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Abstract

Unsupervised domain adaptation (UDA) has been highly suc-
cessful in transferring knowledge acquired from a label-rich
source domain to a label-scarce target domain. Open-set do-
main adaptation (open-set DA) and universal domain adapta-
tion (UniDA) have been proposed as solutions to the problem
concerning the presence of additional novel categories in the
target domain. Existing open-set DA and UniDA approaches
treat all novel categories as one unified unknown class and
attempt to detect this unknown class during the training pro-
cess. However, the features of the novel categories learned
by these methods are not discriminative. This limits the ap-
plicability of UDA in the further classification of these novel
categories into their original categories, rather than assigning
them to a single unified class. In this paper, we propose a self-
labeling framework to cluster all target samples, including
those in the “unknown” categories. We train the network to
learn the representations of target samples via self-supervised
learning (SSL) and to identify the seen and unseen (novel)
target-sample categories simultaneously by maximizing the
mutual information between labels and input data. We evalu-
ated our approach under different DA settings and concluded
that our method generally outperformed existing ones by a
wide margin.

Introduction
Deep neural networks (DNNs) have demonstrated excellent
training capabilities in many large-scale annotation tasks.
However, it has been observed that when the domain of
the test data differs from that of the training data, the per-
formance of the DNNs declines significantly. Unsupervised
domain adaptation (UDA) has achieved reasonable perfor-
mance in addressing the domain shift problem without ad-
ditional annotations, by learning a recognition model in
case of domain shifts between the source-domain training
data and target-domain test data (Ghifary et al. 2016; Taig-
man, Polyak, and Wolf 2017; Tzeng et al. 2017; Saito et al.
2018a).

Although most UDA methods assume that the categories
of the source domain are the same as those of the target do-
main, the target-domain sample classes are often unknown
in real-world settings. For example, certain categories in
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Figure 1: Novel category discovery goal in domain adap-
tation via the proposed method. While existing methods at-
tempt to classify all “unknown” target samples into one cate-
gory, our method aims to cluster all target samples according
to their semantic categories.

the target domain may be absent in the source domain, i.e.,
open-set domain adaptation (open-set DA) (Panareda Busto
and Gall 2017; Saito et al. 2018b); the source domain may
contain categories that are absent in the target domain, i.e.,
partial domain adaptation (partial DA) (Cao et al. 2019), or
a mixture of open-set DA and partial DA, i.e., universal do-
main adaptation (UniDA) may be observed (You et al. 2019;
Saito et al. 2020). In open-set DA and UniDA, the target do-
main may contain samples belonging to unknown classes,
i.e., classes that do not appear in the source domain.

Although certain samples in the target domain may be-
long to multiple novel categories, existing open-set DA and
UniDA methods consider all unknown classes of the tar-
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get domain as one unified “unknown” class and try to reject
these unknown samples during the training process. More-
over, most existing methods focus on aligning the distribu-
tions of the source and target domains rather than on explic-
itly learning the representation of the target samples. Con-
sequently, the features learned by these methods do not help
classify “unknown” target domain samples into their origi-
nal categories, which limits the applicability of UDA if the
further classification of these novel categories is required
(e.g., in one-shot learning).

Recent studies (Han, Vedaldi, and Zisserman 2019; Han
et al. 2020) have proposed novel category discovery (NCD)
methods; however, they assume that all samples in the unla-
beled data belong to novel categories and there is no domain
gap between the labeled and unlabeled data. Therefore, these
methods cannot address NCD in the DA problem.

Hence, we propose a self-labeling framework for the si-
multaneous identification of seen categories (i.e., source-
domain classes) and discovery of the novel categories of the
target data. First, we utilize the target samples to improve the
representation learning of the target domain through an ex-
isting self-supervised learning (SSL) technique, prototypical
contrastive learning (PCL), which can learn the discrimina-
tive features useful for identifying novel categories.

We then assign labels to the target samples via a new self-
labeling technique. An extended target-sample classifier is
built, which integrates the samples belonging to seen and
novel categories into a joint label distribution. We update
the weights of the extended classifier for the seen categories
based on prototypes from the source samples to classify
the samples in the target data belonging to seen categories.
To discover novel categories concurrently, we maximize the
mutual information between the data indices and labels to
encourage diversified classifier outputs in terms of the label
distribution. Because the network is trained via SSL, sam-
ples belonging to a particular novel category tend to be clas-
sified into the same class by the extended classifier. Conse-
quently, multiple novel categories can be discovered using
the proposed method.

