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Abstract

In this paper, we propose a new task of cross-modal feder-
ated human activity recognition (CMF-HAR), which is con-
ducive to promote the large-scale use of the HAR model on
more local devices. To address the new task, we propose a
feature-disentangled activity recognition network (FDARN),
which has five important modules of altruistic encoder, ego-
centric encoder, shared activity classifier, private activity clas-
sifier and modality discriminator. The altruistic encoder aims
to collaboratively embed local instances on different clients
into a modality-agnostic feature subspace. The egocentric en-
coder aims to produce modality-specific features that cannot
be shared across clients with different modalities. The modal-
ity discriminator is used to adversarially guide the parameter
learning of the altruistic and egocentric encoders. Through
decentralized optimization with a spherical modality discrim-
inative loss, our model can not only generalize well across
different clients by leveraging the modality-agnostic features
but also capture the modality-specific discriminative charac-
teristics of each client. Extensive experiment results on four
datasets demonstrate the effectiveness of our method.

Introduction
Human activity recognition (HAR) aims at identifying the
types of activities performed by humans based on infor-
mation received from different devices, e.g., cameras and
motion sensors. It has attracted increasing attention due to
its promising application in many fields, such as security
monitoring, health management and smart home. Nowa-
days, the popular use of mobile phones and smart bracelets
makes it much easier to collect video and sensor data,
which has significantly inspired the research on vision-
based (Simonyan and Zisserman 2014; Song et al. 2016a),
sensor-based (Bulling, Blanke, and Schiele 2014) and mul-
timodal (Nakamura et al. 2017; Possas, Pinto-Caceres, and
Ramos 2018) activity recognition approaches.

Most existing HAR methods assume that all data sam-
ples collected from local devices should be uniformly stored
and processed on a central server, which may lead to the
leakage of private user information. To avoid uploading lo-
cal data to central servers, McMahan et al. (2017) propose
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Figure 1: Illustration of the proposed CMF-HAR task.

the first federated learning (FL) algorithm, FedAvg, which
can aggregate the gradients of models independently learned
from different local clients to establish a global model. Af-
terwards, the FedAvg has also been successfully applied to
HAR (Sozinov, Vlassov, and Girdzijauskas 2018). As an im-
provement, Li et al. (2021a) propose to leverage meta learn-
ing to learn an embedding network for addressing the het-
erogeneity in both label and sample distributions.

Although existing FL-based HAR methods (Sozinov,
Vlassov, and Girdzijauskas 2018; Ek et al. 2020; Jain et al.
2021; Li et al. 2021a) have achieved important progress,
they only consider the case where the local data of differ-
ent clients are from the same modality. e.g., sensor signals.
It is still questionable whether existing FL methods can be
directly used in a more common scenario where local data
are from different modalities, e.g., some local clients may
provide sensor signals while others can only provide visual
data. We believe that this scenario deserves more attention
because it is conducive to distributively learn or apply the
HAR model on more local devices. Therefore, in this paper,
we propose a new task of cross-modal federated human
activity recognition (CMF-HAR), which focuses on dis-
tributively aggregating local models learned on clients with
different modalities as shown in Figure 1.

Compared with conventional FL, the CMF-HAR task
has at least two more challenges. (1) How to collabora-
tively build a common feature subspace for different clients
that have cross-modal heterogeneity. In conventional FL-
based HAR (Sozinov, Vlassov, and Girdzijauskas 2018; Li
et al. 2021a), local data are collected from the same type
of sensor and the heterogeneity in sample distributions is
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mainly resulted from the various motion patterns of different
users. Whereas, in the CMF-HAR task, the data of different
local clients always have extraordinary different structure
and content, e.g., the sensor signal is recorded with the se-
quence of three-axis values while the video has much more
complex spatial and temporal information, which results in
much larger distribution heterogeneity. Moreover, the re-
striction of data privacy brings extra difficulties because we
cannot simply organize the distributed local data together to
learn a shared feature space as in conventional cross-modal
tasks (Wang et al. 2017). (2) Not all knowledge learned from
one client is useful for HAR on other clients with different
modalities. Conventional FL-based HAR methods only con-
sider instances from the same type of modality, where the
discriminative patterns learned on one local client can al-
ways be shared by other local clients. Whereas, in the CMF-
HAR task, different clients probably have different discrim-
inative patterns due to the large heterogeneity. For exam-
ple, for the local models learned on clients with video data,
it is useful to identify the visual patterns of tennis racket
to correctly recognize an activity play tennis. However, this
kind of discriminative ability on visual data is superfluous
on clients with only accelerometer or gyroscope signals.

