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Abstract

Text-based image captioning (TextCap) requires simultane-
ous comprehension of visual content and reading the text of
images to generate a natural language description. Although
a task can teach machines to understand the complex human
environment further given that text is omnipresent in our daily
surroundings, it poses additional challenges in normal cap-
tioning. A text-based image intuitively contains abundant and
complex multimodal relational content, that is, image details
can be described diversely from multiview rather than a single
caption. Certainly, we can introduce additional paired train-
ing data to show the diversity of images’ descriptions, this
process is labor-intensive and time-consuming for TextCap
pair annotations with extra texts. Based on the insight men-
tioned above, we investigate how to generate diverse captions
that focus on different image parts using an unpaired train-
ing paradigm. We propose the Multimodal relAtional Graph
adversarlal inferenCe (MAGIC) framework for diverse and
unpaired TextCap. This framework can adaptively construct
multiple multimodal relational graphs of images and model
complex relationships among graphs to represent descriptive
diversity. Moreover, a cascaded generative adversarial net-
work is developed from modeled graphs to infer the unpaired
caption generation in image—sentence feature alignment and
linguistic coherence levels. We validate the effectiveness of
MAGIC in generating diverse captions from different rela-
tional information items of an image. Experimental results
show that MAGIC can generate very promising outcomes
without using any image—caption training pairs.

Introduction

Visual captioning aims to help visually impaired people to
quickly understand the image content. Existing methods fo-
cus on describing visual objects that have achieved impres-
sive or even super-human performance (Yu et al. 2019; Cor-
nia et al. 2020; Zhang et al. 2021a; Ding et al. 2020; Zhang
et al. 2021a,b). However, most prominent captioning meth-
ods fail to “read” the associated texts in the visual scene.
Therefore, text-based image captioning (TextCap) (Sidorov
et al. 2020) is proposed in this study to caption models, rec-
ognize visual content, read text, understand both modalities
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Figure 1: An example of how the diverse and unpaired cap-
tions generated. Orange, green and blue represent the ob-
jects, texts and multimodal relationships, respectively.

jointly, and write a succinct caption. Such task is very practi-
cal that encourage machine to generate fine-grained captions
(e.g., read the price of commodities in Fig.1), which is help-
ful to visually disabled people to understand surroundings
more accurately, but put forward new difficulties to existing
captioning models meanwhile.

Intuitively, human-made images with text contain more
semantic entities (e.g., objects, attributes, and texts) and
complex relations (e.g., correlation and constraint) than nat-
ural images (Hou et al. 2019; Zhang et al. 2020b,a; Li
et al. 2022). Common single captioning models experience
difficulty in representing a holistic image understanding.
These models also hinder the diversity of image descrip-
tions, which is crucial for blind people concerning differ-
ent aspects of an image (e.g., price comparison, discount,
brand and position of commodities in Fig.1). In fact, we
humans tend to focus on different aspects of image con-
tent by our preferences, personality and sentiment, this ap-
plies to the annotators with no exception (Yang, Zhang,
and Cai 2020b). Definitely, we could a sk annotators for
more paired data (e.g., multiview of an image - diverse de-
scriptions), thereby force captioning model to generate var-
ied captions from multiple views of an image. However, in
the Textcap task as well as many vision-language applica-
tions, such large-scale annotations are not readily available,
and are both time-consuming and labor-intensive to acquire.
In these scenarios, unsupervised/unpaired methods (Lam-
ple et al. 2017; Gu et al. 2019; Caron et al. 2020) that can




learn vision to language or conversely from unpaired train-
ing data are highly desirable. Based on this insight, our goal
is to break away from single and paired captioning conven-
tions and conduct the unpaired captioning paradigm, which
encourages TextCap models to generate diverse textual de-
scriptions to comprehend images better.

