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Abstract

We address the overlooked unbiasedness in existing long-
tailed classification methods: we find that their overall im-
provement is mostly attributed to the biased preference of “tail”
over “head”, as the test distribution is assumed to be balanced;
however, when the test is as imbalanced as the long-tailed
training data—let the test respect Zipf’s law of nature—the
“tail” bias is no longer beneficial overall because it hurts the
“head” majorities. In this paper, we propose Cross-Domain Em-
pirical Risk Minimization (xERM) for training an unbiased
model to achieve strong performances on both test distribu-
tions, which empirically demonstrates that xERM fundamen-
tally improves the classification by learning better feature
representation rather than the “head vs. tail” game. Based on
causality, we further theoretically explain why xERM achieves
unbiasedness: the bias caused by the domain selection is re-
moved by adjusting the empirical risks on the imbalanced
domain and the balanced but unseen domain.

Introduction
When the training data distribution is long-tailed, e.g., thou-
sands of samples per “head” class vs. just a few samples per
“tail” class, the resultant classification model will inevitably
downplay the minor “tail” and overplay the major “head”.
Therefore, to lift up the “tail” performance, recent methods
focus on the trade-off between the “head” and “tail” contri-
butions, e.g., sample re-weighting (Cui et al. 2019; Lin et al.
2017), balanced training loss (Kang et al. 2020; Zhang et al.
2021b), and “head” causal effect removal (Tang, Huang, and
Zhang 2020). As you may expect, the “tail” rise costs the
“head” fall; but fortunately, the overall gain is still positive.
The reasons are two-fold. First, thanks to the abundant “head”
training samples, the strong “head” features can afford the
trade-off, making the “head” performance drop much less
significant than the “tail” rise. Second, the test distribution is
often assumed to be balanced, i.e., “head” and “tail” have the
same number of samples, so the “head” fall is not amplified
by the balanced sample number.

We conjecture that the above “overall improvement” on
the balanced test may cover up the fact that today’s long-
tailed classification methods are still biased and far from
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truly “improved”. Figure 1 (a.1) and (b.1) show an evidence.
Regardless of the test distributions, balanced or imbalanced,
an imbalanced model (vanilla cross-entropy trained, XE, or-
ange line) always predicts the class distribution shaped as its
own model prior, which is long-tailed. As a comparison, a
balanced model (a SOTA method TDE (Tang, Huang, and
Zhang 2020), blue line) always predicts the distribution to
cater the tail. This observation implies that both of them
are biased: the imbalanced model is “head” biased; the bal-
anced one is “tail” biased, which merely replaces the “head”
bias with the “tail” bias. Therefore, we expect an “unbiased”
model’s prediction to treat each class fairly and respects both
test distributions, i.e., the prediction distribution follows the
shape of the ground-truth one (e.g., green line). Figure 1 (a.2)
and (b.2) provide another evidence based on the true positive
(TP) and the false positive (FP) statistics. We observe that the
balanced model TDE tends to predict more samples as tail
classes. On the contrary, the imbalanced model XE prefers
to predict more samples as head classes. The preference on
head or tail classes comes with a large number of FP samples,
which lowers the precision score. In contrast, our xERM has
no significant preference between head and tail classes, which
achieves high precision under both test distributions. Only
through the above unbiasedness, we can diagnose whether
a model truly improves long-tailed classification, but not by
playing a “prior flipping” game.

In fact, it is challenging to achieve unbiasedness across
the two completely different test distributions due to the do-
main selection issue (Pearl and Bareinboim 2011): the two
distributions would never co-exist in training — once one
is observed, the other is gone — let alone adjusting a fair
prior for both of them. In this paper, we propose a novel
training paradigm called Cross-Domain Empirical Risk Min-
imization (xERM) to tackle this challenge. xERM consists
of two ERM terms, which are the cross-entropy losses with
different supervisions: one is the ground-truth label from the
seen imbalanced domain, and the other is the prediction of
a balanced model. The imbalanced domain empirical risk
encourages the model to learn from the ground-truth anno-
tations from the imbalanced distribution, which favors the
head classes. The balanced domain empirical risk encourages
the model to learn from the prediction of a balanced model,
which imagines a balanced distribution and prefers the tail
classes. These two risks are weighted to take advantage of
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Figure 1: Prediction distributions of imbalanced model (XE), balanced model (TDE) and our xERM model on (a.1) balanced test
and (b.1) imbalanced test (long-tailed) of ImageNet-LT. Interestingly, the abrupt tail rise of the blue lines shows an obvious “tail"
preference. The true positive (TP) and false positive (FP) number of the predictions on (a.2) few-shot subset of the balanced test
set and (b.2) many-shot subset of the imbalanced test set.

both, i.e., protect the model training from being neither too
“head biased” nor too “tail biased”, and can achieve the un-
biasedness (cf. Figure 1). Furthermore, we propose a causal
theory to ground xERM, which removes the confounding
bias caused by domain selection.