To address above challenges of the CMF-HAR task, we
propose a feature-disentangled activity recognition net-
work (FDARN), which has five important modules of altru-
istic encoder, egocentric encoder, shared activity classifier,
private activity classifier and modality discriminator. The
altruistic encoder aims to embed the instances on different
clients into a modality-agnostic feature subspace where the
shared activity classifier can be effectively learned across
different clients. The egocentric encoder aims to produce
the modality-specific feature that is only important for one
modality and can be used to learn the private activity classi-
fier. To encourage the altruistic and egocentric encoders pro-
duce different representations, a separation loss is adopted
to ensure the orthogonality of their output features. In addi-
tion, the modality discriminator is adopted to recognize the
modality label and jointly guide the parameter learning of
the altruistic and egocentric encoders in an adversarial man-
ner. To avoid learning a trivial modality discriminator from
distributed local data where each client has only one type
of modality, we leverage a spherical modality discriminative
loss to enhance the intra-class compactness and inter-class
discrepancy for the hidden representations and parameters
of the modality discriminator in a hyper-sphere. Through
decentralized optimization with alternative local update and
global aggregation steps, the proposed FDARN can not only
generalize well across different clients by leveraging the
modality-agnostic features but also capture the modality-
specific discriminative characteristics of each client.

The main contributions of this paper are three-fold. (1) We
propose a new task of cross-modal federated human activity
recognition, which is important for the large-scale use of the
HAR model on more local devices that have different modal-
ities of data. (2) To solve the new task, we propose a feature-
disentangled activity recognition network. Through decen-
tralized optimization with a spherical modality discrimina-
tive loss, our model can comprehensively build a modality-

agnostic feature subspace for collaboratively learning activ-
ity classifiers on different clients and capture the modality-
specific discriminative characteristics of each client. (3) We
evaluate the proposed method on four datasets and demon-
strate its effectiveness with extensive experimental results.

Related Work
Federated Learning
The first FL algorithm FedAvg was proposed by McMahan
et al. (2017), which has promising performance in decen-
tralized model learning and privacy protection. However, the
FedAvg suffers from an inevitable performance reduction on
non-iid data. To deal with this problem, Zhao et al. (2018)
improve the FedAvg by sharing a small set of data between
different local clients. FedMA (Wang et al. 2020) constructs
a layer-wise federated learning algorithm for deep learning
models by matching and averaging hidden elements of the
neural layers with similar feature extraction signatures. Fe-
dRobust (Reisizadeh et al. 2020) attempts to address the
device-dependent data heterogeneity, which assumes that lo-
cal instances are shifted from a ground distribution by an
affine transformation. Li, He, and Song (2021) propose to
conduct contrastive learning in model-level to constrain the
local model and the global model to produce consistent rep-
resentations. FedBN (Li et al. 2021b) uses local batch nor-
malization to alleviate the feature shift between different
clients. FedDis (Bercea et al. 2021) is a FL method for un-
supervised brain pathology segmentation, which can disen-
tangle the parameter space into shape and appearance. Fed-
CMR (Zong et al. 2021) focuses on a federated cross modal
retrieval task where each client has both text and image data.
In contrast, samples from different modalities in CMF-HAR
are stored on different clients. More related work to ours is
LG-FedAvg (Liang et al. 2020) and FedRep (Collins et al.
2021). The former learns the representation of local data
with a client-specific local model while the latter learns a
globally consistent function to compute the shared repre-
sentations for different clients. Unfortunately, these methods
only consider the heterogeneity across clients that have the
same modality of data.