However, the diverse and unpaired TextCap is challeng-
ing and can be summarized as three aspects: 1) Descrip-
tive Diversity, as shown in Fig.1, three sentences focus on
different and interrelated multimodal information. It is hard
to determine which fine-grained multimodal details are se-
mantically related and ignore the unconcerned content to
mine the diversity of image content from multiple views;
2) Relational Modeling, how to model complex intra- and
cross-relationships among the above multimodal contents,
some of which even seem irrelevant intuitively. For instance
there are various relational semantics in Fig.1: (a) intra-
relationship, a price of “17.8” denotes the “rollback™ while
“19.88” indicates the original price, a lady is located next
to the commodity; (b) cross-relationship, the word “Hy-
droxycut” is the brand of a commodity and its price of
“17.88” is located above a lady. Thus, appropriately model
the relational semantic meanings is the premise to gener-
ate a plausible caption; 3) Unpaired Learning Paradigm,
there have been few attempts for unpaired captioning (Gu
et al. 2018, 2019), mainly relies on aligning/sharing latent
semantic space across the image-sentence domain. Although
promising, these methods may not mature enough to apply
to unpaired Textcap. The multimodal relationships among
images are complex and abundant. The characteristics distri-
bution among images and descriptions are apparently larger
than general captioning.

Overall, we propose a novel method for diverse and un-
paired TextCap called Multimodal relAtional Graph adver-
sarlal inferenCe (MAGIC) to address these challenges. As
shown in Fig.1, our framework comprises the following
parts: 1) Multimodal Relational Graph Encoder, this mod-
ule aims to encode an image to multiple semantic embed-
dings based on content diversity adaptively. The intuition
behind this is: when human beings composing different im-
age descriptions, they prefer to focus on a few salient re-
gions, then query the contextually relevant content part and
clarify their relationships to describe. To mimic this process,
we first introduce a central object-aware pool that adaptively
identifies the key objects which are supposed to reflect hu-
mans’ intentions. Then construct their multimodal relational
graphs via query relation-aware multimodal semantic mean-
ing. The relational contexts among graphs are finally mod-
eled by GCN (Berg, Kipf, and Welling 2017) into embed-
dings to represent varying levels of details of an image; 2)
Sentence Auto-Encoder, this module aims to reconstruct the
sentences by encoding the pre-extracted scene graph from
the sentence corpus. Encoded embedding sets can learn the
language inductive bias (Yang, Zhang, and Cai 2020a) from
the sentence corpus to provide explicit signals for subse-
quent unpaired mapping and decode lexical words appropri-
ately; 3) Unpaired Adversarial Caption Inference, last but
not least, semantic consistency throughout image and sen-
tence domain is crucial to achieving unpaired learning. For
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this purpose, we develop a cascaded generative adversarial
network(CGAN). CGAN first performs feature alignment
from image to sentence to capture the cross-modal semantic
consistency, then learns linguistic coherence by a language
discriminator to generate more accurate and fluent captions.
To summarize, the major contributions of our paper are as
follows:

* A novel perspective is presented for the TextCap task to
simultaneously liberate from the single and paired cap-
tioning training mode.

* The MAGIC framework can appropriately construct and
encode diverse multimodal relational graphs to observe
an image from multiview and learn to generate unpaired
captions via cascaded adversarial inference.

* The superiority of MAGIC is demonstrated in terms of
both accuracy and diversity using automatic metrics and
human judgments.

Related Work

Diverse Captioning. The ability of understanding and rea-
soning different modalities is a longstanding and challeng-
ing goal of artificial intelligence (Rennie et al. 2017; Zhang
et al. 2020a, 2019; Li et al. 2021, 2020, 2019; Chen et al.
2021). Image captioning is one of the most important task
and recent works are focus on generating multiple captions
to describe an image. (Johnson, Karpathy, and Fei-Fei 2016)
is the first to propose the dense captioning task, which de-
tects and describes diverse regions in the image. (Guo
et al. 2019) design a multi-style image captioning model
that learns to map images into attractive captions of multi-
ple styles. (Xu et al. 2021) develops anchor-centered graphs
that select different textual contents to generate that multiple
captions. However, the works mentioned above are more rel-
evant to holistic visual understanding by paying more atten-
tion to unimodal information (e.g., objects, regions or texts).
They require much paired data to learn the captioning diver-
sity and may hardly model an image’s complex multimodal
relational details.

