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Abstract

Depth estimation is a crucial step for 3D reconstruction with
panorama images in recent years. Panorama images main-
tain the complete spatial information but introduce distor-
tion with equirectangular projection. In this paper, we pro-
pose an ACDNet based on the adaptively combined dilated
convolution to predict the dense depth map for a monocular
panoramic image. Specifically, we combine the convolution
kernels with different dilations to extend the receptive field in
the equirectangular projection. Meanwhile, we introduce an
adaptive channel-wise fusion module to summarize the fea-
ture maps and get diverse attention areas in the receptive field
along the channels. Due to the utilization of channel-wise at-
tention in constructing the adaptive channel-wise fusion mod-
ule, the network can capture and leverage the cross-channel
contextual information efficiently. Finally, we conduct depth
estimation experiments on three datasets (both virtual and
real-world) and the experimental results demonstrate that
our proposed ACDNet substantially outperforms the current
state-of-the-art (SOTA) methods. Our codes and model pa-
rameters are accessed in https://github.com/zcql5/ACDNet.

Introduction

The panoramic camera is a new type of camera to capture
images with 180° x 360° field of view (FoV), which is con-
venient to obtain omnidirectional spatial information in a
single shot without the post-calibration and stitching. With
its wide usage in the fields such as virtual reality (VR) and
security monitoring in recent years, panorama depth estima-
tion is a crucial step in a variety of downstream applications,
such as semantic segmentation, layout recovery, and 3D re-
construction, to name a few.

Generally, panorama images are represented as images on
the sphere grid for warp and weft by the equirectangular
projection (ERP). However, the geometric structure in the
higher latitude areas is distorted since the spatial sampling
rate changes with latitude. Therefore, accurate depth esti-
mation is difficult with conventional convolution networks
in these areas.
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Figure 1: Reconstructed results of different models. Left: the
panorama color image and the predicted depth maps. Right:
point clouds generated from the ground-truth and predicted
depth maps with inverse equirectangular projection. Note
that our predicted depth map has more clear edges and also
generates a more accurate point cloud in both overall shape
and object details.

Early works (Cohen et al. 2017, 2018) define the spher-
ical CNNs to process the spherical signals but cause the
high resource expenditure. And some others (Su and Grau-
man 2017; Tateno, Navab, and Tombari 2018; Coors, Con-
durache, and Geiger 2018; Fernandez-Labrador et al. 2020)
propose the different custom convolutions to deform the
convolution kernels according to the geometric structures in
the 3D space of the ERP coordinates. These adaptive con-
volution kernels expand the receptive fields near the poles
according to the corresponding latitude coordinates. How-
ever, these methods still have a great potential to be further
improved.

On the other hand, BiFuse (Wang et al. 2020a) and Uni-
Fuse (Jiang et al. 2021) project the ERP image to the cube-



map images to solve the distortion with the perspective
projection. However, due to the limitation of the FoV in
the cubemap branch, the overall layout in the reconstructed
scenes can not be well restored. Besides, HoHoNet (Sun,
Sun, and Chen 2021) and SliceNet (Pintore et al. 2021) ex-
tract the horizontal 1D feature maps from gravity-aligned
equirectangular projection and recover the dense 2D pre-
dictions. However, it is hard to recover the details in the
columns from 1D features (see Fig.1). Thus, the balance be-
tween quantitative results and visual effects still needs to be
considered.

In this paper, we propose the ACDNet based on the
adaptively combined dilated convolution for the panoramic
monocular depth estimation. We combine the convolution
kernels with different dilations to extend the receptive field
in the equirectangular projection. Meanwhile, we use an
adaptive channel-wise fusion module to summarize the fea-
ture maps and get diverse attention areas in the receptive
field along different channels. Different from methods (Su
and Grauman 2017; Tateno, Navab, and Tombari 2018;
Coors, Condurache, and Geiger 2018; Fernandez-Labrador
et al. 2020) that calculate the shapes of convolution ker-
nels according to the latitude coordinates, we learn the fo-
cused areas in different feature channels that help the net-
work to capture the cross-channel contextual information.
Finally, we evaluate our method on both virtual and real-
world panoramic RGB-D datasets. The experimental results
show that our ACDNet and the adaptively combined dilated
convolution outperform the current state-of-the-art methods.

In summary, the main contributions of this work can be
summarized as follows:

1. We propose the adaptively combined dilated convolution
to process the panorama images for monocular depth es-
timation, and it can be easily embedded into convolution
networks by replacing the regular convolution.