We evaluated the proposed method using a diverse set of
DA settings and observed that our method clustered novel
categories correctly and improved DA performance through
SSL. Furthermore, our method outperformed existing UDA
and NCD methods by a wide margin in many settings. The
contributions of this study are summarized as follows.
• A new problem setting for NCD in DA is proposed.
• A novel self-labeling framework with PCL and mutual-

information maximization is proposed for clustering tar-
get samples and learning discriminative features for
domain-adaptation scenarios.
• The proposed method achieves high performance in sev-

eral real-world domain adaptation tasks.

Related Work
Domain Adaptation
Several existing UDA approaches have demonstrated signif-
icant performance in learning a good target-domain classi-
fier, given labeled source and unlabeled target data. Let us

assume thatCs andCt denote the label sets of the source and
target domains, respectively. A closed-set DA (Cs = Ct) is a
popular task in UDA, and distribution alignment approaches
have been proposed (Ganin et al. 2016; Long et al. 2018)
to solve this task. Partial DA (presence of private source
classes, Ct ⊂ Cs) (Cao et al. 2018), open-set DA (pres-
ence of novel target classes, Cs ⊂ Ct) (Saito et al. 2018b),
and UniDA (a mixture of open-set DA and partial DA) (You
et al. 2019; Saito et al. 2020) have been proposed to handle
the category-mismatch problem in the real world.

A universal adaptation network (UAN) (You et al. 2019)
was proposed to manage UniDA by employing importance
weighting of the source and target samples. Domain adaptive
neighborhood clustering via entropy optimization (DANCE)
(Saito et al. 2020) achieved high performance by applying
neighborhood clustering and entropy separation to obtain
weak domain alignment. Finally, the most advanced UniDA
method in existence for these tasks is the one-vs-all network
(OVANet) (Saito and Saenko 2021), which trained a one-
vs-all classifier for each class using labeled source data and
adapted the open-set classifier to the target domain by min-
imizing class entropy. However, most of these methods at-
tempt to detect and group all novel target samples into one
unified unknown class, which limits the representations that
can be learned from these samples. The method proposed
herein utilizes samples from the novel categories to improve
feature learning in the target domain.

Self-Supervised Learning
SSL has been proposed to learn representative features for
various image recognition tasks using a large-scale unla-
beled dataset (Doersch, Gupta, and Efros 2015; Hjelm et al.
2019). One popular approach is to train a model to solve a
pretext task, for example, to solve a jigsaw puzzle (Noroozi
and Favaro 2016) or perform instance discrimination (Wu
et al. 2018). Another popular approach is unsupervised clus-
tering. Deep clustering (Caron et al. 2018) attempts to itera-
tively group the features using K-means clustering and uses
the cluster index as the label to train the model. Online deep
clustering (Zhan et al. 2020) improves upon the deep clus-
tering method (Caron et al. 2018) by continuously updat-
ing the cluster labels at each iteration using memory. How-
ever, the most recent and advanced methods are based on
Siamese networks (Bromley et al. 1994). Contrastive learn-
ing approaches, such as simple frameworks for contrastive
learning of visual representations (SimCLR) (Chen et al.
2020), attempt to repel views of different images and attract
the two views of the same image. Bootstrap your own la-
tent (BYOL) (Grill et al. 2020), simple Siamese representa-
tion learning (SimSiam) (Chen and He 2020) and momen-
tum contrast (MoCo) (He et al. 2020) predicted the output
of one view from another view of the same sample using
Siamese networks. Self-paced contrastive learning (Ge et al.
2020) introduced contrastive learning in domain adaptation.

Novel Category Discovery
The existing NCD problem setting aims to cluster an un-
labeled dataset using the prior knowledge gained from the
labeled dataset, whereby the unlabeled dataset consists of
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Figure 2: Overview of proposed framework. Our network has one shared feature extractor (F ) and extended classifier (E). The
former is trained via PCL, and the latter is trained via mutual information maximization.

classes disjoint to those present in the labeled dataset. Deep
learning-based clustering methods have been proposed to
solve this problem. Han et al. proposed deep transfer clus-
tering (DTC) (Han, Vedaldi, and Zisserman 2019), which
incorporated the information learned from known classes
into a deep clustering framework. Later, Han et al. (Han
et al. 2020) attempted to achieve unsupervised clustering by
generating pairwise pseudo-labels of the unlabeled data us-
ing rank statistics. However, each method assumed that all
the categories in the unlabeled dataset were novel (i.e., no
seen categories were present in the unlabeled dataset), and
no domain gap existed between the labeled and unlabeled
datasets.