We conduct experiments on several long-tail classifica-
tion benchmark datasets: CIFAR100-LT (Cui et al. 2019),
Places365-LT (Liu et al. 2019), ImageNet-LT (Liu et al.
2019), and iNaturalist 2018 (Van Horn et al. 2018). Experi-
mental results show that xERM outperforms previous state-
of-the-arts on both long-tailed and balanced test sets, which
demonstrates that the performance gain is not from catering
to the tail. Further qualitative studies show that the xERM
helps with better feature representation.

We summarize our contributions as follows:
• We point out the overlooked unbiasedness in long-tailed

classification: models should perform well on both imbal-
anced and balanced test distributions. Compared to the
conventional evaluations on the balanced test only, the
unbiasedness thoroughly diagnoses whether a model is
spuriously improved by simply flipping the bias.

• We propose xERM that achieves the unbiasedness. On
various long-tailed visual recognition benchmarks, we
show that xERM constantly achieves strong performances
across different test distributions.

• We provide a theoretical analysis for xERM which re-
duces the confounding bias based on the causal theory.

Related Work
Long-tailed classification. Early works focus on re-
balancing the contribution of each class in the training phase,
which can be divided into two strategies: re-sampling the data
to balance the class frequency (Buda, Maki, and Mazurowski
2018; Drumnond 2003; Shen, Lin, and Huang 2016; Sarafi-
anos, Xu, and Kakadiaris 2018; Japkowicz and Stephen
2002), and re-weighting the loss of classes (Tan et al. 2020;
Cui et al. 2019; Lin et al. 2017; Khan et al. 2017) to increase
the importance of tail classes. Nevertheless, both strategies

suffer from under-fitting/over-fitting problem to head/tail
classes. Recent studies shows a trend of decoupling long-
tailed classification into two separate stages: representation
learning and classifier learning. Decouple (Kang et al. 2020)
learns high-quality representation with natural (instance-
balanced) sampling, and achieve strong classification perfor-
mance by adjusting classifier with balanced learning. Zhou
et al. (2020) arrives at a similar conclusion by proposing a
bilateral-branch network, where one branch is trained with
natural sampling and the other uses balanced sampling. The
decoupled learning idea is also adopted in (Menon et al. 2021;
Hong et al. 2021; Tang, Huang, and Zhang 2020; Zhang et al.
2021b), where different classifier adjustment methods are
proposed. There is a line of post-hoc logits adjustment by sub-
tracting the training prior from the predicted logits (Menon
et al. 2021; Hong et al. 2021). Tang, Huang, and Zhang
(2020) removes the “head” causal effect to get the adjusted
logits. DisAlign (Zhang et al. 2021b) modifies the original
logits by adding an extra learnable layer to the output layer.
Apart from decoupled learning, Liu et al. (2020) addresses
the long-tailed problem by transferring head distributions
to tail; distilling balanced student models from imbalanced
trained teacher models (He, Wu, and Wei 2021; Zhang et al.
2021a). Although all the above methods manifest an overall
accuracy improvement, they are indeed biased.

Causal inference. Causal inference (Pearl, Glymour, and
Jewell 2016; Peters, Janzing, and Schölkopf 2017) has been
studied in a wide spectrum, such as economics, politics and
epidemiology (Heckman 1979; Keele 2015; Robins 2001).
Recently, causal inference has also shown promising results
in various computer vision tasks, e.g., counterfactual training
or inference in VQA (Niu et al. 2021; Chen et al. 2020, 2021),
back-door and front-door adjustment for vision-language
tasks (Yang, Zhang, and Cai 2021; Qi et al. 2020; Yang et al.
2021), and counterfactual inference for zero-shot recogni-
tion (Yue et al. 2021). Our algorithm can be viewed as a
practical implementation and complement of the recent em-
pirical risk minimization of learning causal effect (Jung, Tian,
and Bareinboim 2020) for confounding effect removal.
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Bias mitigation. A bias mitigation work related to us is
LfF (Nam et al. 2020). LfF used a reweighting-based method
to deal with bias in out-of-distribution robustness, and used
the cross-entropy loss to calculate the weights. The main dif-
ferences are as follows. First, LfF focused on biased dataset
with spurious correlations, while we focused on long-tailed
task with label prior shift. Second, LfF weights the losses
at the sample-level, while xERM weights the losses at the
supervision-level. Third, LfF calculates the weights using a
biased model and a target debiased model, while xERM calcu-
lates the weights using fixed balanced and imbalanced models
which can be merged into one. Another related work (Niu
and Zhang 2021) also focused on achieving a good trade-
off between in-distribution and out-of-distribution samples
for robust QA. In this paper, we generalize it to long-tailed
classification and further provided a causal perspective and
justification of the unbiased learning framework.