The interest areas can be obtained by learning different
attention scores in different channels, which is more suit-
able for panoramic images than explicitly deforming con-
volution kernels in different latitudes.

. We perform the monocular panorama depth estima-
tion experiments on both virtual and real-world RGB-D
panorama datasets, which outperforms the SOTA meth-
ods in both quantitative metrics and visual effects.

Related Work

In this section, we describe the overview of researches on
panorama depth estimation and simply introduce the appli-
cations of dilated convolution in CNNgs.

Panorama Depth Estimation

Depth estimation is an important step for 3D reconstruction,
and panorama images can capture the omnidirectional spa-
tial information for the global structure, which conduces to
recover the depth in areas with weak textures.

OmniDepth (Zioulis et al. 2018) first proposes the Rect-
Net to estimate the depth map with a single panorama image
and shows better performance than individually processing
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the different views of cubemap projection (CMP). However,
this method is limited by the distortion of the geometric
structures and the decrease of the FoV near the poles for
panoramic images in the equirectangular projection. There
are some main types of existing methods to solve this prob-
lem.

Firstly, some methods (Coors, Condurache, and Geiger
2018; Tateno, Navab, and Tombari 2018; Fernandez-
Labrador et al. 2020; Eder et al. 2019) deform the convo-
lution kernels to adaptively extend the receptive fields of
custom convolutions. Specifically, SphereNet (Coors, Con-
durache, and Geiger 2018) and DistConv (Tateno, Navab,
and Tombari 2018) calculate the sampling positions for the
convolution kernels with inverse gnomonic projection, and
CFL (Fernandez-Labrador et al. 2020) defines the convo-
Iution over the field of view on the spherical surface with
longitudinal and latitudinal angles. Besides, mapped convo-
Iution (Eder et al. 2019) proposes a more general method to
process images of any structured representation by accept-
ing the corresponding mapping function. These methods all
produce the different convolution kernels with the change of
latitude coordinates in the ERP.

Secondly, some other methods introduce the additional
CMP branch with perspective projection into the network.
BiFuse uses their proposed bi-projection fusion module to
fuse the feature maps in two complete encoder-decoder
branches. Furthermore, UniFuse removes the CMP decoder
branch and proposes a more effective unidirectional fusion
module. However, due to the limitation of the FoV, the CMP
branch can not extract good features from areas with weak
textures, e.g., the ceilings and the floors, which cripples the
ability for fused features to express the spatial structures.
Last, recent works HoHoNet and SliceNet compress the 2D
features to 1D features from gravity-aligned panoramic im-
ages, then they apply the RNNs to capture the global context
information.

There are also still other methods to estimate panoramic
depth with different strategies, including deformable con-
volution kernels (Cheng et al. 2020; Chen et al. 2021),
geometric guidance (Eder, Moulon, and Guan 2019; Jin
et al. 2020; Zeng, Karaoglu, and Gevers 2020), self-
supervised/unsupervised learning (Zioulis et al. 2019; Zhou,
Wang, and Yang 2020), and stereo matching (Wang et al.
2020b). These existing methods have achieved good results
on depth estimation with panoramic cameras. But there is
still much room for improvement in terms of quantitative re-
sults or visual effects.

Dilated Convolution

It is proved that dilated convolution is an effective tool for
the increment of the receptive field without additional pa-
rameters and down-sampling. Apart from semantic segmen-
tation (Chen et al. 2018) and object detection (Liu et al.
2016), dilated convolution is also widely utilized on some
other tasks such as depth estimation.

Earlier works (Yu, Koltun, and Funkhouser 2017; Ma
et al. 2018) simply embed the dilated convolutions in the
network. And many works use the atrous spatial pyramid
pooling (ASPP) (Chen et al. 2018) or a similar module to
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Figure 2: The architecture of our ACDNet.

model contextual information. Some works (Fu et al. 2018;
Fang et al. 2020; Zhang et al. 2020; Lee et al. 2021) intro-
duce ASPP to aggregate multi-scale contextual information
for better monocular depth estimation. Besides, MSDC-Net
(Tian et al. 2019) combines the res-block module with differ-
ent dilated rates to build the irregular shape ResNet (He et al.
2016) module. CrossGuidance (Lee et al. 2020) proposes a
residual atrous spatial pyramid (RASP) block to analyze the
large input images. And MAPUnet (Yang et al. 2021) devel-
ops the multi-layers Dense ASPP with more scales to cover
more pixels.

