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Abstract

In recent years, optical flow methods develop rapidly, achiev-
ing unprecedented high performance. Most of the meth-
ods only consider single-modal optical flow under the well-
known brightness-constancy assumption. However, in many
application systems, images of different modalities need to
be aligned, which demands to estimate cross-modal flow be-
tween the cross-modal image pairs. A lot of cross-modal
matching methods are designed for some specific cross-
modal scenarios. We argue that the prior knowledge of the
advanced optical flow models can be transferred to the cross-
modal flow estimation, which may be a simple but unified
solution for diverse cross-modal matching tasks. To verify
our hypothesis, we design a self-supervised framework to
promote the single-modal optical flow networks for diverse
corss-modal flow estimation. Moreover, we add a Cross-
Modal-Adapter block as a plugin to the state-of-the-art opti-
cal flow model RAFT for better performance in cross-modal
scenarios. Our proposed Modality Promotion Framework and
Cross-Modal Adapter have multiple advantages compared to
the existing methods. The experiments demonstrate that our
method is effective on multiple datasets of different cross-
modal scenarios.

Introduction

With the emergence of a variety of sensors, collecting im-
ages of multiple modalities for comprehensive analysis has
become the best solution for many application systems, in-
cluding medical diagnosis, remote sensing, monitoring, etc.
However, the images of different modalities are usually non-
aligned due to the limitation of devices, making it difficult
for the computer to analyze automatically. Therefore, find-
ing the pixel-level correspondences of cross-modal images
is a very meaningful task.

There have been many studies on cross-modal image
matching. However, the current methods have several gen-
eral shortcomings: (i) Some methods can only match sparse
keypoint pairs. To align the whole images, we have to as-
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Figure 1: The illustration of the modality promotion process,
which converts the existing deep-learning-based single-
modal optical flow models to the cross-modality flow esti-
mation models.

sume a definite transformation rule. (ii) Most of the cross-
modal methods are only aimed at matching in a specific
cross-modal scene, which cannot be generalized to other
scenarios. (iii) Many traditional methods do not use high-
performance deep learning architectures, making them com-
putationally inefficient and not robust.

Optical flow estimation can be regarded as a subtask of
image matching, which aims at estimating the dense pixel
correspondences between two time-consecutive frames. In
recent years, the rapid development of deep learning has
aroused a huge wave in the field of optical flow estimation.
Many deep models have been proposed, which greatly re-
fresh the state-of-the-art performance of optical flow esti-
mation. Thus, we come up with an idea: can we make full
use of the existing high-performance optical flow models
in the task of cross-modal image matching?

In this paper, we propose a Modality Promotion Frame-
work (MPF), which can extend the existing single-modal
optical flow estimation models for estimating the flow of
diverse cross-modal scenarios, as shown in Figure 1. Fol-
lowing the self-supervised distillation process used in some
unsupervised optical flow estimation methods (Liu et al.
2019a,b), we use a composite cross-modal augmentation
generator to convert the ordinary RGB frame tuples to
diverse cross-modal frame tuples, and construct a self-
supervised framework based on the off-the-shelf optical
flow estimation models. Our framework has the following
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Figure 2: The single-modal optical flow estimation model versus our cross-modal flow estimation model. We show examples of
inputs from different modalities in the first two rows, and show the frames warped with the flow estimated by the two models
in the last two rows. The single-modal model shows good performance only in the RGB-RGB scenario, while our cross-modal
modal can handle all scenarios. The AUG frame is generated by applying random color transforms on the original RGB frame.
The frames of other modalities are collected with different devices.

advantages: (i) Our framework does not rely on hard-
to-obtain cross-modal datasets during training. Instead,
only the ordinary RGB video clips are required. (ii) Our
framework has impressive generalization ability. A sin-
gle model trained in our framework can be applied to
multiple cross-modal scenarios without retraining. (iii)
Our framework makes full use of the prior knowledge of
existing optical flow models, achieving competitive per-
formance on multiple cross-modal datasets. Examples to
show the advantages of our cross-modal flow estimation
model can be find in Figure 2.