The Algorithm: xERM
Input: Long-tailed training samples denoted as the the pairs
{(x, y)} of an image x and its one-hot label y.
Output: Unbiased classification model f .
Step 1: Learn an imbalanced and a balanced model. We
learn a conventional model pimba(y|x) on the imbalanced
training data as the imbalanced model, which favors the
“head” bias. Then, we learn a balanced model pba(y|x), which
favors the “tail” bias. The implementations of the two models
are open. See Experiments and Appendix for our choices.
Step 2: Estimate the adjustment weights.
Imbalanced Domain ER weight:

wimba =
(XEimba)γ

(XEimba)γ + (XEba)γ
, (1)

Balanced Domain ER weight:

wba = 1− wimba =
(XEba)γ

(XEimba)γ + (XEba)γ
, (2)

where XEimba = −
∑

i yi log p
imba(yi|x) is the cross-entropy

of the imbalanced model’s predictions (similar for XEba), the
subscript i denotes the i-th class label, and γ > 0 is a scaling
hyper-parameter.
Step 3: Minimize the cross-domain empirical risk

Imbalanced Domain ER:Rimba(f) = −wimba
∑
i

yi log fi(x),

(3)

where yi and fi are the ground-truth and the predicted label
for i-th class, respectively.

Balanced Domain ER: Rba(f) = −wba
∑
i

ŷi log fi(x),

(4)

where ŷi = pba(yi|x) denotes the balanced prediction for i-th
class. The overall empirical risk minimization:

R(f) = Rimba(f) +Rba(f). (5)

X Y

S

X Y

S

(a) (b)

Figure 2: (a) The causal graph for long-tailed classification.
The spurious correlation is induced as a backdoor X←S →
Y via the selection variable S. (b) The post-interventional
model cuts off the arrow towards X by do(X).

Justification
Causal Graph. We first construct the causal graph for long-
tailed classification to analyze the causal relations between
variables. As shown in Figure 2 (a), the causal graph contains
three nodes: X: image, Y : prediction, S: selection variable.
Each value of S corresponds to a domain, and switching
between the domains will be represented by conditioning on
different values of the S variable. In long-tailed classification,
let S = 0 denote the balanced domain and S = 1 denote the
imbalanced (long-tailed) domain.1
X → Y . This path indicates that the model predicts the label
based on the image content.
S → X . This path indicates that an image is sampled accord-
ing to the selected domain, e.g., imbalanced domain is prone
to include images from head classes.
S → Y . This path indicates that the predicted label distribu-
tions follow their own training domain prior. For example, in
Figure 1, an imbalanced model XE always predicts a long-
tailed label distribution regardless of the test distributions,
and the balanced model TDE shows an obvious “tail” prefer-
ence across different test distributions.

Note that the back-door path X ← S → Y contributes
a spurious correlation between X and Y (Pearl, Glymour,
and Jewell 2016), where S acts as a confounder. The exis-
tence of back-door path is the key challenge for achieving
unbiasedness across balanced and imbalanced test data. Sim-
ply learning by P (Y |X = x) will inevitably include such
spurious correlation, which is not what we seek to estimate,
and lead to a biased model. Therefore, we instead estimate
P (Y |do(X = x)) which can eliminate the confounding bias
to obtain an unbiased model.
Empirical Risk on Intervened Distribution. The empirical
risk minimization for learning causal effect P (Y |do(X =
x)) has been well formulated in (Jung, Tian, and Bareinboim
2020). We define the empirical riskR of the estimator f on
the intervened distributions as:

R(f) = Ex∼P (X),y∼P (Y |do(X=x))L(y, f(x))

=
∑
x

∑
y

L(y, f(x))P (y|do(x))P (x), (6)

1Technically, the possible values of S are infinite and far more
than only confined to 0 (balance) or 1 (long-tail). However, a fine-
grained definition of S leads to heavy computation, which is im-
practical for training. In this paper, we focus on the long-tailed and
balanced domains.
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where L(y, f(x)) is formulated as the standard cross-entropy.
By do-operation (causal intervention), we cut off the in-paths
to X and transform the causal graph in Figure 2 (a) to Fig-
ure 2 (b). Different from traditional empirical risk that sam-
ples (x, y) from P (X,Y ), we sample (x, y) from the inter-
vened distribution P (do(X), Y ). According to the rules of
do-calculus (Pearl 2000), we have P (do(X = x)) = P (X =
x). Therefore, we can implement the sampling process drawn
from the intervened distribution as two steps. First, we sample
x from P (X). Second, we sample y from the intervened con-
ditional probability P (Y |do(X = x)). In short, we denote
P (X=x) as P (x) and P (Y =y|do(X=x)) as P (y|do(x)).