Unpaired Captioning. First attempt (Gu et al. 2018) of un-
paired image captioning utilize pivot language corpus and
align it to the target language, connect the pivot language
sentences in different domains by shared word embeddings.
(Gu et al. 2019) uses scene graph as representations of the
image and the sentence, and maps the scene graphs in their
feature space through cycle-consistent adversarial training.
The most recent work(Liu et al. 2021) employs the semantic
relationships to bridge the gap between vision and language
domains for unpaired caption generation. However, due to
the complex multimodal relationships in TextCap task, the
discrepancy of feature distribution and semantic gap across
image-sentence domain is larger than image captioning. The
above methods may fail to generate accurate captions appro-
priately in an unpaired setting.

Method

This section describes our diverse and unpaired TextCap
framework, we will describe each module of it and intro-
duce the objectives and strategy for training.
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Figure 2: Overview of our framework. (a) Multimodal Relational Graph Encoder encodes multiple multimodal relational graphs
based on central object-aware pool adaptively to represent the diversity of image content; (b) Sentence Auto-Encoder pre-extract
the scene graph from the sentence corpus, then reconstructing the sentences from the latent vectors that are encoded from the
scene graph; (c) Unpaired Adversarial Caption Inference, a cascaded generative adversarial network developed to reason the
accurate and fluent captions with unpaired learning by aligning cross-domain features and distinguishing linguistic structure.

Problem Formulation

Before presenting our method, we first introduce some ba-
sic notions and terminologies. Given a text-based image Z,
the goal is to generate diverse natural language sentences
= {S;|N¥,} with unpaired learning, where N, is the pre-
deﬁned number of generated sentences to satisfy the user’s
intention. We use the following training pipeline C(., ) to
show how the diverse and unpaired captions are generated:

C((S|T); (6z,0s)) = Ex((G*|T); 6z)
TextCap Model Image Encoder
U((G°|67); 6z) Ds((S]G°); bs)

Unpaired Alignment Sentence Decoder

ey

E7(+;0) is image encoder aims to model N, multimodal
relational graphs (MRGs) GZ = {GZ|Nt } learned from
image Z, then translate G% to appropriate sentence graph
G through unpaired cross-domain alignment U4(-; ), the
aligned results can be decoded to diverse captions S =
{S| Y%} by sentence decoder Ds(-; #). Notice that Ez(-; 8)
and UA( 0) share parameters 67 to learn feature alignment
across domain, Dgs(-;0) is a pretrained sentence docoder
from textual corpus, fs are fixed as explicit supervised sig-
nals to learn f7 to generate unpaired captions.

Fig.2 shows the proposed Multimodal relAtional Graph
adversarlal inferenCe (MAGIC) framework C/(.; 6) consists
of three main modules: Multimodal Relational Graph En-
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coder Ez(+;#), Sentence Auto-Encoder Ds(-;6) and Un-
paired Caption Adversarial Inference U4 (-;6). We use the
TextCap task as an example to illus- trate our method.

Multimodal Relational Graph Encoder

This module aims to select the central objects dynamically
as the central object-aware pool, then constructs their MRGs
adaptively, which can represent the different fine-grained
contents. Last, GCN model intra- and cross-relationships to
learn MRG embeddings.

Multimodal Feature Extractor. Given a text-based im-
age 7, we firstly initialize it as its corresponding N, vi-
sual object features and [V, text token features by Faster
RCNN (Ren et al. 2016) and Rosetta OCR (Borisyuk,
Gordo, and Sivakumar 2018), respectively. In order to
represent visual and text features at a unified level, fol-
low (Sidorov et al. 2020), we adopt a single-layer MLP to
map the above features as d-dimensional vectors, the uni-
fied visual and text embedding sets of image Z given by

0= {o;|N>,}and T = {t| 1}, respectively.

