoch un-
til the budget is depleted: P(Iπ

∗

n = k) = p∗k, for all
n ≤ Nπ∗(B).

The main result of this section is the following proposi-
tion, which implies that π∗ is a good approximation algo-
rithm for πOpt for B > 0.

Proposition 1 (Optimality Gap for π∗). For the optimal
static policy π∗ for any given B > 0, the following regret
and constraint-violation gap results hold:

REGπ
∗
(B) = O(1), Dπ∗(B) = O

( 1

B

)
. (8)

Therefore, π∗ is asymptotically optimal, i.e.
limB→∞ REGπ

∗
(B)/B = 0 and limB→∞Dπ∗(B) = 0.

The proof of Proposition 1 can be found in Appendix. In
the next section, we will introduce a learning algorithm to
achieve the performance of the optimal stationary random-
ized policy with low regret and constraint-violation.

Algorithm Design Based on Empirical
Lyapunov Drift Minimization

In the previous section, we proved that the stationary ran-
domized policy π∗ achieves the optimality in offline setting
with small optimality gap and constraint-violation, which
implies it can be used as a benchmark for the design and
analysis of learning algorithms. By using this, we will de-
velop a dynamic learning algorithm based on the Lyapunov-
drift-minimization approach. For details about this dynamic
optimization approach in offline setting, see (Neely 2012).

We make two mild assumptions that are needed for the
development and analysis of our design:
Assumption 1 (ε-Slater Condition). There exists an arm k ∈
K such that E[Yn,k − cXn,k] ≤ −ε for some ε > 0. We only
need ε to be a positive lower-bound of the actual value.

Assumption 1 is reasonable because for feasibility, either
all arms should satisfy E[Yn,k − cXn,k] = 0 for all k or As-
sumption 1 should hold, otherwise the constraint can never
be satisfied once it is violated. Since E[Yn,k − cXn,k] =
0, ∀k ∈ K is a trivial case, Assumption 1 is satisfied in
almost all applications.
Assumption 2 (Bounded Moments). For all arms k ∈ K,
assume maxk

E[R1,k]
E[X1,k] ≤ rmax < ∞ and maxk

E[Y1,k]
E[X1,k] ≤

ymax < ∞. In addition, assume σ2 = maxk∈K E
[(
Y1,k −

cX1,k

)2]
< 1, and mink E[X1,k] ≥ µmin > 0. We only need

µmin to be a lower bound and rmax, ymax to be upper bounds
of the actual values.

This assumption is reasonable because otherwise the op-
timization problem in (4) would become either trivial or un-
solvable. For bounded rewards and penalty between [0, 1],
rmax and ymax can be upper bounded by 1/µmin.

Offline Lyapunov-Drift Minimizing Policy
First, we consider the Lyapunov optimization methods in the
offline setting with known first-order statistics by follow-
ing (Neely 2012), while improving the results for finite-time
performance using the drift results in (Hajek 1982). As a
measure of constraint-violation under a causal policy π ∈ Π,
we define the variables Qπn recursively as follows:

Qπn+1 = max
{

0, Qπn + Y πn − (c− δ)Xπ
n

}
, (9)

where Qπ0 = 0 and δ ∈ [0, c) is a fixed parameter that con-
trols the tightness of the constraint. Note that Qπn+1 ∈ Fπn
for all n since π is causal. Intuitively, the stability of {Qπn}n
implies that the constraint is satisfied. The key metric for
decision-making is the Lyapunov drift-plus-penalty ratio,
which is defined in the following definition.
Definition 5 (Lyapunov Drift-plus-Penalty Ratio). For any
given V > 0, under a causal policy π, the Lyapunov drift-
plus-penalty ratio is defined as follows:

Ψn(Qπn) = −V
E[Rπn|Fπn−1]

E[Xπ
n |Fπn−1]

+Qπn
E[Y πn |Fπn−1]

E[Xπ
n |Fπn−1]

. (10)

For any stationary randomized policy π(pn), with pn ∈
Fn−1, the Lyapunov drift-plus-penalty ratio becomes:
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Ψn(Qπ(pn)
n ) = −V

∑K
k=1 pn,kE[Rn,k]∑K
k=1 pn,kE[Xn,k]

+Qπ(pn)
n

∑K
k=1 pn,kE[Yn,k]∑K
k=1 pn,kE[Xn,k]

. (11)

Intuitively, in the offline setting where all first-order mo-
ments are known, a stationary randomized policy π(pn) that
minimizes (11) over all probability distributions in every
epoch n, achieves a near-optimal trade-off between the cu-
mulative reward and constraint-violation determined by the
parameter V > 0 (Neely 2012). In the following, we out-
line this result in the offline setting, which will guide us in
developing the online algorithm.