The backdoor adjustment (Pearl 2000; Pearl, Glymour,
and Jewell 2016) allows us to remove do(x) in P (y|do(x))
for easier estimation. We rewrite P (y|do(x)) w.r.t. the con-
founder S as:

P (y|do(x)) =
∑

S=s∈{0,1}

P (y|x, S = s)P (S = s)

=
P (x, y, S = 1)

P (x|S = 1)
+

P (x, y, S = 0)

P (x|S = 0)
.

(7)

A more detailed explanation of Eq. (7) is provided in Ap-
pendix. Here S = 1 denotes the seen imbalanced domain,
i.e., training samples, and S = 0 denotes the unobserved
balanced domain. Combining Eq. (7) and Eq. (6), we have:

R(f) =
∑
(x,y)

∑
s∈{0,1}

L(ys, f(x))
P (x)

P (x|S = s)
P (x, y, s)

=
1

N

∑
(x,y)

[L(ys=1, f(x))
P (x)

P (x|S = 1)︸ ︷︷ ︸
Imbalanced Domain ER

+ L(ys=0, f(x))
P (x)

P (x|S = 0)︸ ︷︷ ︸
Balanced Domain ER

],

(8)

where ys=1 denotes the ground-truth label from the seen
imbalanced domain and ys=0 denotes the supervision from
the unseen balanced domain. Here remain two questions.
First, how to obtain ys=0. As mentioned above, we cannot di-
rectly draw samples (x, ys=0) from the unseen domain S=0.
Fortunately, thanks to the causality-based framework (Tang,
Huang, and Zhang 2020), this can be simulated by counter-
factual inference that deducts the “head” prior effect from
the factual effect. In this way, we can obtain the counterfac-
tual (x, ys=0) based on the factual (x, ys=1). In particular,
ys=0 is estimated from the balanced classifier pba(y|x) de-
scribed in Step 1 and denoted as ŷ in Step 3 of the algorithm.
Second, how to obtain the sample weights P (x)

P (x|S) . Since
P (x)
P (x|s) = P (s)

P (s|x) and we assume P (S = 1) = P (S = 0).

Therefore, we have P (x)
P (x|s) ∝

1
P (s|x) . In essence, they are

inverse probabilities of how likely the sample x is from the
imbalanced training domain (S = 1) and from the balanced
domain (S = 0). Inspired by this, we propose to use the cross-
entropy loss XE to delineate the discrepancy between the

imbalanced and balanced domains and estimate the weights:

wimba ∝ 1

P (S = 1|x)
∝ (XEimba)γ ,

wba ∝ 1

P (S = 0|x)
∝ (XEba)γ .

(9)

Intuitively, the above equation says that if x does not fit to the
imbalanced model pimba(y|x) (large XEimba) , it is not likely
from the imbalanced training domain (small P (S = 1|x)),
and vice versa. By normalizing the weights to sum 1, we
can easily derive Eq. (1) and (2) from Eq. (9). A large hyper-
parameter γ>0 would push w towards 0 or 1 and we studied
the effect of γ in ablation studies.

Experiments
Setup
Datasets. We conducted experiments on four long-tailed
classification datasets: CIFAR100-LT (Cui et al. 2019),
Places365-LT (Liu et al. 2019), ImageNet-LT (Liu et al.
2019), and iNaturalist 2018 (Van Horn et al. 2018). The
imbalance ratio (IB) is defined as Nmax/Nmin, where Nmax

(Nmin) denotes the largest (smallest) number of class samples.
A larger IB denotes a more imbalanced split. See Appendix
for further details.
Backbones. For fair comparisons, we used ResNet-32 (He
et al. 2016) as the backbone for CIFAR100-LT, ResNet-{50,
152} for Places365-LT, ResNeXt-50 for ImageNet-LT and
ResNet-50 for iNaturalist18. For Places365-LT, we pretrained
the backbones on ImageNet dataset as in Liu et al. (2019).
Comparison methods. We compare the proposed xERM
models with state-of-the-arts such as BBN (Zhou et al. 2020),
LDAM (Cao et al. 2019), LFME (Xiang, Ding, and Han
2020), BKD (Zhang et al. 2021a), cRT, τ -Norm, LWS (Kang
et al. 2020), LADE, PC (Hong et al. 2021), LA (Menon et al.
2021),TDE (Tang, Huang, and Zhang 2020), DiVE (He, Wu,
and Wei 2021) and DisAlign (Zhang et al. 2021b).