Central Object-Aware Pool. Inspired by the human-
being attention mechanism to describe an image, which usu-
ally focuses on a salient object or region, then from “one-to-
many”’, queries its relevant information and ignores the un-
concerned contents to compose fine-grained sentences. We
imitate this process by introducing a central object-aware
pool (COP) that is supposed to reflect the human preference



and select objects that may need additional attention adap-
tively. In detail, given i*" object embedding o;, we employ
soft attention to each text token embedding in T. Then o;
and attened textual latent vector t{ are concatenated as the
augmented object embedding of = [o;,t¢], the embedding
set is given by O = {0?|X°, }. To decide the central objects
from O%, we adopt a MLP to predict a score for each object:

Sgbject = SOftmaX(lz@(Oa)) (2)
Sopject contains N, scores for each element that indicates
the importance weight of each object. Then we select Ny

objects O° = {0¢|Y*, } with the highest scores as COP .

Multimodal Relational Graph Embedding. In analogy
to the human inference of contextual information with a
given focused object, we first query its intra- and cross- re-
lationships for each central object, then construct their cor-
responding MRGs GT = {GZ |k } to represent the diversity
of image 7. In detail, for k" central object o7, its MRG de-
fined as GF = (NZ,ET). We devote N7 as three relational
types according to the contextual information: relationship
nodes n” attribute nodes n® and text nodes n. On the one
hand, intra-relational nodes n” and n® corresponds to the
visually neighbour objects has relationships, attributes for
object of,, respectively.

N, na}{{W ot 1

{w. [01751]}1 1
where W, € R%*4 and W, € R4*(@+4) are the relational
embedding matrix, we omit the bias term for simplicity. s;
the positional embedding to distinguish different attribute
nodes connected with the object of.

On the other hand, to capture the cross-relationship
among central object of, and text tokens, we perform soft
attention weight on texts T to query the semantically textual
embeddings as text nodes n’.

NT{n%} = {alt;} Ny oem@>9) 4)

where al- is the attention score, € is a pre-deﬁned threshold.
sum() is counting function aims to connect more related
contextual texts for of, if attention score a’, greater than e.

Thus far, the MRG GI (NZ,ET) with three rela-
tional nodes {n”,n% n'} is obtained. To model the seman-
tic relations among the above MRG, we introduce a multi-
layer GCN (Marcheggiani and Titov 2017; Guo et al. 2021),
which can capture mutual relations between neighboured
nodes and embed the graph structure into latent vectors.

gr = 0, (Win,0f + Z Wi ;)
n;eNZ

where ¢, is the ReLU activation function, W,,,, and W,,,
€ R4 are the transformation matrices. In this multi-layer
GCN, first layer brings contexts for each node from its di-
rect neighbor nodes. Meanwhile, stacking multiple layers
enables the encoding of broad contexts in the graph. After
such graph pooling, the MRG embedding g% for object of, is
obtained. As a consequence, the content diversity of image
T can be regarded as the collection g7 = {g | ilesy ) of Ny
central objects.

relationship nodes;
, attribute nodes.

3

text nodes.

&)
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Sentence Auto-Encoder

We design a sentence auto-encoder that fully capture the lan-
guage properties by self-reconstructing sentence. In particu-
lar, we extract the scene graph G from the sentence corpus,
and then decode the sentence from latent vector that is en-
coded from the G° (sentence — G — latent vector g —
reconstructed sentence).

Scene Graph Encoder. We use the scene graph parser
provided by (Anderson et al. 2016) for sentences, where a
syntactic dependency tree is built by (Klein and Manning
2003) and then a rule-based method (Schuster et al. 2015) is
applied for transforming the tree to a scene graph.