Furthermore, we add a block named Cross-Modal
Adapter (CMA) to RAFT (Teed and Deng 2020). The RAFT
model extracts feature map from each frame respectively for
calculating the all-pair correlations. Our CMA utilizes the
cross-attention of the input image pair, and predicts a filter to
generate modal-adaptive feature maps for better cross-modal
flow estimation. In summary, our contributions are listed as
follows:

» To exploit the existing optical flow models for cross-
modal pixel-level correspondences, we propose a Modal-
ity Promotion Framework, which fine-tunes the single-
modal optical flow models in a self-supervised scheme.

* To further improve the performance in cross-modal flow
estimation, we propose a Cross-Modal-Adapter block as
a plugin to RAFT to generate modal-adaptive feature
maps for accurate flow estimation.

* We conduct extensive experiments on multiple datasets
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of different cross-modal scenarios, including RGBNIR-
Stereo, TriModalHuman, and a dataset synthesized by
ourselves. The experimental results demonstrate that our
proposed MPF and CMA are able to promote the single-
modal optical flow model to estimate diverse cross-
modal flow.

Related Work
Cross-Modal Image Matching

Image matching is a classic task in the area of computer vi-
sion, and cross-modal image matching is a special sub-task
of image matching, which aims at matching images of differ-
ent modalities. Although cross-modal image matching has a
wide range of applications and has been studied by many
researchers, it is often studied as a dedicated task for the
specific scenarios rather than a general task. As listed in a
review (Jiang et al. 2021), there are dozens of cross-modal
image matching methods for medical diagnosis and remote
sensing, while we mainly focus on studies of daily-life sce-
narios.

Early on, researchers adopt the general matching methods
directly to match the cross-modality images. For example,
some use descriptors like SIFT (Lowe 2004), BRIEF (But-
ler et al. 2012), and DAISY (Tola, Lepetit, and Fua 2009)
along with the post-processing matching optimization like
Sift-flow (Liu, Yuen, and Torralba 2010) to solve the prob-
lem. Due to the huge differences between the modalities of
the input images, these attempts perform poorly. Then, some



cross-modal descriptors are proposed, such as LSS (Shecht-
man and Irani 2007), DASC (Kim et al. 2015) and DSC
(Kim et al. 2021), which utilize the self-similarity of im-
ages. These solutions improve the accuracy of cross-modal
image matching. However, they are complicated and com-
putationally inefficient because they are not combined with
the convenient and efficient deep-learning frameworks, and
the flow results generated by them are not accurate enough
due to the limitation of the less-fine post-processing opti-
mizations.

Recently, deep learning methods attract attention of many
researchers. Thus, some deep-learning-based cross-modal
matching methods are proposed.

Methodologically, most of the deep-learning cross-modal
methods follow a Spatial-Transfer-Net (STN) and Modality-
Transfer-Net (MTN) joint-learning scheme. Due to the lack
of direct annotations of the correspondences in cross-modal
images, researchers tacitly use an additional MTN to con-
struct the unsupervised/semi-supervised loss function for
training. The MTN transfers images of one modality to an-
other modality without pixel-shift in the space, while the
STN predicts the spatial offsets of the two input images. The
core issue is how to keep the two networks functionally sep-
arated. For this purpose, (Zhi et al. 2018) relays on auxiliary
material annotations, while (Liang et al. 2019) and (Jeong
et al. 2019) use the networks similar to CycleGAN (Zhu
et al. 2017) as their MTNs. The later one further contains
a feature triplet loss as used in contrastive learning. (Arar
et al. 2020) adopts different orders of the STN and MTN in
the process of forward propagation for training, which de-
couples the two modules.

In terms of scope of application, due to the data-driven
characteristic of deep-learning, the existing deep-learning
cross-modal methods often aim at specific scenes. For exam-
ple, (Zhi et al. 2018) and (Liang et al. 2019) are designed for
VIS-NIR stereo matching in driving, while (He et al. 2019)
and (Duan et al. 2020) are designed for face recognition with
multi-spectral surveillance cameras. As they are trained on
data of the specific scenarios, these models cannot general-
ize to other cross-modal datasets without retraining.

Optical Flow

Optical flow estimation is a basic technology of many
image/video processing algorithms. The traditional optical
flow estimation methods are based on the brightness con-
stancy assumption, and various search and optimization al-
gorithms are adopted to find the solution that minimizes
the brightness errors of the matched pixels. Meanwhile, the
deep-learning optical flow estimation methods are divided
into the supervised methods and the unsupervised methods.