Different from modules similar to ASPP, we combine the
dilated convolutions as an equivalent large kernel convolu-
tion and apply it to replace the regular convolution layers in
ResNet blocks. This operator enlarges the receptive field and
produces a variety of interest areas in the receptive field.

Approach

For the reconstruction of the indoor scene with a single
panoramic image, we propose the ACDNet with adaptively
combined dilated convolution (ACDConv) layers to estimate
the depth map. In the following text, we first present the ar-
chitecture of the ACDNet, then we show the implementation
of the ACDConv to extract feature maps from panorama im-
ages. Finally, we introduce the loss function in our approach.

Architecture

We propose the ACDNet to estimate the depth map with a
single panorama image as illustrated in Fig.2. In general,
the ACDNet is a conventional network with ResNet blocks
based on the ACDConv and the iterative depth prediction
process. Specifically, given an input panoramic color im-
age, the encoder extracts feature maps in five downsampling
scales with the ResNet blocks. Here, the 3 x 3 convolution
layers are replaced by our proposed ACDConv, the detail is
introduced in the following sub-section. Second, the decoder
upsamples the feature maps with up-convolution modules
(Laina et al. 2016) and produces the depth maps in 4 dif-
ferent scales. The first coarse depth map Dy is generated at
the 1/8 downsamphng level (level 0), then the subsequent
residual maps {R;}3_, are produced in the following de-
coder blocks. The depth map D; at level ¢ is formulated as
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(b) Padding around
@) Paddmg around poles longitude boundaries
Figure 3: The circular padding for panoramic feature maps.
The elements with the same color are selected to pad each
other.

D, = D,_1 + R;, where D;_; is up-sampled from D,_;
with bilinear interpolation.

Besides, the circular padding (Wang et al. 2018) is uti-
lized to maintain a complete and continuous spatial field of
view for panoramic images. As shown in Fig.3, we select
feature items along the longitudinal direction near the poles
and the latitudinal direction near the other boundaries. The
circular padding maintains the continuity of spatial informa-
tion on the sphere surface and avoids the invalid padding
elements for dilated convolutions.

Adaptively Combined Dilated Convolution

The panorama image expands the spherical imaging result to
a rectangular image, which causes the narrow FoV near the
poles for regular convolutions. Previous works have devel-
oped different custom convolutions to extend FoV near the
poles. In this paper, we combine the regular convolutions
with different dilations to increase the FoV. Moreover, we
introduce an adaptive channel-wise fusion (ACF) module to
aggregate the feature maps and get diverse attention areas in
the receptive field along the channels.

The details of our proposed ACDConv are illustrated in
Fig.4. First, given the input features Fj,p,; € REXHXW
we use the different convolutions with a group of dilation
settings to extract feature maps { '}, € RE*HXW from
the input features in parallel. Then, a learnable ACF mod-
ule is applied to integrate the feature maps. Specifically,
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Figure 4: Our adaptively combined dilated convolution
layer. The label R™ in the figure means the n-th choice of
the four dilation rate settings.

we first get the intermediate mean feature and utilize the
global average pooling to obtain a vector V' € RY". After
that, the fully connected layers predict the probability vec-
tors {Vi}4 | € RY for different feature maps, and the soft-
max function is applied to produce the channel-wise fusion
weights as follows:

exp V!
Z?:l exp 1%

Finally, the feature maps F* from different convolutions are
summarized with the channel-wise weights W* to generate
the final feature maps Fiypye = >, F'W* and get a large
receptive field.

On the other hand, we draw the receptive fields of differ-
ent convolutions in Fig.5, including the regular 3 x 3 convo-
lution, the custom convolution with inverse gnomonic pro-
jection in SphereNet, and our adaptively combined dilated
convolution. As shown in Fig.5 (a), the vanilla convolution
always keeps the 3 x 3 receptive field in the different lat-
itudes of the ERP, and SphereNet deforms the convolution
kernel according to the latitudes to extend the receptive field,
especially in the poles areas (see Fig.5 (b)). Our combined
convolution keeps the shape of a large receptive field in the
different latitudes of the ERP as shown in Fig.5 (c). More
importantly, different attention weights in diverse areas of
the combined receptive field along the channels can be ac-
quired after the weighted summarization. Besides, we set the
dilation settings as 1 x 1,1 x 2,1 x 4, and 2 X 1 in our ex-
periments.