Given a sentence S from TextCap corpus, its correspond-
ing scene graph involved the high-level semantic concepts
(e.g., objects, relationships between two adjacent objects
and attributes of objects) and textual tokens, to align sub-
sequently image-sentence domain better, we encode sen-
tences in a similar way in MRG encoding. In detail, for each
conceptual object ¢ in S, we define its relational graph as
gf = (J\/ S,ES), where A/® devote three relational type,
relationship nodes ¢”, attribute nodes ¢ and associated tex-
tual nodes ¢’. The global semantic meaning of sentence S
can be regarded as the collection of object relational graphs
GS = {Q;S | ?i“l , where M, is the object number in sentence
S. Similarly, the latent embedding of sentence is learned by
the multi-layer GCN which using same structure in image
graph encoding but independent parameters.

M.
1 o
S _ o ¢
g —MO&(E (Weocs +A E Wei€i)) (6)
i=1 ¢, eENS

where W,g and Wd € Rdxe, Thus the scene graph embed-
ding of sentence Sis given by g%.

Sentence Decoder. The decoder part is essential in the
way that it translates the semantic latent vector g° into the
textual sentence. However, most text tokens in sentence cor-
pus only appear few times. This long-tailed word distribu-
tion specifically demonstrates the large variance in text oc-
curring, which is challenging to model using a fixed word
vocabulary. For this challenge, following M4C (Sidorov
et al. 2020), we adopt different classifiers for common vo-
cabulary and candidate texts to predict words. In detail,
to capture long-range dependency in sequence modeling,
general LSTM is employed to predict the word §, in com-
mon vocabulary based on the scene graph embedding g°
Then a dynamic pointer network that makes final word pre—
diction on the basis of text candidates T¢ and y,.

§, = 1% (LSTMpgc (h_1,8°%)).

y' = argmax([y,, DPN(3,, T))));
where [!* (.) is a linear classifier for common vocabulary,
DPN(.) denotes the dynamic pointer network. We de-
vote notation y,. refers to a sequence of predicted words
{¥o,* " »¥r}, the captioning loss can be computed by:

—log - Z

)

L(S;0s) (el (Yo.r— 1,g ;T9))  ®)



Unpaired Adversarial Caption Inference

To achieve this unpaired captioning, we develop a CGAN
that contains two modules, namely, cross-domain alignment
and language discriminator. We first perform the feature
alignment across domains and then distinguish whether the
semantic structure of decoded caption is real or fake using
the language discriminator. Such a cascaded mechanism can
train a captioning model in an unsupervised manner and im-
prove coherence among generated sentences.

Cross-Domain Alignment. Given two unpaired graph
embeddings sets G¥ = {gZ|Y% } and G° = {g5|"s,} from
image and sentence domain, respectively, where Nz and Ng
are the capacity of corresponding corpus. The goal of feature
alignment is enforce the G to be close to the G° distribu-
tion. We follow (Zhu et al. 2017; Gu et al. 2019) that align
feature space through cycle-consistent adversarial training.
Differently, considering that the huge domain discrepancy,
we leverage recent advances in Optimal Transport (Peyré,
Cuturi et al. 2019) to encourage the cross-modal semantic
coherence. In detail, the wasserstein distance (Shen et al.
2018) is employed as the loss value to learn the discrimi-
nator, to align domain X to domain Y, the distribution dis-
tance W (X,Y') can be defined and corresponding loss can

be minimized as follows:
W(X,Y)= inf

y~II(X,Y)

L(X—=Y;0) = Eyoy [Dy (¥)] — Exwx [Dy (x)]

Exy)~rlllx =yl

where v ~ II(X,Y) is the set of possible joint distributions
for the combination of x and y. Dy is a discriminator to
distinguish the origin source of the latent vector if from Y.
Such loss is more effectively maintain the semantic coher-
ence between two domain with huge discrepant characteris-
tics. Thus, the cycle loss of feature alignment from GT o
G¥ can be defined as follows:

L(A;07) =AA(L(Ms(GH)—GS) + L(Mz(GS)

—GT) + A\ L(M7(GFH) =M (G®))) (10)

where A4 and Ac are weight hyper-parameters to con-
trol the feature alignment, M7 and Mg are mapping func-
tion to image domain and sentence domain, respectively.
L(M7(G) < Mz(G®)) is the cycle consistency loss to
regularize the training. Subsequently, the aligned image-

sentence embeddings G° = {gfﬁiﬂ} and text candidates
T¢ are feed into sentence decoder to generate captions.