Supervised optical flow estimation FlowNet (Dosovit-
skiy et al. 2015) is the first CNN-based optical flow esti-
mation model, and the first large-scale dataset for super-
vised training is proposed. This paper proves the feasibil-
ity of deep learning optical flow estimation. On the basis
of FlowNet, FlowNet2 (Ilg et al. 2017) uses more complex
models and more complex datasets, demonstrating the su-
periority of deep learning in optical flow estimation. Sub-
sequent PWC-Net (Sun et al. 2018) and LiteFlowNet (Hui,
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Tang, and Loy 2018) introduce multi-level pyramids, wrap-
ping, and local cost volume into CNN models, which greatly
enhance the model performance and reduce the computa-
tional cost. VCN (Yang and Ramanan 2019) uses separate
4D convolution to take advantage of the additional spatial di-
mension information of cost volume. RAFT (Teed and Deng
2020) uses a pre-processing scheme that can calculate the
global cost volume efficiently.

Unsupervised optical flow estimation As optical flow
annotations are difficult to obtain, the existing large-scale
datasets are all synthesized, which contain huge domain
gaps with real-world images. The unsupervised methods
rely on the brightness constancy constraint and establish a
loss function on the original image pixels. In addition to the
basic brightness constancy loss, there are many other tech-
niques used for unsupervised optical flow learning, such as
smooth constraint (Ren et al. 2017; Jason, Harley, and Der-
panis 2016), census transformation (Meister, Hur, and Roth
2018). One difficulty of the unsupervised methods is that the
pixels in the occluded area do not satisfy the brightness con-
stancy assumption. Therefore, a variety of occlusion detec-
tion and handling schemes are proposed (Wang et al. 2018;
Janai et al. 2018). Among them, the most enlightening solu-
tion is to use the unsupervised optical flow model for self-
supervised distillation training (Liu et al. 2019a,b, 2020),
which can effectively supervise the difficult cases such as
occlusion without relying on annotations. Our method also
uses a similar self-supervised framework to learn cross-
modal flow.

Proposed Method

Our proposed method aims at solving the cross-modal
matching problem by exploiting the existing high-
performance optical flow models. In this section, we first de-
scribe our proposed Modality Promotion Framework. Then,
we introduce our CrossSRAFT model which adds a Cross
Modal Adapter to RAFT (Teed and Deng 2020) to further
increase the accuracy of cross-modal flow estimation.

Modality Promotion Framework

As shown in Figure 3 (a), the modality promotion frame-
work needs a pre-trained optical flow network as the teacher
model. For a pair of related images, we first use the teacher
model to generate a pseudo-ground-truth optical flow an-
notation. Next, to train the student model for cross-modal
flow estimation, we convert the input frames to a random
cross-modal pair by a modality augmentation process. Fi-
nally, we compute the error between the output of the stu-
dent model and the pseudo-ground-truth annotation, and up-
date the model parameters with the gradients obtained by
back-propagation. We use the following loss function dur-
ing training:

1
L=mw ;“'fm(x’y) — fea )l + o7, (D)

where f%¢@ and f**“ are the flow maps estimated by the
teacher model and the student model respectively. H, W
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Figure 3: (a) The illustration of our proposed Modality Promotion Framework. We use the off-the-shelf single-modal optical
flow estimation model as the teacher model to generate the pseudo-ground-truth of flow. Meanwhile, the composite cross-modal
augmentation convert the RGB-RGB pair to a random cross-modal pair, which is used as the input for the student model. (b)
The structure of the CrossRAFT. The blocks filled with gray are structures from RAFT. The green trapezoids represent a sub-
network with five CNN layers and an adaptive pooling layer. The orange trapezoid represents a sub-network with two CNN

layers and a fully-connection layer.

are height and width of the flow maps, and (z, y) is the co-
ordinate of each enumerated pixel. We empirically set the
hyper-parameters ¢ = 0.01 and ¢ = 0.4 to reduce the in-
fluence of outlier pixels. When the student model is RAFT
or our CrossRAFT, we use a sequence loss function with
v = 0.8 for the result sequence of N flow maps, as shown
in formula:

N
L= 4 NL(fre ) &)

i=1

Composite Cross-modal Augmentation Existing deep-
learning cross-modal matching methods often rely on huge
amount of images of specific cross-modal scenarios to train
an image translation model. On the contrary, we come
up with the composite cross-modal augmentation process,
which gives up generating data similar to the target cross-
modal scenario, but generates data as diverse as possible.
Therefore, the trained models not only have good perfor-
mance in the specific cross-modal scenarios, but also per-
form well in a wide range of different scenarios. In each
process of our composite cross-modal augmentation, mul-
tiple random transformations are combined haphazardly to
construct inputs of a brand new cross-modal scenario.

We experiment the effect of different augmentation set-
tings, and the results are shown in Table 1. We can sum-
marize a law that more diverse cross-modal scenarios
in the training data bring better flow estimation perfor-
mance in an unseen new cross-modal situation. Among
the tested augmentation settings, the occlusion is the most
important transformation, which brings totally unreliable ar-
eas in the second frame, forcing the model to learn to es-
timate flow without direct pixel correspondences. Noise,
sharpening, solarizing, and glass blur are the second most
important transforms, which change the texture of frames
to prevent the model from relying on particular texture fea-
tures. Other transformations also increase the diversity of
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Model Mean Disparity Error
w/o. ColorlJitter 0.955
w/o. Channellitter 0.938
w/o. ColorInvert 0.943
w/o. GraduallJittier 0914
w/o. Noise 0.967
w/o. Sharpen 0.977
w/o. Blur 0.892
w/o. Occlusion 1.062
w/o. Weather 0.925
w/o. Compression Noise 0.941
w/o. Solarize 0.972
w/o. GlassBlur 0.967
Full augumentation 0.889

Table 1: Experiments for different augmentation settings on
the RGBNIR-Stereo dataset. The best row is marked in bold.

training data, leading more accurate cross-modal flow esti-
mation of the trained models.

Cross Modal Adapter

Our goal is to estimate flow of diverse cross-modal scenarios
with a single trained model. However, the feature extractors
in existing flow estimation models are fixed. It generates the
same feature map for the same input frame, although the
other frame in the pair may change to different modalities.
We argue that a fixed feature extractor cannot work well in
different cross-modal scenarios.

In order to solve this problem, we modify the structure
of an existing optical flow modal named RAFT (Teed and
Deng 2020) to make it more suitable for cross-modal scenes.
As shown in Figure 3 (b), we add a Cross Modal Adapter
(CMA) to adaptively alter the features extracted from the
feature encoder in RAFT. The detailed process of the CMA



is as follows:

First, we extract feature maps from the two input frames
respectively, and scale them to a fixed size (S xS x C') by us-
ing the adaptive average pooling layer. Then, after reshaping
the two feature maps to matrices of size S? x C, an attention
matrix M is calculated as the following formulas:

M = R\ F],
s exp(Mi;)

Y enp(Min)
where F, F5 are the two feature matrices of the first and
second frame, and M ® is the row-normalized matrix get by
applying softmax operation on M.

The calculated M? is used to coarsely align the feature
matrices of the two frames. The aligned features are then
inputted to a small adapter-generation network G consisting
of two convolution layers and a fully-connection layer to get
a modality adapter matrix. The two steps can be shown as
the following formulas:

3
“

Fy = M*Fy, @)
0 = G([F, ), (6)
where F} is the aligned F5, [-, ] is concatenating operation,

and O is the needed adapter matrix of size C' x C. The O
matrix changes with the inputs of different cross-modal sce-
narios, and patches up the original feature extractor in RAFT
for better adapting to the new cross-modal input pair. The
feature enhance process is shown as formulas:

leAFT — FRAFTQ) %)
®)
where F/tAFT is the RAFT feature map of the i-th frame,
F is the altered feature map. For brevity, we have omitted
some reshape operations in the formulas.

To explain in another way, our proposed Cross-Modal
Adapter generates adaptive 1 x 1 convolution filters for dif-
ferent cross-modal inputs, making the feature extractor in
our CrossRAFT able to generalize to more cross-modal sce-
narios and even some unseen brand-new scenarios. The mo-
tivation is similar to few-shot learning, and the effectiveness
of our CMA is proved in the experiment section.