Wi =

ey

Loss Function

In our approach, we use the BerHu (Laina et al. 2016) loss
function to supervise the training process for the network,
which is formulated as:

Al Al <c
2 2
B A > ¢

L(d;,d;) = (2)
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where A = d; — C?/;', and d;, JZ are the estimated depth and
the ground truth on pixel ¢ of input image respectively.
For each input image, the parameter c is set as
1 ~
c:gmax|difdi| 3)
Finally, we apply the BerHu loss on Ds, the shape of
which is the same as the input image, and {D; }?_, are part
of the components of Dj.

Experiments

In this section, we first introduce our experiments, includ-
ing datasets, implementation details, and evaluation metrics.
Then, we provide the qualitative and quantitative compar-
isons of our network with state-of-the-art approaches. Fi-
nally, we perform the ablation experiments to validate the
effectiveness of our network structure. All experiments were
conducted on a server computer equipped with an Intel(R)
Xeon(R) Gold 6130 CPU processor, 256GB of RAM, and
an NVIDIA TITAN RTX 24GB graphics card.

Implementation

Datasets We carry out experiments on both virtual and
real-world datasets, including Stanford2D3D (Armeni et al.
2017), Matterport3D (Chang et al. 2017), and Structured3D
(Zheng et al. 2020). Both Stanford2D3D and Matter-
port3D are scanned with RGB-D cameras in the real-
world scenes, and they include 1,413 and 10,800 RGB-D
panoramic views respectively. While Structured3D is ren-
dered with synthetic scenes, and it contains over 196k RGB-
D panorama images. For Stanford2D3D and Matterport3D,
we follow their official splits with entire panoramic RGB-D
pairs to train and test the network. For Structured3D, we just
utilize the subset with rawlight illumination and full furni-
ture settings. The subset includes 21, 835 panoramic RGB-D
image pairs, and we follow the official scene split for train-
ing and testing. Moreover, we follow the process strategy for
Matterport3D as previous works to merge the 18-views per-
spective depth images and the rendered skybox color images
to panoramic RGB-D image pairs.

Implementation Details We implement our network on
the PyTorch (Paszke et al. 2019) platform. We train our
network for 100 epochs on Stanford2D3D, 60 epochs on
Matterport3D, and 60 epochs on Structured3D with Adam
(Kingma and Ba 2015) optimizer respectively, the learning
rate is set as le-4 in all the experiments. Meanwhile, we set
the image size as 512 x 1024 with the batch size of 6 on an
NVIDIA TITAN RTX graphics card.

Evaluation Metrics We adopt five widely-used evaluation
metrics used in previous works to evaluate our method quan-
titatively, including mean absolute error (MAE), root mean
square error (RMSE), logarithmic root mean square error
(RMSElog), absolute relative error (Abs Rel), and threshold
percentage (6™), which can be formulated as:

- MAE = Y1, |di — dil:

RMSE = /% SN |d; - dif:
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Figure 5: Receptive fields (RF) of different convolutions. In sub-figure (c), the items with the same color in a sub-area of a

receptive field have the same interest scores.

Dataset Method MAE| RMSE| RMSElog| AbsRel| 461 621 &1
BiFuse 0.2343  0.4142 0.0787 0.1209 86.60 95.80 98.60

UniFuse  0.2082  0.3691 0.0721 0.1114  87.11 96.64 98.82

Stanford2D3D HoHoNet 0.2027 0.3834 0.0668 0.1014  90.54 96.93 98.86
SliceNet  0.1757  0.3509 0.0801 0.0995 90.29 96.26 98.44

SphereNet  0.2253  0.3833 0.0786 0.1234 8539 95.67 98.33

Ours 0.1870  0.3410 0.0664 0.0984 88.72 97.04 98.95

BiFuse 0.3470  0.6259 0.1134 0.2048 84.52 93.19 96.32

UniFuse  0.2814 0.4941 0.0701 0.1063  88.97 96.23 98.31

Matterport3D HoHoNet 0.2862 0.5138 0.0871 0.1488 87.86 95.19 97.71
SliceNet  0.3296  0.6133 0.1045 0.1764  87.16 94.83 97.16