Language Discriminator. Notably, the cycle loss can
minimize the distribution distance among image and sen-
tence domains. However, the characteristic distribution of
aligned image embeddings G° = {gf|jvgl} is between im-
age domain and sentence domain. To capture the language
characteristics further, we introduce a language discrimina-
tor Dy, that focuses on the language structure of an individ-
ual sentence. Here, we want to ensure fluency and language
accuracy that may be lacking in the cross-domain alignment.
In addition to generated captions from the sentence decoder,
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Dy is given negative inputs with a mixture of randomly
shuffled words or repeated phrases within a sentence.

L(L;0s) =AL(Esws[log(DL(s))] — Esose

[1 —log(Dr(s"))])
where )y, is weight hyper-parameter and Dy, is a Bidirec-
tional LSTM. S™ is a set in which sentences with random N-
grams. This language discriminator verifies not only the se-

mantic fluency among sentences but also improves the cap-
tioning accuracy.

Y

Training Algorithm

Algorithm 1 (in the appendix) presents the pseudocode of
our MAGIC algorithm for diverse and unpaired TextCap.
First, we pretrain the sentence auto-encoder by reconstruct-
ing sentences and the language discriminator as well as dis-
rupting the order of words from the sentence corpus. The
MAGIC framework then learns diverse multimodal rela-
tional graph embeddings by querying the semantic mean-
ing of central objects. Finally, the developed CGAN aligns
cross-modal embeddings from the image domain to the sen-
tence domain and then checks the fluency and accuracy of
generated captions using the language discriminator to gen-
erate unpaired and diverse captions magically.

Experiments

We first benchmark our MAGIC for unpaired and diverse
captioning on the TextCaps dataset (Sidorov et al. 2020) to
verify its effectiveness, and then discuss MAGIC’s property
with controlled studies.

Dataset and Setting

Dataset. The TextCaps dataset collected 28,408 images with
142,040 captions from Open Image V3 dataset. Each im-
age has five captions with verified texts through the Rosetta
OCR system (Borisyuk, Gordo, and Sivakumar 2018) and
human annotators. Follows TextVQA (Singh et al. 2019),
this dataset splits for training (21,953), validation (3,166),
and test (3,289) sets.

Implementation Details. The number of visual objects is
N, = 100 and the number of OCR tokens is N; = 50. For
TextCap generation, we tokenized the texts on whitespace,
and the sentences are “cut” at a maximum length of 20
words. We add a Unknown token to replace the words out
of the vocabulary list. The vocabulary has 6,736 words, and
each word is represented by a 300-dimensional vector.
Metrics. We use the microsoft coco caption evaluation
! which includes BLEU (Papineni et al. 2002) , ME-
TEOR (Denkowski and Lavie 2014), ROUG_L (ROUGE
2004), CIDEr (Vedantam, Lawrence Zitnick, and Parikh
2015) and SPICE (Anderson et al. 2016) to evaluate the cap-
tioning results. To evaluate the captioning diversity, we use
Div-1 and Div-2 scores (Li et al. 2015) that measure a ra-
tio of unique N-grams (N=1,2) to the total number of words.
We also report RE-4 that captures a degree of N-gram repeti-
tion (N=4) in a description and SelfCIDEr (Wang and Chan
2019) to study the semantic level diversity.