The above mentioned methods use single models. Note that
there is also a line of using ensemble models for long-tailed
classification, e.g., RIDE (Wang et al. 2020) and CBD (Iscen
et al. 2021). For fair comparisons, we will not include their
results in the experiments. But, in Appendix, we show that
our xERM framework can be easily applied to RIDE for
validating its effectiveness on ensemble models.
Implementation. We chose TDE and PC as baselines to
implement xERM for two reasons. First, xERM requires an
imbalanced model and a balanced model. Since TDE and PC
are post-hoc logits adjustment methods, we can also obtain
the imbalanced model effortlessly by disabling the post-hoc
operation, which reduces the computation cost. Otherwise,
we have to separately pre-train two models for the purposes.
The second is performance. Balanced model with higher
performance leads to a better xERM model. TDE and PC
achieve stronger performance comparing to previous state-of-
the-arts. TDE first projects the feature from the penultimate
layer to the orthogonal direction of the mean feature, then
predicts the logits based on the projected feature. PC adjusts
logits by subtracting the training prior from the predicted
logits. We set the scaling parameter γ in Eq. (9) to 2 for
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Method Acc Recall Precision F1
Many Med Few Many Med Few Many Med Few

XE 40.5 68.5 39.9 8.6 38.5 50.9 52.2 49.3 44.7 14.8
BBN 42.3 61.5 41.7 20.2 46.6 49.7 35.1 53.0 45.3 25.6
cRT 44.4 62.9 45.1 21.8 46.9 48.2 36.7 53.7 46.6 27.4
LADE 45.0 60.1 43.3 29.3 52.2 50.9 32.0 55.8 46.8 30.5
TDE 44.1 63.9 46.9 17.8 46.6 45.5 34.1 53.9 46.2 23.4
PC 45.5 62.2 45.6 25.8 50.6 48.5 32.5 55.8 47.0 28.7
xERMTDE 46.2 69.0 48.8 16.7 46.4 49.3 45.5 55.5 49.0 24.4
xERMPC 46.9 65.5 45.4 26.8 51.1 51.5 35.9 57.4 48.3 30.7

Table 1: Comparisons on CIFAR100-LT-IB-100.

Method Acc Recall Precision F1
Many Med Few Many Med Few Many Med Few

XE 49.0 68.6 42.9 15.0 46.9 59.1 60.7 55.7 49.7 24.1
τ -Norm 49.6 61.8 46.2 27.4 52.2 48.5 43.7 56.6 47.3 33.7
LWS 49.9 60.2 47.2 30.3 53.0 49.1 41.3 56.4 48.1 35.0
LADE 51.7 62.6 49.0 30.4 55.3 50.5 41.2 58.7 49.7 34.9
DiVE 53.1 64.1 50.4 31.5 - - - - - -
DisAlign 53.4 61.3 52.2 31.4 - - - - - -
PC 48.9 60.4 46.7 23.8 56.3 49.7 32.0 58.3 48.2 27.3
TDE 51.8 62.7 49.0 31.4 57.3 52.3 39.5 59.9 50.6 35.0
xERMPC 53.2 67.6 49.8 24.0 53.1 55.0 52.4 59.3 51.9 33.0
xERMTDE 54.1 68.6 50.0 27.5 53.5 57.3 52.0 60.1 53.4 36.0

Table 2: Comparisons on ImageNet-LT.

CIFAR100-LT, 5 for Places365-LT and 1.5 for other datasets.
See Appendix for more details.

Evaluations on Balanced Test Set
Settings. We evaluated the proposed xERM models on bal-
anced test set (i.e. IB=1). All networks were trained for 200
epochs on CIFAR100-LT, 30 epochs on Places365-LT, and
90 epochs on ImageNet-LT and iNaturalist18.
Metrics. We used the top-1 accuracy as an overall metric
for all the datasets. To further evaluate the unbiasedness, we
divided the test set of CIFAR100-LT-IB-100 and ImageNet-
LT into three subsets according to the number of samples
in each class: many-shot (categories with >100 images),
medium-shot (categories with 20∼100 images), and few-shot
(categories with <20 images). Previous works focused on the
macro-average recall for evaluation, especially on the few-
shot subset. However, recall alone is not enough to measure
the performance on each subset. A trivial solution to achieve
a high recall on the few-shot subset is predicting all the sam-
ples to the few-shot classes. In this case, the performance
on few-shot subset is not reliable. Therefore, we further re-
ported the macro-average precision and the F1 scores for
a more comprehensive evaluation. The results are summa-
rized in Table 1-3. Further evaluations on Places365-LT and
iNaturalist18 are in Appendix.
Results on top-1 accuracy. Overall, xERM outperforms
state-of-the-art methods in terms of the top-1 accuracy on
all datasets. In particular, compared to the balanced models,
xERM model consistently outperforms TDE by 2.1%, 2.3%,
1.1%, and 1.4%, and PC by 1.4%, 4.3%, 2.2% and 1.1%
on CIRAR100-LT-IB-100, ImageNet-LT, Places365-LT and

