Making Adversarial Examples More Transferable and Indistinguishable

Authors

  • Junhua Zou Army Engineering University of PLA
  • Yexin Duan Army Engineering University of PLA
  • Boyu Li Huazhong University of Science and Technology
  • Wu Zhang Army Engineering University of PLA
  • Yu Pan Army Engineering University of PLA
  • Zhisong Pan Army Engineering University of PLA

DOI:

https://doi.org/10.1609/aaai.v36i3.20279

Keywords:

Computer Vision (CV)

Abstract

Fast gradient sign attack series are popular methods that are used to generate adversarial examples. However, most of the approaches based on fast gradient sign attack series cannot balance the indistinguishability and transferability due to the limitations of the basic sign structure. To address this problem, we propose a method, called Adam Iterative Fast Gradient Tanh Method (AI-FGTM), to generate indistinguishable adversarial examples with high transferability. Besides, smaller kernels and dynamic step size are also applied to generate adversarial examples for further increasing the attack success rates. Extensive experiments on an ImageNet-compatible dataset show that our method generates more indistinguishable adversarial examples and achieves higher attack success rates without extra running time and resource. Our best transfer-based attack NI-TI-DI-AITM can fool six classic defense models with an average success rate of 89.3% and three advanced defense models with an average success rate of 82.7%, which are higher than the state-of-the-art gradient-based attacks. Additionally, our method can also reduce nearly 20% mean perturbation. We expect that our method will serve as a new baseline for generating adversarial examples with better transferability and indistinguishability.

Downloads

Published

2022-06-28

How to Cite

Zou, J., Duan, Y., Li, B., Zhang, W., Pan, Y., & Pan, Z. (2022). Making Adversarial Examples More Transferable and Indistinguishable. Proceedings of the AAAI Conference on Artificial Intelligence, 36(3), 3662-3670. https://doi.org/10.1609/aaai.v36i3.20279

Issue

Section

AAAI Technical Track on Computer Vision III