ERAFT _ pRAFT ()

Experiment
Experimental Settings

We implement our framework and models in PyTorch. All
experiments are conducted on a single NVIDIA RTX2080Ti
GPU with a Intel Core i7-9700K@3.60GHz CPU (32G
RAM). As our models are based on the existing optical
flow networks, the open-source PWC-Net (Sun et al. 2018)
and RAFT (Teed and Deng 2020) code and weights are uti-
lized. The pre-trained RAFT is chosen as the teacher model
for all experiments. We use AdamW (Loshchilov and Hut-
ter 2017) optimizer with learning-rate=0.00002 and weight-
decay=0.00005 to train the models for 10k steps with batch-
size=4. The weights of pre-trained optical flow models are
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loaded to the student models as an initialization. For our
CrossRAFT, we load the RAFT weights for the unmodified
layers. The data augmentations is implemented with Albu-
mentations (Buslaev et al. 2020).

Datasets

We use YoutubeVOS dataset (Xu et al. 2018) as the training
set. It contains 4,000+ video clips collected from Youtube
and the corresponding high-quality segmentation annota-
tions, while we only use the video frames. For every step,
we randomly sample two frames with frame-interval less
than 20. Three datasets are used to evaluate models for cross-
modal flow estimation. They are RGBNIR-Stereo (Zhi et al.
2018), TriModalHuman (Palmero et al. 2016) and a dataset
synthesized by ourselves named CrossKITTI, which will be
described in detail when introducing the experiment results.

Ablation Study

Effect of the Modality Promotion Framework We com-
pare different models including the off-the-shelf PWC-Net
(Sun et al. 2018), the off-the-shelf RAFT (Teed and Deng
2020), the PWC-Net and RAFT fine-tuned in our Modal-
ity Promotion Framework. The evaluations are conducted on
two datasets. One of them is the RGBNIR-Stereo dataset,
which is taken by the vehicle-mounted RGB-NIR binocular
camera. It contains 12 sequences of RGB-NIR image pairs.
Among them, 4 sequences composed of 2,000 image pairs
have disparity annotations of some sparse key-points. The
evaluation metric is ADE (Average Disparity Error). Lower
ADE means more accurate estimation. Though our models
estimate the two-dimensional flow, we directly its horizontal
component as the predicted disparity.

The results are shown in Table 2, and a visual example
is shown in Figure 4. The off-the-shelf optical flow models
perform poorly for cross-modal inputs. Meanwhile, the fine-
tuned models have made significant progress, which demon-
strates the effectiveness of our proposed Modality Promo-
tion Framework.

Another evaluation is conducted on the CrossKITTI
dataset, which is synthesized by ourselves by applying our
composite cross-modal augmentation on the famous KITTI-
2012 dataset (Geiger, Lenz, and Urtasun 2012). The KITTI-
2012 dataset is collected with a set of in-vehicle sensors,
and has sparse optical flow annotations for some real-world
frames. We randomly select 59 image pairs with flow anno-
tations in KITTI-2012 to construct our CrossKITTI. AEPE
(Average Endpoint Error) and F1 (Percentage of Optical
Flow Outliers) are used for evaluating the flow accuracy.
The results are shown in Table 3, which demonstrates that
our framework also works on the CrossKITTI dataset.

Effect of the Cross-Modal Adapter To verify the capa-
bility of our proposed Cross-Modal Adapter, we also con-
duct experiments to compare the fine-tuned RAFT model
and our CrossRAFT model on the two datasets. The results
can be found in Table 2 and Table 3. It shows that the Cross-
RAFT with the Cross-Modal Adapter achieves better perfor-
mance on different cross-modal scenarios.