CIFAR100LT Places365-LT iNaturalist18

Method IB Method Backbone Method Acc
50 10 R50 R152

XE 46.5 58.9 XE 28.0 30.5 XE 59.3
LDAM 46.6 58.7 LFME - 36.2 τ -Norm 65.6
BBN 47.0 59.1 LWS 36.2 37.6 LWS 65.9
cRT 48.7 59.8 τ -Norm 36.6 37.9 BBN 66.3
BKD 49.6 61.3 BKD - 38.4 LA 66.4
LADE 50.5 61.7 LADE 36.5 38.8 LDAE 66.7
DiVE 51.1 62.0 DisAlign 37.8 39.3 BKD 66.8
TDE 50.3 59.6 TDE 37.2 38.1 TDE 63.1
PC 49.7 60.9 PC 36.1 38.3 PC 66.2
xERMTDE 52.8 62.2 xERMTDE 38.3 39.0 xERMTDE 64.5
xERMPC 51.1 62.5 xERMPC 38.3 39.3 xERMPC 67.3

Table 3: The top-1 accuracy on CIFAR100-LT-IB-{50,10},
Places365-LT, and iNaturalist18.

iNaturalist18. These results demonstrate the effectiveness
and generalizability of our xERM.
Results on recall. When it comes to the recall performances
on the subsets, all of the previous methods enhance the over-
all accuracy at the expense of a large head performance drop.
For example, in Table 1, although LADE (Hong et al. 2021)
achieves a high top-1 accuracy of 45.0% and few-short recall
of 29.3%, its many-shot recall encounters with a significant
decrease of 8.4% compared to the baseline XE. In contrast,
our xERM achieves the highest overall performance with
a competitive head performance against XE. Surprisingly,
xERMTDE is the first to beat XE w.r.t the recall performances
on both CIFAR100LT-IB-100 and ImageNet-LT. These re-
sults demonstrate that our xERM achieves the unbiaseness
from the factual and the counterfactual model, i.e., improving
the overall accuracy without scarifying the head recall.
Results on precision and F1 score. We further reported
precision and F1 score to give a more comprehensive eval-
uation. According to the results on CIFAR100-LT-IB-100
and ImageNet-LT, the low precision and high recall are ob-
served on (1) many-shot subset for the imbalanced model
(XE); (2) few-shot set for the balanced models. This indicates
that the imbalanced models are “head” biased and the bal-
anced models are “tail” biased. In contrast, on ImageNet-LT,
our xERMPC achieves both high recall and precision (recall:
67.6%, precision: 53.1%) on the many-shot subset compared
to factual model XE that achieves high recall with lower preci-
sion (recall: 68.6%, precision: 46.9%), and achieves high re-
call and precision on the few-shot subset (recall: 24.0%, preci-
sion: 52.4%) compared to PC (Hong et al. 2021) that achieves
competitive recall with lower precision (recall: 23.8%, pre-
cision: 32.0%). These results demonstrate the unbiasedness
of our proposed method. Besides, an unbiased model should
have a balanced precision over the three subsets. For exam-
ple, in Table 2, our xERMPC manifests 53.1%, 55.0% and
52.4% over many-shot, medium-shot and few-shot precision
with a small variance, while XE manifests 46.9%, 59.1%
and 60.7% and PC manifests 56.3%, 49.7% and 32.0% with
large variances. As a result, our xERM achieves the highest
F1 score on all the three subsets.
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Imbalance ratio 100 50 10 5
BBN 58.0 56.3 52.5 49.3
LADE 59.5 57.6 53.3 51.5
PC 60.0 59.2 55.3 52.9
cRT 60.8 59.5 55.0 52.0
TDE 60.8 60.0 55.7 52.9
XE 66.4 63.9 56.3 51.9
xERMPC 63.3 61.5 57.0 54.6
xERMTDE 66.4 64.8 59.3 55.5

Table 4: Top-1 accuracy on CIFAR100-LT test set.