In this study, we developed an SSL framework for DA and
demonstrated the better performance of our method in rec-
ognizing seen categories and discovering novel categories of
target samples simultaneously.

Method
In this section, we present our problem statement and the
proposed method for NCD in DA.

Problem Statement
We assume that a source image-label pair {xs,ys} is drawn
from a set of labeled source images, {Xs, Ys}, while an un-
labeled target image xt is drawn from a set of unlabeled
images Xt. The one-hot vector of the class label ys is rep-
resented by ys. We use Cs and Ct to denote the label sets
of the source and target domains, respectively, and Ccom =
Cs∩Ct to represent the set of labels common to, i.e., shared
by both domains. The true labels for the source and target
images are denoted by Y GT

s and Y GT
t , respectively (yGT

s
and yGT

t represent the source and target image samples, re-
spectively), which implies that yGT

s ∈ Cs and yGT
t ∈ Ct. In

the open-set DA and UniDA scenarios, certain novel classes
exist in the target domain, i.e., Ccom ⊂ Ct. These unknown
target classes are denoted by C̃t = Ct \ Ccom. Moreover, in

the UniDA context, some classes of the source domain do
not appear in the target domain, that is, Ccom ⊂ Cs. These
private source classes are denoted by C̃s = Cs\Ccom. Given
a target sample, the goal of NCD in DA is to either classify it
as one of the common seen classes Ccom correctly or group
it with similar unlabeled target samples to form one of the
novel target classes amongst C̃t.

Approach Overview
Our model has four components: (1) a shared feature ex-
tractor F , which outputs an `2 normalized feature vector
f ∈ Rd), and (2) an extended classifier E for target sam-
ples, which outputs a probability vector ∈ R|Cs|+|C̃t| (note
that the number of outputs is set to the sum of the number of
seen classes and expected number of novel classes).

Prototypical Contrastive Learning
To learn the semantic structure of the unlabeled target sam-
ples, PCL (Li et al. 2020; Yue et al. 2021) was used to per-
form iterative clustering and representation learning. To dis-
cover novel classes, the features within the same cluster need
to be in proximity, and the features within different clusters
need to be separated further. We prepared a sample memory
for storing features, expressed as:

Vt = [v1t , · · · ,v
|Xt|
t ], (1)

where vi denotes the feature vector of xi
t stored in the mem-

ory. The memory is initialized via F (xi
t) and updated with

momentum m after each batch, as follows.

vit ← mvit + (1−m)F (xi
t). (2)

To perform PCL, we apply K-means clustering on Vt to
obtain target clusters Ct = {C1

t , · · · , CK
t }, and the normal-

ized target prototypes {µj
t}Kj=1 can be derived through the
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following equations:

uj
t =

1

|Cj
t |

∑
vi
t∈Cj

t

vit, (3)

µj
t =

uj
t

‖uj
t‖
. (4)

During training, we first calculate the feature f i
t =

F (xi
t), and subsequently compute the similarity distribu-

tion vector between f i
t and {µj

t}Kj=1, expressed as P i
t =

[P i,1
s , · · · , P i,K

s ], through the following equation:

P i,j
t =

exp(µj
t · f

i
t/τ)∑K

k=1 exp(µk
t · f

i
t/τ)

, (5)

where the temperature parameter τ controls the distribu-
tion concentration degree. Let Ds = {(xi

s,y
i
s)}Ni=1 and

Dt = {(xi
t)}Ni=1 be mini-batches of size N , sampled from

the source and target samples, respectively. The prototypical
contrastive loss can be obtained using:

LPCt(Dt) = − 1

N

N∑
i=1

K∑
k=1

cikt logP i,k
t , (6)

where cikt denotes the cluster label of the samples.
To learn the representation of labeled source samples, the

same operations are performed on the source samples. How-
ever, the ground-truth labels of the source samples are used
instead of clustering indices, and Vs and {µj

s}
|Cs|
j=1 (i.e., the

centroid of each source class) are obtained. Consequently,
the overall loss for self-supervised clustering is denoted by:

LCLU(Ds, Dt) = LPCs
(Ds) + LPCt

(Dt). (7)

The loss is calculated at each iteration, and the memory, as
well as class prototypes, are updated in each epoch.

