Image Difference Captioning with Pre-training and Contrastive Learning
DOI:
https://doi.org/10.1609/aaai.v36i3.20218Keywords:
Computer Vision (CV), Speech & Natural Language Processing (SNLP)Abstract
The Image Difference Captioning (IDC) task aims to describe the visual differences between two similar images with natural language. The major challenges of this task lie in two aspects: 1) fine-grained visual differences that require learning stronger vision and language association and 2) high-cost of manual annotations that leads to limited supervised data. To address these challenges, we propose a new modeling framework following the pre-training-finetuning paradigm. Specifically, we design three self-supervised tasks and contrastive learning strategies to align visual differences and text descriptions at a fine-grained level. Moreover, we propose a data expansion strategy to utilize extra cross-task supervision information, such as data for fine-grained image classification, to alleviate the limitation of available supervised IDC data. Extensive experiments on two IDC benchmark datasets, CLEVR-Change and Birds-to-Words, demonstrate the effectiveness of the proposed modeling framework. The codes and models will be released at https://github.com/yaolinli/IDC.Downloads
Published
2022-06-28
How to Cite
Yao, L., Wang, W., & Jin, Q. (2022). Image Difference Captioning with Pre-training and Contrastive Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 36(3), 3108-3116. https://doi.org/10.1609/aaai.v36i3.20218
Issue
Section
AAAI Technical Track on Computer Vision III