Imbalanced ratio 50 25 10 5
τ -Norm 59.6 58.2 56.2 54.6
LWS 60.6 59.2 57.0 55.0
PC 58.2 56.8 54.5 52.7
LADE 61.8 60.6 58.6 56.8
TDE 63.0 61.6 59.5 57.6
XE 67.7 65.2 61.4 58.0
xERMPC 66.8 65.3 62.5 60.1
xERMTDE 67.7 66.0 63.5 60.9

Table 5: Top-1 accuracy on ImageNet-LT test set.

Evaluations on Imbalanced Test Set
Motivation. Most state-of-the-art methods assume the test
sets are well-balanced (i.e., IB=1) and leverage this prior
to improve the performance, i.e., playing a “prior flipping”
game. As most long-tailed classification methods lift up the
overall accuracy at the expense of head performance loss,
evaluation on balanced test set alone cannot reveal their short-
coming. We considered a new setting where evaluations are
conducted under long-tailed test set with different imbalance
ratios. This setting is complementary to the balanced test for
the unbiasedness evaluation, i.e., performing well on both
imbalanced and balanced test distributions.

In addition, in real-world applications, the test distributions
are usually unknown to us, and the classes are often long-
tailed distributed because of Zipf’s law of nature, e.g., cancer
detection. Evaluation under long-tailed test set is closer to the
wild. Note that this setting is different from Hong et al. (2021),
where the test class prior is known during the training stage.
In our setting, no side information about the test distribution
prior is accessible to the models.
Settings. The model architectures are the same as the ones
for balanced test and the test splits for imbalanced test are
similarly long-tailed like the train set. We established the
long-tailed test splits by downsampling the original well-
balanced test set with various imbalanced ratios, which is the
same as the training set construction.
Results. Table 4 and 5 show the top-1 accuracy on vari-
ous long-tailed test splits. As expected, XE performs well
when the test set is also imbalanced. Compared to XE, all
the previous balanced methods enjoy performance gains on
the well-balanced test set while achieves much lower accu-
racies on the imbalanced test splits. For example, in Table 4,
when IB=100, same as the training set, the accuracies of all
balanced models are at least 5.6% less than that of XE.

Note that our xERM outperforms all the other balanced

Backbone Acc Recall Precision F1
Many Med Few Many Med Few Many Med Few

CIFAR100
XE (PC) 52.6 60.3 51.9 44.4 59.6 51.1 44.4 60.0 51.5 44.4
TDE 52.6 60.4 51.7 44.4 59.5 51.0 44.5 60.0 51.4 44.5
LADE 53.9 58.7 53.8 47.8 60.2 54.5 47.1 59.4 54.1 47.4
xERMTDE 55.1 62.8 54.5 46.7 61.7 53.9 48.1 62.3 54.2 47.4
xERMPC 55.3 60.9 56.0 48.0 63.7 54.3 48.3 62.3 55.1 48.1

Places365
XE (PC) 43.8 43.8 44.0 43.5 39.9 43.5 49.3 41.7 43.7 46.2
TDE 43.8 43.8 43.9 43.6 39.7 43.6 48.7 41.6 43.8 46.0
LADE 44.3 42.9 45.9 43.1 43.4 45.1 45.7 43.1 45.5 44.4
xERMTDE 44.6 44.1 45.3 44.0 40.4 44.9 49.5 42.1 45.1 46.6
xERMPC 46.6 45.1 48.2 46.0 44.2 49.0 53.3 44.6 48.6 49.4

ImageNet
XE (PC) 56.5 64.5 53.8 43.2 59.8 55.1 50.6 62.1 54.4 46.6
TDE 56.5 64.4 53.8 43.7 60.2 55.2 49.8 62.2 54.5 46.6
LADE 57.9 62.6 55.7 52.2 62.4 56.5 52.9 62.5 56.1 52.5
xERMTDE 58.9 66.5 56.4 46.2 62.1 57.8 63.2 64.2 57.1 49.4
xERMPC 60.2 64.8 58.2 53.8 64.9 58.3 53.9 64.8 58.2 53.8

Table 6: Studies on the effectiveness of feature representation.

methods in every imbalance setting, and achieves competitive
results against TE method even when testing on extreme
imbalanced ratio, e.g., IB=100 on the CIFAR100 test split.
When the imbalance ratio of the train set and test set are
different, the performance of xERM is even higher than that
of XE. These results demonstrate the advantage of xERM:
our proposed method is agnostic to both test distributions,
i.e., it performs well on balanced and imbalanced test set.