Self-labeling via Mutual Information Maximization
Through the training of PCL, the network can learn the fea-
tures for classifying seen categories and discover novel cat-
egories in the target data. However, the labels of the target
samples cannot be obtained directly using these methods.
To label the target samples into their original classes, we
input the target samples into the extended classifier E and
the output probability denoted by pe(y|xi

t) = E(F (xi
t)) ∈

R|Cs|+|Ct| is obtained as a soft pseudo-label. Regarding
pe(y|xi

t), the first |Cs| dimensions denote the seen cate-
gories, and the remaining |C̃t| dimensions denote the novel
categories. The proposed self-labeling framework aims to
optimize the pseudo-labels of the target samples via mutual
information maximization.

To classify the seen categories correctly, the simplest
method is to train the classifier using standard cross-entropy
loss on labeled source data, expressed as:

Ls(Ds) = − 1

N

N∑
i=1

|Cs|∑
k=1

yiks log pe(k|xi
s), (8)

where pe(k|xi) represents the probability that sample xi be-
longs to class k predicted by the extended classifier.

However, this training method leads to an imbalance prob-
lem, wherein the gradient is updated for the seen source
classes Cs, but not for the novel target classes C̃t. Conse-
quently, the classifier will be biased toward the seen classes
(Kang et al. 2019), which decreases the NCD performance.

To solve this problem, a cosine classifier consisting of
weight vectors W = [w1, · · · ,w|Cs|+|C̃t|] is used as the
extended classifier F . The probabilistic output can be ob-
tained through the following:

pe(y|xi
t) = SoftMax(

1

τ
WTf), (9)

where τ represents the temperature parameter. Instead of
updating W via cross-entropy loss, we update it using the
source sample prototypes {µj

s}
|Cs|
j=1 as follows.

wj = µj
s (1 ≤ j ≤ |Cs|). (10)

While W is updated in each epoch based on the calculation
of the prototypes, it continues to be updated based on other
losses in each iteration.

At the same time, we attempt to discover novel classes
by training the network to output diversified classes over the
dataset. Because the dimension of the extended classifier is
set to |Cs| + |C̃t| and the seen classes are updated through
Eq. (10), novel classes are automatically clustered in the |C̃t|
part. Consequently, the extended classifier tends to classify
samples of the same novel category into the same class. To
achieve this, we maximize the entropy of the expected net-
work predictionH(Ext∈Xt [pe(y|xt)]).

Furthermore, to obtain a high-confidence prediction for
each sample, we apply entropy minimization to the net-
work output, which is effective in semi-supervised learn-
ing (Grandvalet and Bengio 2005) and helps achieve DA in
UDA tasks (Carlucci et al. 2017; Saito et al. 2019).

Maximizing H(Ext∈Xt
[pe(y|xt)]) and minimizing the

entropy of the network output are equivalent to maximiz-
ing the mutual information between the input and output
(Asano, Rupprecht, and Vedaldi 2019; Cui et al. 2020; Yue
et al. 2021), as follows.

I(Y ;Xt) = H(Ext [pe(y|xt)])−Ext [H(pe(y|xt))]. (11)

The minimization of Ext [H(pe(y|xt))] can be achieved
easily by reducing the output entropy of each sample in the
mini-batch, as follows.

Le(Dt) = − 1

N

N∑
i=1

|Cs|+|C̃t|∑
k=1

pe(k|xi
t) log pe(k|xi

t). (12)

To maximize H(Ext [pe(y|xt)]), it is estimated based on
the following loss calculation:

Lp(Dt) = −
|Cs|+|C̃t|∑

k=1

p̄e(k|Dt) log p̂e(k|Dt), (13)
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where p̄e(y|Dt) represents the mean probability for each
mini-batch Dt, expressed as:

p̄e(y|Dt) =
1

N

N∑
i=1

pe(y|xi
t), (14)

and p̂e(y|Dt) denotes the moving average of p̄e(y|Dt),
which is calculated in each iteration.

Finally, the objective of maximizing the mutual informa-
tion is achieved by minimizing the following loss:

LMIM(Dt) = −Lp(Dt) + Le(Dt). (15)

Distribution Weighting
In the case of UniDA, because some classes in the source
domain do not appear in the target domain (Ccom ⊂ Cs),
if the mutual information is maximized over the extended
classifier (|Cs| + |C̃t| classes), some samples belonging to
the common or the novel classes will be misclassified into
the private source classes C̃s.