Reduction

Model Common Light Glass Glossy Vegetation Skin Clothing Bag Mean Ratio

PWC-Net 0.58 0.89 130 1.64 2.55 1.56 1.21 124 1.37 baseline
PWC-Net + MPF 0.62 0.81 1.19 1.35 1.02 1.47 0.79 093 1.02 -25.55%
RAFT 0.81 522 1.17 1.37 1.73 2.13 4.64 349 257 baseline
RAFT + MPF 0.49 292 1.13 1.37 0.98 1.04 0.74 0.83 1.19 -53.70%
CrossRAFT + MPF 0.54 059 1.10 1.35 1.01 0.95 0.78 0.80 0.89 -65.37%

Table 2: Ablation study on the RGBNIR-Stereo dataset. MPF means our Modality Promotion Framework. The best value of
each column is bold, and the second best value of each column is marked with underline. The last two bold columns are the
mean ADE and the relative change rate to the baseline models.

Left RGB Right NIR PWC-Net PWC+MPF RAFT RAFT+ MPF CrossRAFT

Figure 4: A visual example of the ablation study on the RGBNIR-Stereo dataset.

AEPE F1 AEPE F1

Model (NOC) (NOC) (ALL) (ALL)

PWC-Net 8915 0300 11345 0341

PWC-Net+ MPE 4749 0284 8407 0351

RAFT 7413 0285 19.198 0312

RAFT + MPF 2216 0.102 4392  0.147

CrossRAFT + MPF 1.947  0.091  3.719  0.136 : i
Input frames w/o CMA w/ CMA

Table 3: Ablation study on the CrossKITTI dataset. NOC
means the metrics are calculated in no occlusion areas, and
ALL means the metrics are calculated in all areas. The best
value of each column is bold, and the second best value of
each column is marked with underline.

Figure 5: Examples of WTA matching of static transformed
image pairs. The metric for matching is cosine distance. The
correctly matched pixels in the soft/hard accuracy maps is
marked in white, and the mismatched pixels are marked in
gray in the soft maps. The degree of gray is determined by

) the matching offset.
To further demonstrate the effectiveness of the Cross-

Modal Adapter, we design another experiment to show the
matching accuracy between features of an image pair gen-
erated from the same static image. We use Winner-Take-All
(WTA) strategy to matching pixels in local 5 x 5 windows
with the original and modified feature maps respectively.
Obviously, there is no shift between the pair of images, so
the ground-truth flow is zero-flow. We show two examples
in Figure 5. As we can see, the feature maps modified by the
CMA lead to better matching accuracy.

only achieve limited performance. The next two methods are
deep-learning-based single-modal matching methods, which
are unable to work well in cross-modal scenarios. The fol-
lowing three methods are deep-learning-based cross-modal
methods, they get more precise prediction results. However,
these methods needs specifically training on the datasets of
the same domain, which limits their scope of application.
Meanwhile, our CrossRAFT is not trained or fine-tuned on

Comparisons with the State-of-the-Art Methods the RGBNIR-Stereo dataset, but also achieves competitive

performance.

Evaluation on RGBNIR-Stereo We compare our Cross-

RAFT with CMA (Chiu, Blanke, and Fritz 2011), ANCC Evaluation on TriModalHuman The TriModalHuman
(Heo, Lee, and Lee 2010), DASC (Kim et al. 2015), GLU- dataset contains 11,537 RGB-Depth-FIR triplets of three in-
Net (Truong, Danelljan, and Timofte 2020), RANSAC-Flow door scenes, and 5,724 of them have human segmentation
(Shen et al. 2020), DMC (Zhi et al. 2018), UCSS (Liang annotations. Due to the lack of direct annotations of match-
et al. 2019) and TBA (Walters et al. 2021). The results are ing, we follow (Kim et al. 2021) to evaluate the quality of the
shown in Table 4. The listed DMC is trained without addi- warped segmentation labels instead. Two metrics are used in
tional segmentation annotations. this evaluation: LTA (Label Transfer Accuracy) and IoU (In-

The first three methods are traditional methods, which tersection over Union). The results are listed in Table 5.
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Model Common Light Glass Glossy Vegetation Skin Clothing Bag Mean