Definition 6 (Offline Lyapunov-Drift-Minimizing Distribu-
tion). For any n, let q∗n be defined as follows:

q∗n ∈ arg min
p∈∆K

Ψn(Qπ(p)
n ). (12)

The problem in (12) is an optimization problem over ∆K ,
the K-dimensional probability simplex, which is compu-
tationally complex and can be solved by using algorith-
mic techniques in (Neely 2012). However, as it is shown in
Proposition 5 in Appendix, the optimal solution in our K-
armed bandit setting is deterministic given the historyFn−1.
This allows us to define the offline Lyapunov-Drift Minimiz-
ing Policy πLyOff as in Algorithm 1.

Intuition: The policy πLyOff makes a balanced choice
between the reward maximization and satisfying the con-
straints. For small Qn, the controller selects the arm In with
the highest drift-plus-penalty ratio so as to maximize the ex-
pected total reward under the budget constraints. If Qn is
large, then it means the constraint has been violated consid-
erably, thus In is selected so as to reduce the penalty rate
and hence violation level. Next, we prove finite-time perfor-
mance bounds for πLyOff.

Proposition 2 (Performance Bounds for πLyOff). Suppose
that Assumption 1 and Assumption 2 hold with positive ε, σ2,
rmax and µmin. Then, given the budget B, for any V > 0 and
δ ∈ [0, c), the regret and constraint-violation levels under
πLyOff satisfy:

REGπLyOff(B) = O

(
σ2B

V µ2
min

+
δrmaxB

εµ2
min

)
, (13)

DπLyOff(B) = O
( 1

B
+

V rmax
Bµminε

− δ

µmin

)
. (14)

Specifically, let V = v0

√
B and δ = δ0/

√
B with

some design parameters δ0 > 0, v0 > 0. We can select
δ0 ∈ ( rmaxε v0, c

√
B) such that for sufficiently large B,

REGπLyOff(B) = O
(√

B
)
, DπLyOff(B) = O

( −1√
B

)
.

(15)

Algorithm 1: LyOff Algorithm

1: Input: B,K, c, V, δ,
2: E[X1,k],E[R1,k],E[Y1,k]
3: Initialize Q0 = 0, cost = 0, n = 1
4: while cost ≤ B do
5: Ψn(k,Qn) = −V E[R1,k]

E[X1,k] +Qn
E[Y1,k]
E[X1,k]

6: kn = arg mink∈K Ψn(k,Qn)
7: Select arm In = kn.
8: Observe Xn, Rn, Yn.
9: Qn+1 = max

{
0, Qn + Yn − (c− δ)Xn

}
10: cost = cost + Xn.
11: n = n+ 1.
12: end while

The proof of Proposition 2 can be found in Ap-
pendix. Proposition 2 establishes the fact that πLyOff pol-
icy achieves O(

√
B) regret and zero constraint-violation

for sufficiently large B given the first-order statistics
E[Xn,k],E[Rn,k],E[Yn,k] for all arms k ∈ K. The πLyOff
policy will serve as a guide for our online learning algo-
rithm, introduced next.

Online Lyapunov-Drift Minimizing Policy
A strong assumption in πLyOff was the a priori knowledge
of the first-order statistics for all variables. Recall that in the
learning problem, we do not have this knowledge. Instead,
we must work with estimations by using the observed out-
comes from bandit type feedback to learn the optimal de-
cision. Furthermore, like all exploration-exploitation prob-
lems, the online exploration is a crucial component of the
learning problem here as well. Optimizing this trade-off with
low regret and constraint-violation is particularly challeng-
ing in this setting due to the knapsack-type budget con-
straints from random costs, as well as the random penalties
in the constraint. In this section, we will design and ana-
lyze the LyOn Algorithms by combining tools from renewal
theory, stochastic control, as well as bandit optimization to
address these challenges for optimal learning.

Strategy: Our strategy will be to approximate the Lya-
punov drift-plus-penalty ratio Ψn in equation (10) by us-
ing the empirical estimates for the first-order statistics. In
order to encourage online exploration, we will use confi-
dence bounds so that the index at the end will be a high-
probability lower bound for Ψn. The following definitions
will be needed to define the online algorithm.
Definition 7 (Confidence Radius). For any n ≥ 1 and arm
k ∈ K, let Iπn (k) = {t ∈ [1, n] : Iπt = k}, Tπk (n) =
|Iπn (k)| =

∑n
t=1 I{Iπt = k} be the number of pulls for arm

k under a policy π in the first n epochs. For a given α > 0,
the confidence radius for arm k is defined as: radk(n, α) =√

2α log(n)
Tk(n) .