To solve this problem, we calculate the label distribution
of the seen classes by combining the proposed method with
the existing UniDA method, OVANet (Saito and Saenko
2021). We selected the target samples predicted to belong
to seen classes and calculated the distribution of the target
samples belonging to each seen class by averaging the label
predictions based on the following:

γ =
1

Nt

Nt∑
i=1

yi
ova, (16)

where Nt is the number of target samples selected, and yi
ova

denotes the predicted probabilities via OVANet for sample
i. Because

∑|Cs|
k=1 γk = 1, we consider the classes γk >

1
|Cs| as common classes, and other classes as private source
classes. The weight of each seen class is defined by:

ηk =

{
1 if γk >

1
|Cs|

δ otherwise
, (17)

where δ < 1, and Eq. (13) can be rewritten as follows.

L′
p(Dt) =−

|Cs|∑
k=1

ηkp̄e(k|Dt) log p̂e(k|Dt)

−
|Cs|+|C̃t|∑
k=|Cs|+1

p̄e(k|Dt) log p̂e(k|Dt).

(18)

Because of the weights assigned to the seen classes,
the classes with few samples will be considered as private
source classes and no further samples will be classified into
these classes via mutual information maximization. Conse-
quently, the objective can be rewritten as

L′
MIM(Dt) = −L′

p(Dt) + Le(Dt). (19)

Overall Objective Function
In summary, our self-labeling framework performs the con-
trastive learning of prototypes and the learning of an ex-
tended classifier. The overall learning objective is:

Ltotal = λCLULCLU(Ds, Dt) + λMIML′
MIM. (20)

Open-set DA
Method Office OfficeHome VisDA
UAN 60.29 32.01 42.23

DANCE 73.48 47.00 42.38
OVANet 90.10 69.04 60.05

Ours 91.84 78.02 72.35
Ours (OC) 91.70 77.93 73.53

UniDA
Method Office OfficeHome VisDA
UAN 64.69 56.24 36.82

DANCE 81.18 49.25 17.26
OVANet 84.78 70.65 50.10

Ours 89.85 78.25 64.45
Ours (OC) 88.99 78.50 65.86

Table 1: H-scores (%) for known classes and one unified un-
known class under different settings. The average scores of
all tasks for each dataset are reported. The bold values rep-
resent the highest scores for each row. (OC stands for over-
clustering.)

Experiment
Experimental Setup
Datasets. Based on existing studies (You et al. 2019), we
used three datasets to validate our approach. Office (Saenko
et al. 2010), which consisted of three domains (Amazon,
DSLR, Webcam), and 31 classes, was used as the first
dataset. The second dataset was OfficeHome (Venkateswara
et al. 2017), which contained four domains (art, clipart,
product, and real) and 65 classes. The final dataset was
VisDA (Peng et al. 2017), which contained two domains
(synthetic and real) and 12 classes. To create the open-set
DA conditions, we split the classes of each dataset accord-
ing to (Saito et al. 2020), as |Ccom|/|C̃s|/|C̃t| = 10/0/11
for Office, 15/0/50 for OfficeHome, and 6/0/6 for VisDA.
To construct the UniDA setting, we split the classes of each
dataset based on |Ccom|/|C̃s|/|C̃t| = 10/10/11 for Office,
10/5/50 for OfficeHome, and 6/3/3 for VisDA.

Comparison of Methods. We compared the proposed
method with three UniDA methods: (1) UAN (You et al.
2019), (2) DANCE (Saito et al. 2020), and (3) OVANet
(Saito and Saenko 2021), and two NCD methods: (1) deep
transfer clustering (DTC) (Han, Vedaldi, and Zisserman
2019), and (2) ranking statistics (RS) (Han et al. 2020). Be-
cause these methods achieved state-of-the-art performance
in their respective settings, it would be valuable to analyze
their performance in the NCD setting and compare the per-
formance of the proposed method against those of the other
methods.