SphereNet  0.3167  0.5212 0.0778 0.1258  84.34 9549 98.17

Ours 0.2670  0.4629 0.0646 0.1010  90.00 96.78 98.76

BiFuse 0.0562  0.1100 0.0295 0.0401  98.19 99.41 99.72

UniFuse  0.0617 0.1167 0.0324 0.0458 97.65 99.28 99.69

Structured3D HoHoNet 0.0549  0.1088 0.0316 0.0408 97.97 9935 99.70
SliceNet ~ 0.0660  0.1290 0.0444 0.0496  97.25 99.09 99.54

SphereNet  0.0664  0.1161 0.0368 0.0491 97.58 9936 99.71

Ours 0.0454  0.0924 0.0291 0.0327 98.74 99.59 99.82

Table 1: Quantitative comparison on different datasets. The best result of each measurement is marked in bold font. Here we
re-train the previous works on Structured3D with their source codes at the resolution of 512 x 1024, and the training strategies

are the same as ours.

- RMSElog = \/ﬁ SV [logd; —log di2;
- AbsRel = £ SN | |d; — dy| /d;;

- Threshold percentage 6" is the percentage of pixels satis-
fying max(%7 %) < 1.25™.

Following the previous methods, we clip the estimated depth
maps to 10m without scale calibration when calculating the
evaluation metrics.

Comparison Experiments

In this sub-section, we provide the quantitative compari-
son and visual comparison to prove the effectiveness of our
method.

Quantitative Comparison We compare our ACDNet
with previous works on the three above-mentioned datasets,
and the quantitative results are shown in Tab.1. Our ACD-
Net outperforms previous works for most metrics on Stan-
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ford2D3D and all metrics on Matterport3D and Struc-
tured3D. Note that the results of SliceNet on Stanford2D3D
are produced by the fixed parameters in SliceNet’s Github
repository ! and differ from the original values in its pa-
per. Specifically, our results exceed the previous state-of-
the-art method by 5.1% in MAE metric on Matterport3D
and 17.3% on Structured3D as well as reduce the AbsRel
metric by 1.1%, 5.0%, and 18.5% on the three datasets. Be-
sides, we also compare our method with the SphereNet that
uses a custom convolution, where we implement by using
the same framework and replace the convolution layers in
ResNet50 with that in SphereNet. According to the results
in Tab.1, our ACDNet with ACDConv also outperforms the
distortion-aware convolution with inverse gnomonic projec-
tion in SphereNet. On the one hand, the ACDConv expands
the receptive field to get a large spatial FoV. On the other
hand, it focuses on the various areas in the receptive field
along different channels, which makes the convolution ker-

"https://github.com/crs4/SliceNet



nels learn a variety of latent kernel shapes in different chan-
nels, and our network can accommodate the diverse geomet-
ric relationships in ERP.

Visual Comparison Furthermore, Fig.6 shows our visual
comparison results with SOTA methods on three datasets.
As shown in Fig.6, our ACDNet predicts more accurate and
detailed depth maps with better visual effects. Firstly, we re-
cover more clear and accurate walls in the invisible areas,
as shown in the first row of Fig.6. It can be easily noticed
that our ACF module plays a key role in capturing the spa-
tial global context and the circular padding helps to keep
the spatial continuity of the panorama images on the sphere.
Compared to our single-branch, the cubemap branch pro-
posed in the UniFuse extracts features with weak texture in
the ceiling areas of a narrow FoV, which leads to bad per-
formance in the obscured areas. Secondly, our ACDNet es-
timates more object details in the depth maps, such as the
bookcase in the second row and the bathtub in the third row
in Fig.6. Our network also performs well in distinguishing
between the background and the foreground objects with
similar depth values as shown in the last three rows in Fig.6.
Moreover, our ACDNet generates more accurate edges in the
depth maps, such as the wall in the third row and the ceil-
ing lamps in the last row in Fig.6. These results demonstrate
the better performance of our ACDNet in the depth maps
estimation with monocular panorama images.

Ablation Studies

To further verify the effectiveness of our ACDNet, we intro-
duce some groups of ablation studies on the Stanford2D3D
dataset in this section. First, we conduct some ablation stud-
ies on our ACDConv, including the different parts, the dif-
ferent dilation directions, and the number of dilated convo-
lutions. Then, we compare the results of different padding
methods and study the advantage of iterative depth pre-
diction. Finally, we test the network with different ResNet
backbones. In addition, we also compare the model com-
plexity and inference time with existing methods. In all of
these experiments, we use the same hyper-parameters and
training strategy on Stanford2D3D.