To ensure the confidence radius is small enough, we have
an initial exploration phase that is controlled by a parameter
β0 which depends on ε, ymax, and µmin. Specifically, we set
β0 = 32α(1+ymax)

2

µ2
minε

2 to guarantee the concentration event in
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Lemma 6 of Appendix.
For a subset of indices S ⊂ N and a stochastic process

{Zn : n ∈ N}, let ÊS [Z] = min
{

1, 1
|S|
∑
t∈S Zt

}
, be the

empirical mean estimator. Then, the empirical reward rate
and empirical penalty rate under policy π after n epochs are
defined as:

r̂πn,k =
ÊIπn(k)[Rk]

ÊIπn(k)[Xk]
, ŷπn,k =

ÊIπn(k)[Yk]

ÊIπn(k)[Xk]
, k ∈ K.

(16)
Definition 8 (Empirical Lyapunov Drift-Plus-Penalty Ra-
tio). LetQπn be the variable evolving under π as in (9). Then,
the empirical Lyapunov drift-plus-penalty ratio at epoch n is
defined as follows:

Ψ̂n(k,Qπn) = −V · r̂πn−1,k +Qπn · ŷπn−1,k, (17)
where V > 0 is a design parameter. Define the empirical
lower confidence bound for Ψ̂n(k,Qπn) as

Γ̂n(k,Qπn) = Ψ̂n(k,Qπn)− radk(n− 1, α)
V (1 + r̂πn−1,k)

ÊIπn−1(k)[Xk]

+ radk(n− 1, α)
Qπn(1 + ŷπn−1,k)

ÊIπn−1(k)[Xk]
(18)

With these definitions, the online Lyapunov-Drift Mini-
mizing Algorithm LyOn is defined in Algorithm 2.

Before we analyze it, we make the following observations
about the LyOn Algorithm.
1. Lyon is an extremely low-complexity, iterative algo-

rithm, whereby in every step a simple update is per-
formed.

2. The index to be minimized in (18) is a high-probability
lower bound for Ψn(k,Q

πLyOn
n ). Thus, given the avail-

able data FπLyOn

n−1 , the algorithm makes an optimistic drift-
minimizing arm selection in the face of uncertainty.

3. If IπLyOn
n = k, then at least one of the following must

be true: a) High confidence for arm k, large rk and
small QπLyOn

n . b) High confidence for arm k, large QπLyOn
n

and small yk. c) Low confidence for arm k. As such,
the LyOn Algorithm incentivizes online exploration by
choosing arms with very low confidence.

4. The LyOn Algorithm extends the UCB-BwI Algorithm
proposed in (Cayci, Eryilmaz, and Srikant 2019) to the
non-trivial and useful cases with stochastic feasibility
constraints. Note that QπLyOn

n = 0 if there is no constraint,
thus the LyOn Algorithm reduces to the UCB-BwI Al-
gorithm.

Theorem 1 (Performance Bounds for πLyOn). Suppose that
Assumption 1 and Assumption 2 hold with positive ε, σ2,
rmax, ymax, and µmin. Then, for any V > 0 and δ ∈ [0, c), the
regret and constraint-violation levels under πLyOn satisfy:

REGπLyOn(B) = O

(
rmax
√
KB logB

µ2
min

+
y2
maxK logB

ε2µ2
min

+
σ2 + ymax + δ logB

V µ2
min

B +
δrmax
εµ2

min

B

)
, (19)

Algorithm 2: LyOn Algorithm

1: Input: B,K, c, α, V, δ, β0, µmin
2: Initialize Q0 = 0, cost = 0, n = 1
3: Select each arm

⌈
β0 log

(
2B
µmin

)⌉
times.

4: Update n, cost, Γ̂n(k,Qn) (eq. (18)).
5: while cost ≤ B do
6: kn = arg mink∈K

{
Γ̂n(k,Qn)

}
7: Select arm In = kn. Observe Xn, Rn, Yn.
8: Qn+1 = max

{
0, Qn + Yn − (c− δ)Xn

}
9: cost = cost + Xn.