Evaluation Protocols. To evaluate the performance of
UniDA, we used the H-score metric (Saito and Saenko 2021;
Bucci, Loghmani, and Tommasi 2020). When the unknown
target classes are regarded as a unified unknown class, the
H-score is the harmonic mean of the accuracy of common
classes (accc) and that of the unified unknown class (acct),
expressed as follows.
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Open-set DA

Method Office OfficeHome VisDA
Seen Novel H-score Seen Novel H-score Seen Novel H-score

UAN 95.24 30.21 45.85 81.98 11.21 19.63 78.81 26.84 40.06
DANCE 97.67 43.36 60.04 83.41 21.91 34.61 82.71 29.78 43.58
OVANet 89.12 54.82 67.98 66.67 38.24 48.69 56.02 38.10 45.30

DTC 83.11 53.81 64.70 47.85 20.58 27.83 23.91 20.37 22.00
RS 54.88 38.45 41.85 23.75 18.16 19.58 42.54 47.44 44.85

Ours 89.84 66.79 76.37 69.55 50.54 58.34 62.62 39.78 48.65
Ours (OC) 89.43 67.39 76.56 68.64 49.53 57.44 62.37 42.28 50.40

UniDA

Method Office OfficeHome VisDA
Seen Novel H-score Seen Novel H-score Seen Novel H-score

UAN 68.32 51.89 58.87 82.85 13.58 23.12 58.00 28.85 38.36
DANCE 95.23 55.62 69.72 86.26 25.61 39.26 83.79 9.79 17.44
OVANet 81.31 60.51 69.29 69.13 40.51 50.92 35.56 33.73 34.59

DTC 85.96 50.15 63.23 50.61 24.10 31.95 31.11 26.52 28.63
RS 56.19 40.69 44.31 52.79 37.62 43.69 35.89 0 0

Ours 89.51 69.59 77.75 73.80 51.77 60.72 63.06 40.87 49.60
Ours (OC) 89.85 66.62 76.24 71.47 51.55 59.84 59.74 49.97 54.42

Table 2: Clustering accuracy for seen and novel classes and H-scores of the two previous accuracies under different settings.

Method
Open-set DA UniDA

Office OfficeHome VisDA Office OfficeHome VisDA
UAN 62.81 38.54 48.64 58.60 42.13 49.44

DANCE 67.65 44.50 70.48 63.35 48.90 56.53
OVANet 63.81 38.02 50.50 58.50 42.11 47.81

DTC 51.55 17.32 26.22 51.51 20.80 32.53
RS 48.09 21.15 33.68 43.28 24.57 45.07

Ours 75.42 51.09 72.69 72.86 54.18 72.33
Ours (OC) 74.12 51.15 71.75 71.87 54.44 72.15

Table 3: Average accuracy (%) of linear classification given one labeled target sample per novel class.

Hscore =
2accc · acct
accc + acct

. (21)

A high H-score is obtained only when both, accc and acct
are high, indicating that this metric accurately measures both
accuracies.

To evaluate the performance of NCD, we calculated the
clustering accuracy between the labels obtained through
each method and the ground-truth labels for all target sam-
ples belonging to the seen and novel classes, respectively.
We also reported the H-scores of the common-class and
novel-class accuracies. The clustering accuracy of UniDA
methods are evaluated by further clustering the detected
novel samples into clusters by K-means.

Implementation Details. In this experiment, we used
the same network architecture and hyperparameters as in
Saito et al. (2020). We implemented our network based on
ResNet-50 (He et al. 2016) pre-trained on ImageNet (Deng
et al. 2009). We used the modules of ResNet until the global-
average-pooling layer as the feature extractor F , and one
fully connected layer as the extended classifier E. We set

the momentum m to 0.5, temperature τ to 0.1, class weight
δ to 0.5, and loss weights λCLU and λMIM to 1 and 0.5, re-
spectively, in all the experiments.

Note that the exact number of classes in the target domain
|Ct| is generally unknown. However, as in previous studies
(Xie, Girshick, and Farhadi 2016; Van Gansbeke et al. 2020;
Han et al. 2020), we used the cluster number K, equalling
the number of ground-truth clusters |Ct|, for evaluation. In
real-world applications, a rough estimation of the number of
clusters is generally obtainable (e.g., the number of animal
species observed in a national park). Based on the estima-
tions obtained via prior domain knowledge, we can train our
method with a larger number of clusters without compromis-
ing on performance. This is detailed in the following section.

Experimental Results
Table 1 compares the classification results of UniDA ob-
tained via the proposed method with existing state-of-the-art
UniDA methods. While OVANet outperformed other exist-
ing methods, the proposed method outperformed OVANet
for all datasets. Furthermore, the proposed approach outper-
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(a) DANCE. (b) DTC.

(c) RS. (d) Ours.