"https://github.com/tylin/coco-caption/



DIC. Captioning Evaluation Diversity Evaluation
Method BLEU METEOR ROUG SPICE CIDEr | Div-1 Div-2 RE-4]  SelfCIDEr
ISM-LSTM 15.2 17.6 38.4 11.8 31.1 252 342 53 41.9
MAGIC (w/o CO)T 20.2 18.1 39.5 12.3 71.3 28.8 374 4.8 454
MAGIC (w/o TA)T v 21.7 20.3 42.0 13.6 75.9 28.1 404 3.6 49.1
MAGIC (w/o CG)T v 20.1 18.4 37.1 12.2 65.3 26.8  36.2 53 46.1
MAGIC (w/o LD)f v 20.8 20.1 41.1 12.8 73.9 28.2 383 4.5 48.8
MAGIC v 22.2 20.5 42.3 13.8 76.6 29.7 409 3.8 49.6

Table 1: Captioning and diversity results on TextCap validation set. DIC. indicates the results from diverse image captions. '
indicates whether the model is a variant of MAGIC. Larger values indicate better performance, except for small value is better
for RE-4. The top two scores on each metric are in bold. Acronym notations of each method see in comparison of methods.

Results of differnet COP Size
COP Capacity | BLEU CIDEr Div-2 SelfCIDEr
Ni=1 22.3 77.3 41.9 50.3
Np=2 21.8 75.8 41.1 493
Np=4 21.6 75.3 39.3 47.8
Np=5 20.8 73.4 38.1 47.5
N,=3 22.2 76.6 40.9 49.6

Table 2: The captioning and diversity results of different sike
Ny, of central object-aware pool.

Comparison of Methods. Diverse and unpaired Textcap is
a fire-new task that existing captioning algorithms are not
applied to compare. We simplified MAGIC as the baseline
and conducted an ablation study to ensure a fair comparison
and investigate contributions of individual components in
MAGIC using the following versions: ISM-LSTM is a sim-
plified version of MAGIC that maps image features from the
image corpus to the sentence corpus using cycle GAN and
then decodes the caption with LSTM; MAGIC (w/o CO) is
similar to (Yao et al. 2018) and encodes the global spatial
graph as the image embedding to decode a single caption;
MAGIC (w/o TA) considers all text tokens in the MRGs
without query attention to examine the impact on the diver-
sity of captions; MAGIC (w/o CG) utilizes the original gan
to align the image—sentence domain to investigate the im-
pact on the accuracy of captions.; MAGIC (w/o LD) gen-
erates captions without the language discriminator to assess
the importance of the cascaded adversarial mechanism.

Experimental Results

Captioning Results. The overall quantitative results of our
model and baseline on the validation set of the Textcap
dataset are listed in Tab. 1. The trained baseline model (ISM-
LSTM) achieves the minimum captioning score, thereby in-
dicating that it fails to describe the text-based image due
to missing text awareness. The excellent performance of
MAGIC and its variants in comprehending multimodal con-
tent compared with the baseline verifies the effectiveness of
our proposed model. Notably, the results of other variants
are better than those of MAGIC (w/o CO) and MAGIC (w/o
CQG). Our analysis showed that MAGIC (w/o CO) encodes
an image with global content with abundant multimodal de-
tails, but its ground truth captions describe the image locally.
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Results of different COP construction
Central Object | BLEU CIDEr Div-2  SelfCIDEr
Center 18.7 72.3 38.3 44.2
Large 20.1 75.9 40.2 49.3
Random 17.1 67.8 36.9 46.6
Top Socre 22.2 76.6 40.9 49.6

Table 3: The captioning and diversity results of different
COP construction. Center, large and random means that the
central object is selected by different rules.

The CGAN may fail to align the cross-domain appropriately.
Compared with MAGIC, MAGIC (w/o CO) with original
GAN may fail to capture cross-domain semantic consistency
effectively. In contrast, MAGIC with CGAN can improve
the quality of unpaired captions in feature alignment and se-
mantic structure levels.

Diversity Results. Tab. 1 also presents the comparison of
diversity results. The top three objects are selected as the
central object-aware pool in MAGIC variants to ensure a fair
comparison. Notably, diverse captioning models of MAGIC
outperform the single captioning baseline of ISM-LSTM by
a large margin. Generated various captions effectively re-
spect MRGs, especially in the SelfCider score, which fo-
cuses on semantic similarity. We conduct additional diver-
sity analyses in the following section.