CMA 1.60 5.17 2.55 3.86 4.42 3.39 6.42 4.63 4.00
ANCC 1.36 2.43 2.27 2.41 4.82 2.32 2.85 2.57 2.63
DASC 0.82 1.24 1.50 1.82 1.09 1.59 0.80 133  1.28
GLU-Net 3.12 0.76 1.35 1.56 2.58 1.49 0.77 0.88 1.56
RANSAC-Flow 2.80 1.56 1.50 1.78 1.78 2.50 1.77 3.89 220
DMC 0.51 1.08 1.05 1.57 0.69 1.01 1.22 0.90 1.00
UCSS 0.68 0.80 0.67 1.05 0.68 1.04 0.98 0.80 0.84
TBA 0.91 0.90 0.64 1.18 1.49 1.00 1.47 1.10 1.08
Ours 0.54 0.59 1.10 1.35 1.01 0.95 0.78 0.80 0.89

Table 4: Comparisons with the state-of-the-art cross-modal matching methods on the RGBNIR-Stereo dataset. The best value
of each column is bold, and the second best value is marked with underline.

m
V]
e
o
w

DEP-RGB

Input frame 1 Input frame 2 SIFT DASC FCSS GLU-Net GI-DSC CrossRAFT

Figure 6: Qualitative comparisons between different methods. The upper row lists an example of FIR-RGB matching, and the
lower row lists an example of DEP-RGB matching. The first two columns list the input frames, and rest columns list the warped
RGB frames of different methods.

Method RGB-DEP RGB-FIR DEP-FIR models trained for finding matching descriptors. GLU-Net
1-LTA 1-IoU 1-LTA 1-IoU [I-LTA 1-IoU . .

DAISY 046 041 036 044 053 052 (Truong, Danelljan, and Timofte 2020) and RANSAC-Flow
BRIEF 046 046 048 041 057 053 (Shen et al. 2020) are deep-learning methods for dense
LSS 049 052 049 042 052 042 matching. SSC, DSC and GI-DSC are the state-of-the-art
LDIa?}; 8?& 8;; 813 822 8;1‘ 82(9) cross-modal descriptors proposed in (Kim et al. 2021). Our
DASC 037 036 038 039 044 041 method is on par with the state-of-the-art methods when con-
VGG 033 039 038 042 047 038 sidering the ToU metric, and achieves the best performance

LIFT 039 047 044 049 051 053 under the LTA metric for all three cross-modal scenarios.
L2-Net 0.36 041039 038 043 047 Furthermore, we qualitatively compare the methods in

FCSS 0.31 0.31 0.30 0.30 0.40 0.34 . .

GLU-Net 037 056 018 026 021 028 Figure 6. Unlike other methods, the results of our Cross-
RANSAC-Flow 0.19 029 023 035 03l 0.47 RAFT are not only accurate but also smooth. On the con-
SSC 030 029 031 031 043 036 trary, GLU-Net cannot handle cross-modal scenarios well,
DSC 026 024 029 027 036 027 thus leads to mismatches in some area. Meanwhile, the rest

GI-DSC 0.23 0.19 0.27 0.24 0.31 0.21 . . .
Ours 015 019 018 027 017 027 methods only give descriptors and need a post-processing
- with SIFT-flow (Liu, Yuen, and Torralba 2010), which may

Table 5: Comparisons on the TriModalHuman dataset. The cause obvious artifacts.

best value of each column is bold, and the second best value
is marked with underline. Higher LTA and IoU indicate bet-

ter performance, while we list 1-LTA and 1-IoU as the error Conclusion

rates. In this paper, we propose a Modality Promotion Frame-

work to promote the off-the-shelf single-modal optical flow

networks for cross-modal flow estimation. Our framework

DAISY (Tola, Lepetit, and Fua 2009), BRIEF (Butler adopts a self-supervision manner and does not need the spe-

et al. 2012), LSS (Shechtman and Irani 2007), LIOP (Wang, cific cross-modal datasets for training. Furthermore, we pro-

Fan, and Wu 2011), DaLI (Simo-Serra, Torras, and Moreno- pose the CrossRAFT model with a Cross-Modal-Adapter as

Noguer 2015) and DASC (Kim et al. 2015) are earlier tra- a plugin to RAFT, which can enhance the cross-modal fea-

ditional matching methods. VGG (Simonyan and Zisserman ture extraction ability for RAFT. The experiments demon-

2014), LIFT (Yi et al. 2016), L2-Net (Tian, Fan, and Wu strate that our proposed framework and CrossRAFT are ef-
2017) and FCSS (Kim et al. 2017) are four deep-learning fective for cross-modal flow estimation.
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