Evaluations on Feature Representation
Settings. We conducted an empirical study on the quality of
the feature representations. Specifically, we fixed the back-
bone for feature extraction, and re-trained the classifier head
on a balanced dataset. Take CIFAR100-LT as an example.
The models were first trained on the CIFAR100-LT dataset
with IB=100. Then we fixed the backbone, and fine-tuned the
classifiers on the balanced full CIFAR100 train set. Table 6
compares the performances on three benchmarks and we
used ResNet-32, ResNet-50 and ResNeXt-50 as backbones
for CIFAR100, Places365 and ImageNet, respectively.
Results on the empirical study. The classifiers built upon
the xERM backbones consistently yield large improvement
in terms of accuracy, recall and precision across the three
datasets. xERMPC gains 2.7%, 2.8% and 3.7% on top-1 accu-
racy on CIFAR100, Places365 and ImageNet datasets, respec-
tively. These results indicate that the xERM indeed produces
better feature representation. Moreover, as expected, the per-
formance gap between XE and TDE backbones is marginal.
This indicates that TDE does not improve the quality of fea-
ture representation, and it merely adjusts the biased decision
boundary to achieve overall improvement. Also, PC does not
modify the training process, which leads to the same back-
bone as XE-training. As comparisons, our xERM achieves
consistent improvements on top of both TDE and PC.
Results on t-SNE visualization. The t-SNE visualiza-
tion (Van der Maaten and Hinton 2008) of embedding space
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(a) t-SNE of  TDE

(b) t-SNE of  xERMTDE
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Figure 3: t-SNE visualizations on CIFAR100-LT. (a) visual
features learned by TDE and (b) our xERMTDE .
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Figure 4: CAM visualizations on ImageNet-LT.

on CIFAR100-LT test set is plotted in Figure 3. We selected 9
classes and their class legends are listed from head (top) to tail
(bottom). Compared with baseline TDE (Tang, Huang, and
Zhang 2020), feature embedding of xERMTDE is more com-
pact and better separated, e.g., “television” and “wardrobe”
are overlapped in the feature embedding space of TDE (cf.
Figure 3 (a)), but they are more separable in the feature em-
bedding space of xERMTDE (cf. Figure 3 (b)).
Results on CAM visualization. Figure 4 further visualized
the activation maps using CAM (Zhou et al. 2016). Compared
to TDE and PC, our xERMTDE and xERMPC yield more
compact heatmap. For example, for “Loafer”, our method
pays more attention on shoes rather than the legs; in column
“ski”, our method focuses on the skier instead of the snow
background. The visualization indicates that the predictions
of xERM are less likely to be influenced by context region.

(a) (b)

(a) (b)

(a) (b)

Figure 5: (a) Comparisons with a varying constant weight
w. on CIFAR100-LT-IB-50 dataset. (b) Comparisons with a
varying gamma γ in Eq. (9) on CIFAR100-LT-IB-50 dataset.

Ablations
Analysis of weights. Recall that wimba and wba control the
balance between the two losses. Readers may wonder whether
the improvement comes from knowledge distillation, which
shares similar formulation except for using constant weights
w ∈ [0, 1] and 1 − w for wba and wimba to blend the KL di-
vergence loss and cross-entropy loss. In particular, w=0 de-
notes that model is only trained using the XE loss while w=1
denotes self-distillation (Zhang et al. 2019). Figure 5 (a) il-
lustrates the results of using constant weights ranging from 0
to 1. As shown in Figure 5 (a), knowledge distillation indeed
can improve the performance compared to XE. However, it
exhibits a large performance gap with xERM. This indicates
that xERM is not a simple knowledge distillation approach.
Effect of the parameter γ. Recall that the hyper-parameter
γ with a large absolute value would push w towards 0 or
1. In particular, γ =0 is equivalent to a joint learning with
wimba = wba = 0.5, and γ < 0 denotes reversing the ratio
in Eq. (9). Figure 5 (b) shows the influence of the value
of gamma γ on the CIFAR100-LT-IB-50 dataset. Overall,
xERM on top of TDE reaches its optimal accuracy with γ=2,
and consistently outperforms TDE with γ > 0. When γ is
set as a negative value, the model underperforms TDE. This
observation empirically verifies the correctness of Eq. (9).

Conclusion
Despite the overall accuracy improvement on the balanced
test set, today’s long-tailed models are still far from “im-
proved” and exhibit the bias towards tail classes. In this work,
we proposed xERM to train an unbiased test-agnostic model
for long-tailed classification. Grounded by a causal theory,
xERM removes the bias via minimizing the cross-domain
empirical risk. Extensive experiments demonstrate that the
strong improvement on both balanced and imbalanced test
sets indeed comes from better feature representation rather
than catering to the tail. The limitations of xERM are three-
fold: 1) it relies on the quality of the balanced model of the
unseen balanced domain, 2) the counterfactual is currently
only able to imagine one balanced distribution, and 3) our
two-stage training pipeline involves two extra models, which
increases the computation cost during training. We believe
this work provides a new perspective to the unbiasedness of
long-tailed classification and will inspire future works.
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