Adaptively Combined Dilated Convolution Here, four
experiments are executed to study the roles of the dilated
convolution and the ACF module in our ACDConv as shown
in Tab.2. First, we remove the ACDConv and use the orig-
inal ResNet backbone with the regular convolution in our
network as the baseline. Then we introduce the ACDConv
but replace our ACF module with a simple average opera-
tor, denoted as Simple. Moreover, we test two other fusion
strategies in ACDConv instead of our channel-wise fusion
strategy. Specifically, given the intermediate feature maps
{Fi}4_ | € ROXH*XW the Row-wise strategy adds F* and
squeezes the results to row-wise feature vector V € R
with averaging operators, then the following MLPs generate
the row-wise normalized probability {Wi}1_; € R¥ for fu-
sion process. By contrast, the Pixel-wise strategy does not
squeeze the feature maps and produces pixel-wise normal-
ized probability {W*}L, € RE*HXW with 1 x 1 convolu-
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Method  MAE| RMSE| RMSElog| AbsRel|
Baseline  0.2104  0.3620 0.0746 0.1148
Simple 0.2037  0.3582 0.0689 0.1075
Row-wise 0.2096  0.3694 0.0759 0.1124
Pixel-wise  0.2096  0.3659 0.0720 0.1090
Ours 0.1870  0.3410 0.0664 0.0984
ASPP 0.1990  0.3633 0.0700 0.1032

Table 2: Ablation studies about ACDConv. In the table, we
use the different convolutions in the ResNet50 blocks to
build the network.

Method MAE| RMSE| RMSElog| AbsRel|
Baseline 0.2104  0.3620 0.0746 0.1148
X-axis  0.1953  0.3559 0.0679 0.1028
Y-axis  0.1965  0.3540 0.0684 0.1028
Ours 0.1870  0.3410 0.0664 0.0984

Table 3: Ablation studies about different dilation directions.

tions. Finally, we also test the popular ASPP module in our
baseline which combines the different dilated convolutions
to capture multi-scale context.

As shown in Tab.2, simply averaging the features from
different dilated convolutions or utilizing the ASPP module
can improve the performance on panoramic images, which
shows that the large receptive field of convolution con-
tributes to this task. Our adaptive aggregation operator pro-
duces various attention areas on the receptive field and can
adapt to the different geometric properties in the different
latitudes of panoramic images, thus our full ACDConv out-
performs these two methods. Besides, the adaptively com-
bined dilated convolution with row-wise or pixel-wise fu-
sion strategy hardly improves the results or even makes it
worse. Thus, explicitly combining different dilation at dif-
ferent latitudes or different pixel locations is not suitable
for panoramic images and our adaptively learning the re-
ceptive field in different feature channels is a more applica-
ble solution, which also explains the reason that the custom
distortion-aware convolution does not perform well in this
task.

Due to the deployment of the dilation convolutions along
both the x-axis and the y-axis, we study the effects of differ-
ent dilation directions. Specifically, we separately test the di-
lation only along the x-axis or the y-axis with the combined
dilation settings of 1, 2, 3, and 4. As shown in Tab.3, dila-
tion settings along only the x-axis or y-axis can improve the
MAE metric to 0.1953 and 0.1965 respectively. As the areas
near the poles have narrow FoV along the latitude direction
in the ERP coordinates, the dilated convolution along the lat-
itude contributes to addressing this problem. Moreover, de-
spite that the ERP expression keeps uniform FoV along the
longitude direction, the areas near the poles mainly include
the weak textures and geometric structures, e.g., the ceiling
and the floor. Thus, the dilation along the y-axis introduces
more spatial information in these areas in estimating accu-
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Figure 6: Depth maps comparison with other methods. The area with zero values in ground truth means the missing area of

depth maps.
Dilations MAE| RMSE| RMSElog| AbsRel] Padding MAE| RMSE| RMSElog| AbsRel]
Baseline 0.2104 0.3620 0.0746 0.1148 ZeroPad 0.1948  0.3526 0.0684 0.1045
Two 0.2038  0.3632 0.0703 0.1088 LRPad 0.1935 0.3503 0.0670 0.1025
Three 0.1971  0.3573 0.0687 0.1023 CirPad  0.1870 0.3410 0.0664 0.0984
Four (Ours) 0.1870  0.3410 0.0664 0.0984
Five 0.1963  0.3561 0.0689 0.1047

Table 4: Ablation studies about different dilation numbers.

rate depth. Therefore, our dilation settings along both direc-
tions have the best performance (see in Tab.3).