10: Update Γ̂n(k,Qn) (eq. (18)).
11: n = n+ 1.
12: end while

DπLyOn(B) = O

(
y2
maxK logB

ε2µ2
minB

+
V rmax
Bµminε

− δ

µmin

)
, (20)

Specifically, let V = v0

√
B logB and δ = δ0

√
logB/B

with design parameters δ0 > 0, v0 > 0. We can select δ0 ∈
( rmaxε v0, c

√
B) such that for sufficiently large B,

REGπLyOn(B) = O
(√

KB logB
)
, DπLyOn(B) = O

( −1√
B

)
.

(21)

The proof of Theorem 1 can be found in Appendix. The-
orem 1 implies that πLyOn achieves O(

√
KB logB) regret

and zero constraint-violation for sufficiently large B while
learning the first order statistics under a bandit feedback.

In addition to the fact that cumulative reward and penalty
processes form stopped and controlled random walks, the
main challenge in analyzing the LyOn algorithm perfor-
mance is that Qn is correlated with the sample path. To
address this, we prove a maximal inequality for Qn under
a concentration event (Lemma 7 in Appendix), which can
have its own value in other queuing systems. Also note that,
compared with LyOff, the online algorithm has a very small
increase on the regret bounds by a factor of

√
K logB. This

is a reasonable price to pay since we are not assuming any
known statistics. To the best of our knowledge, these are the
best results available on both regret and constraint-violation
in the current setup. In the special case of unit cost sce-
nario, our algorithm theoretically guarantees a similar regret
performance to prior designs (Agrawal and Devanur 2014)
while providing a stronger constraint-violation guarantee.

Simulations
We implement both LyOff and LyOn algorithms for K = 2
arms with Bernoulli distributed rewards, costs, and penal-
ties. Assuming c = 0.8, arm 1 is selected to have a high re-
ward rate and a high penalty rate with E[X1] = 0.4,E[Y1] =
0.6, and E[R1] = 0.8. Arm 2 is selected to have a low reward
rate and a low penalty rate with E[X2] = 0.6,E[Y2] = 0.3,
and E[R2] = 0.6. These values are interesting in that, an op-
timal controller will have to make a trade-off between the
two arms, whereas any static policy selecting one of the
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(a) Reward rate (REW(B)/B) (b) Constraint-violation (c) Time allocation

(d) Reward rate (REW(B)/B) (e) Constraint-violation (f) Time allocation

Figure 1: Performance of LyOff and LyOn for different parameters. (a), (b), and (c) use v0 = 1, δ0 = 0.5, (d), (e), and (f) use
v0 = 1, δ0 = 15.

arms will result in either linear regret or linear constraint-
violation.

Figure 1a, 1b, and 1c show the simulation results (aver-
aged over 104 runs) with v0 = 1 and δ0 = 0.5 for LyOff
and LyOn algorithms. To observe the reward rate behavior,
in Figure 1a, we plot the reward rates REWπ(B)/B of πLyOff
and πLyOn and the optimal randomized policy π∗, with vary-
ing budgets B. This figure shows that both the offline and
the online designs reach the rate of the optimal design, as
predicted by our analysis. Also, Figure 1b verifies the fast
decaying of constraint-violation with rate Õ(1/B) as B in-
creases, which confirms the scaling behaviour revealed in
our analyses. Figure 1c further confirms the convergence of
LyOff and LyOn towards π∗ by showing the proportion of
time allocated to each arm. As predicted by Theorem 1, Fig-
ure 1d, 1e, and 1f show that we can indeed select specific
v0 and δ0 values such that the constraint-violation becomes
negative when B is sufficiently large. At the same time, the
reward rate and proportion of time allocated to each arm still
converge to the rate of the optimal design.

In Appendix, to check the performance of our algorithms
for larger K, we increase the number of arms by adding
arms with the principle that high reward rate arm also has
high penalty rate (otherwise the arms are not competitive).
We also investigate the effect of design choices V and δ to
capture the tradeoff between constraint-violation and regret
under the LyOff and LyOn algorithms.

Conclusion
In this paper, we proposed a broadly applicable compu-
tationally efficient methodology based on Lyapunov-drift-
minimization for solving a penalty-constrained reward max-
imization problem with a limited budget, random costs, and
bandit feedback. Both offline and online algorithms are de-
veloped based on this design methodology, which are also
proven to have sharp regret and constraint-violation per-
formance. The approach and algorithms are applicable in
diverse domains whereby knapsack budget constraints and
stochastic feasibility constraints are required. An interest-
ing future work that can benefit from the same methodology
would be to extend our setting to the scenario of multiple
constraints and infinitely many arms.
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