Figure 3: t-SNE plots of target samples (best viewed in
color). Each color indicates a different class. Black dots rep-
resent “known” target samples while those of other colors
represent “unknown” target samples.

formed existing methods by a considerable margin in the
case of the complex VisDA dataset, wherein synthetic data
comprises the source domain and real data comprises the tar-
get domain. However, the results in Table 1 do not capture
the NCD performance.

The target-sample classification performances inclusive
of novel categories, listed in Table 2, are of greater im-
portance than the previous results. The accuracies for novel
classes and corresponding H-scores demonstrate that NCD
via the proposed approach is better than that via other meth-
ods in most settings. The accuracy for the seen classes ob-
served via our method is also competitive with that of the
OVANet method. Note that existing NCD methods perform
poorly compared to the proposed method because they do
not consider that the seen classes are present in the unla-
beled data and cannot manage the domain shift problem.

Over-clustering. Thus far, our approach assumed that the
number of ground-truth classes in the target domain when
K-means is applied was known. To investigate the sensitiv-
ity to the number of clusters K, we overestimated the num-
ber of ground-truth classes used in the training process by a
factor of two (e.g., we clustered the Office into 42 rather than
21 classes). The results obtained for each dataset are listed
in Table 1 and Table 2 as “Ours (OC).” Although the accu-
racy was marginally lower than that of the non-OC method
in some settings, it outperformed the other methods in most
tasks.

Feature Visualization. The target features using t-SNE
(Van der Maaten and Hinton 2008) are visualized in Fig. 3
for A→W task in the open-set DA setting. The “known”
target-sample features are represented using black dots, and
are tightly clustered via our method. Additionally, most “un-
known” features, represented using dots of other colors, are
tightly clustered and adequately distanced from the “known”
features.

Method Seen Novel H-score
Ours 89.51 69.59 77.75

w/o LPCs 82.23 62.96 70.49
w/o LPCt 90.12 55.40 68.18

w/o L′
p 93.20 50.79 64.81

w/o Le 90.59 64.54 74.53
w/ LMIM 86.31 55.89 67.40
λMIM = 0.1 93.75 61.66 73.64
λMIM = 0.2 93.29 63.68 74.26
λMIM = 1 87.40 65.71 74.87

Table 4: Clustering accuracies and H-scores of ablation
study tasks on the Office dataset under the UniDA setting.

One-shot linear classification. We evaluate how well the
learned features can contribute to sample clustering by train-
ing a new linear classifier based on the previously learned
feature extractor using one labeled sample per novel cate-
gory. For example, for the OfficeHome task under the open-
set DA setting, we trained a classifier with 50 “unknown”
classes using one labeled sample per category as training
data and the remaining samples as test data. Table 3 sum-
marizes the average linear classification accuracies obtained
for each dataset. These results reveal that our method out-
performs other methods by a wide margin.

Ablation Study. The performances of variants of the pro-
posed method were evaluated using the Office dataset under
the UniDA setting, for further exploration of the efficacy of
the proposed method. The following variants were studied.
(1) “Ours w/o LPCs” is a variant that does not use PCL on
source samples in Eq. (7). (2) “Ours w/o LPCt

” is a vari-
ant that does not use PCL on target samples in Eq. (7). (3)
“Ours w/o L′

p” is a variant that does not maximize the en-
tropy of the expected network predicted using Eq. (19). (4)
“Ours w/o Le” is a variant that does not minimize the en-
tropy of the network output obtained via Eq. (19). (5) “Ours
w/ LMIM” is the variant that uses the original mutual in-
formation loss in Eq. (15) instead of the weighted loss in
Eq. (19). Table 4 reveals that the version of our approach that
utilizes all the losses, outperforms other variants in all set-
tings. Specifically, L′

p is the most important component for
our method, andLe andLPCt

are also necessary to achieve a
more complete and accurate clustering. The results of “Ours
w/ LMIM” also demonstrate the effectiveness of the distribu-
tion weighting. In Table 4, we also demonstrate the sensitiv-
ity of the loss in Eq. (20) to different weights.

Conclusion
In this paper, we proposed a self-labeling framework for
NCD in DA. Our framework uses clustering to learn the
semantic structure of target samples, including “unknown”
categories, and labels them into their original classes via
mutual information maximization. We evaluated the perfor-
mance of the proposed method in a diverse set of tasks across
various source- and target-domain pairs, and observed that it
outperformed existing state-of-the-art DA methods by a con-
siderable margin.
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