We also discuss the impact of the dilation number in the
ACDConv shown in Tab.4. More dilations could bring larger
receptive fields and better depth estimation performance but
increase the network complexity and aggravate training dif-
ficulty at the same time. When the dilation number is 5 with
an additional 1 x 8 dilation setting, the network is overfit-
ted, which will make performance worse. Thus, the dilation
number is set to 4 in our experiments.

Padding Method In the proposed ACDNet, we apply cir-
cular padding to get continuous features on the sphere. In
this sub-section, we also test the effects of zero padding and
left-right padding as shown in Tab.5. We observe that the re-
sults have gradual improvements by zero padding, left-right
padding, and circular padding. The root cause is that proper
padding avoids introducing abundant invalid elements into
the dilated convolutions in the boundary regions. Mean-
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Table 5: Ablation studies about different padding methods.

Methods MAE| RMSE| RMSElog| AbsRel|
Baseline 5104 03620 00746  0.1148
w/ iter
Baseline 5597 03923 00796  0.1200
w/o iter
Ours 01870  0.3410 0.0664 0.0984
w/ iter
Ours 92017 0.3650 0.0694 0.1022
w/o iter

Table 6: Ablation studies about iterative depth prediction.

while, this also demonstrates the effectiveness of the com-
plete and continuous spatial information for depth estima-
tion in the panoramic images.

Iterative Depth Prediction In this sub-section, we sep-
arately test the role of iterative depth prediction and our
ACDConv. According to Tab.6, iterative depth prediction
improves the performance in both baseline and our network



Backbone MAE| RMSE| RMSElog| AbsRel|
ResNet18  0.2309  0.3957 0.0771 0.1195
ResNet34  0.2044  0.3661 0.0687 0.1041
ResNet50  0.1870  0.3410 0.0664 0.0984
ResNet101 0.1911  0.3481 0.0654 0.0992

Table 7: Ablation studies about different ResNet backbones.

Method Parameters GPU Mem  FPS
BiFuse 253.1M 4003M 0.9
UniFuse 30.26M 1221M 31
SliceNet 75.3M 1911M 13
HoHoNet 49.5M 1487M 52
Ours (Baseline) 52.5M 2136M 19
Ours (Simple) 86.4M 2376M 12
Ours 87.0M 2378M 11

Table 8: Model complexity and computation efficiency

as it decomposes different scales of depth regression and
improves the process of gradient backpropagation. Mean-
while, our ACDConv efficiently extracts features for more
precise depth estimation and works independently with iter-
ative depth prediction.

ResNet Backbone Finally, we test different ResNet back-
bones in our ACDNet. As shown in Tab.7, the network
performance gradually improves with the increasing of the
backbone complexity. However, using the ResNet101 back-
bone to build the network is time-consuming and produces
overfitting. Considering network performance and overhead,
we select ResNet50 as our backbone in the experiments.

Model Complexity We compare the model complexity
and computational efficiency with previous methods, and all
the results are derived from inferring a 512 x 1024 image.
Compared with Baseline, the dilated convolution groups in-
troduced in Simple increase 33.9M parameters and 2400
memories and reduce the FPS from 19 to 12 as shown in
Tab.8. Against the data in Tab.2, simply increasing model
parameters does not play a fundamental role in improving
the performance. While the channel-wise fusion modules in
Ours scarcely influence the model complexity and computa-
tional efficiency but improve results substantially.

Conclusion

In this work, we first propose the adaptively combined di-
lated convolution to replace the regular convolution to well
extract the features from panorama images in ERP. Then we
construct the ACDNet to estimate depth maps with monoc-
ular panorama images, which outperforms the SOTA ap-
proaches in quantitative metrics and visual effects.

Our experiments show that the convolutions with ex-
tended receptive fields contribute to panoramic depth esti-
mation. Moreover, the experiments with adaptive channel-
wise fusion strategy also express that obtaining different la-
tent shapes of convolution kernels in different feature chan-
nels is better than explicitly deforming convolution kernels
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at different latitudes. That is worth further researching for
panorama images in the future. In addition, we will study
our ACDConv in other existing depth prediction models and
its effects on other various panoramic image tasks such as
image classification and semantic segmentation.
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