In-Depth Analysis

We further validate the several key issues of the proposed
method by answering three questions as follows.

Q1: How does the structure of central object-aware
pool (COP) affect the captioning diversity? On the one
hand, we conduct an ablation study to illustrate the impact
of different sizes of COP on diverse and unpaired TextCap.
The results are presented in Tab. 2. MAGIC with a pool size
of Ni=1,2,3 presents the solid and approximate TextCap
results, and MAGIC with a pool size of Ny=4,5 obtains
competitive results. For this situation, we found that there
are objective semantic overlaps among annotated image de-
scriptions, i.e., for an image, some ground truths of an im-
age from the sentence corpus are similarly semantic in the
sentence domain. This similarity may cause confusion in
the alignment of different multimodal relational graphs to
the sentence domain in CGAN and lead to slight perfor-
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Figure 3: Two qualitative cases of MAGIC from TextCaps v
relational graphs based on generated diverse captions.

aligned

+ image

Figure 4: Visualization of features (1000 samples) 2D space
by t-SNE (Van der Maaten and Hinton 2008).

mance degradation. On the other hand, the quantitative re-
sults according to rule- and learning-based central object
selections for OAP are reported. Tab.3 demonstrated that
all rule-based methods suffer from low metric performance
while the learning-based central object can accurately and
diversely describe an image.

Q2: How much improvement of unpaired TextCap
quality has the MAGIC brought? The MAGIC can im-
prove the unpaired TextCap effectively by feature alignment
and semantic coherence distinguishing. First, we visualize
the feature alignment to indicate that our MAGIC can cap-
ture the semantic consistency across the image—sentence do-
main Fig. 4. To better understand how satisfactory are the
sentences generated by CGAN, we conducted a human study
with five experienced workers to evaluate the generated de-
scriptions from MAGIC and MAGIC (w/o CG). Workers
evaluated 100 images which are randomly sampled from the
validation set for each pairwise comparison. Fig. 5 shows
that employing MAGIC can describe images more diversely,
accurately and fluently.

Q3: How about the diversity of the visual concepts and
texts for an image with multi-captions? We additionally
conduct a qualitative analysis of the descriptive diversity
of MAGIC in Fig. 3. We present the multiple MRGs
(Ny=3) for each image on the basis of generated captions.
The excellent results showed that MAGIC produces more
accurate and fine-grained captions than baseline. In this
case(a), MAGIC models complex multimodal relationships
correctly and describes an image with different fine-grained

ISM-LSTM: a book titled for the book.

MAGIC 1: A
MAGIC 2: A
MAGIC 3: A

cover for
ofa
called the

that says
by

alidation set. For better visualisation, we contruct the multimodal

Diversity Accuracy Fluency

12% .
21% —

35% 28%

43%

53% 36%

41%

Comparative MAGIC MAGIC(w/o CG)

Figure 5: The pie charats each comparing the two methods
in human evaluation.

contents adaptively. As presented in third caption, for
intra-relationship, MAGIC can capture the semantic re-
lationship “can-sit nexts to-bottle”, “bottle-on-desk”, and
“can-on-desk” correctly; for cross-relationship, MAGIC
can model the semantic relationship “bottle-of-energy
drink” and “can-of-mountain dew” appropriately. However,
the baseline ISM-LSTM describes the image with error
semantic information and semantic structure.

Conclusion

We focus on diverse and unpaired text-based image caption
generation. The MAGIC framework is proposed to achieve
these objectives. MAGIC can adaptively build multiple mul-
timodal relational graphs on the basis of selected central ob-
jects. A cascaded generative adversarial network is then de-
veloped to infer the unpaired caption generation in the im-
age—sentence feature alignment level and linguistic coher-
ence. The experimental results verified that MAGIC can ef-
fectively generate very promising and diverse captions with-
out using any paired training data. The results of our study
can provide new insights into visual captioning and guidance
for future investigations on vision and language.
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