FL-based Activity Recognition

Sozinov, Vlassov, and Girdzijauskas (2018) are the first to
address the privacy issue of HAR using FL. Ek et al. (2020)
show that, when directly applying existing FL methods to
HAR, the FedAvg (McMahan et al. 2017) performs even bet-
ter than more sophisticated FL algorithms, e.g., FedPer (Ari-
vazhagan et al. 2019) and FedMA (Wang et al. 2020), which
calls for more dedicated research on FL-based HAR. More
recently, Li et al. (2021a) propose a meta learning-based
HAR algorithm that can reduce the heterogeneity of differ-
ent clients by a deep embedding network. Jain et al. (2021)
propose a knowledge distillation based asynchronous fed-
erated optimization method to handle the heterogeneity in
the computing resources of different clients. The above FL-
based HAR methods do not consider the case that local
clients have different modalities of data, and thus cannot be
directly applied to solve the proposed CMF-HAR task.
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Disentangled Representation Learning
Early work on disentangled representation learning is mostly
based on auto-encoders (Kingma and Welling 2014; Bous-
malis et al. 2016; Higgins et al. 2017) and generative ad-
versarial networks (Odena, Olah, and Shlens 2017). Kim
and Mnih (2018) propose to constrain the representation to
be factorial and independent across the dimensions. More
recently, the disentangled representation learning has been
successfully applied to cross-modal tasks. For example, Wu
et al. (2019) propose a disentangled variational represen-
tation method for heterogeneous face recognition based on
Wasserstein CNN by aligning the correlation between differ-
ent modality variations. Guo et al. (2019) propose to disen-
tangle the modality exclusive information from the learned
common representations for cross-modal retrieval with deep
mutual information estimation. Xu, Zhang, and Duan (2020)
propose a feature aggregation network, which can learn
domain-private features and domain-agnostic features for
modality adaptive face recognition. The above cross-modal
disentangled learning methods assume that the data of differ-
ent modalities are simultaneously accessible in model learn-
ing, and thus cannot be directly used in the CMF-HAR task,
where each client has only one type of modality and the data
are not allowed to be shared across different clients.

Methodology
Problem Definition
We assume that there is a set of data D = {(Dk, zk)}Kk=1

from K clients, where Dk = {xk
i ,y

k
i }

nk
i=1 is the set of nk

instances on the k-th client. The total number of instances is
n =

∑K
k=1 nk. xk

i ∈ X is the i-th instance of the k-th client.
The yk

i ∈ RN denotes the one-hot encoding of the activity
class. N denotes the total number of activity classes. zk ∈
{1, ...,M} denotes the modality label of the k-th client. M
is the total number of modalities and M ⩽ K.

The CMF-HAR task aims to distributively learn a HAR
model that can work well on each local client by leveraging
the cross-modal discriminative knowledge learned on other
clients without centrally collecting the data. The objective of
the CMF-HAR task is formulated as:∑K

k=1

nk

n

∑nk

i=1

1

nk
ℓ
(
fk(xk

i ),y
k
i

)
, (1)

where fk: X→RN is a classification function learned on
the local data of the k-th client. ℓ is a loss function (e.g.,
cross-entropy loss). To achieve the above objective, conven-
tional FL methods (McMahan et al. 2017) focus on learning
a single shared model f that performs averagely well on dif-
ferent clients. Whereas, in the CMF-HAR task, due to the
large heterogeneity of different clients, it is difficult to learn
a single classification function. Therefore, we redefine fk in
a disentangled form:

fk(x) = ψsc(ϕa(x;Θ
zk
a );Θsc) + ψpc(ϕe(x;Θ

zk
e );Θzk

pc ), (2)

where ϕa: X→Rd is an altruistic encoder that explic-
itly maps an input instance x to a modality-agnostic fea-
ture subspace. ϕe: X→Rd is an egocentric encoder that
computes the modality-specific feature. ψsc: Rd→RN and
ψpc: Rd→RN are shared activity classifier and private ac-
tivity classifier learned on the modality-agnostic feature and

Figure 2: Overview of the FDARN on a local client.

the modality-specific feature, respectively. Here, we assume
that all clients share a single activity classifier ψsc while ϕa,
ϕe and ψpc are shared across clients with the same modality.

In this work, the classification function fk defined in
Eq. (2) is instantiated as a feature disentanglement activity
recognition network.

Feature-Disentangled Activity Recognition
Network
As shown in Figure 2, the proposed FDARN has five impor-
tant modules, i.e., altruistic encoder ϕa, egocentric encoder
ϕe, shared classifier ψsc, private classifier ψpc and modal-
ity discriminator ψmd. For the altruistic and egocentric en-
coders, we can use different backbones for different modal-
ities and we leave the details in the experiment section. For
the shared activity classifier and the private classifier, we
define them as two-layer perceptrons with ReLU activation
functions and Softmax outputs. The modality discriminator
ψmd: Rd→RM is adopted to identify whether the altruistic
encoder and the egocentric encoder can produce modality-
agnostic and modality-specific features, respectively. Next,
we will illustrate more details of the modality discriminator
and the loss functions used to constrain the FDARN.

Separation Loss. The separation loss aims to encourage
the altruistic and egocentric encoders to produce different
features that represent different aspects of the input instance.
Inspired by domain separation networks (Bousmalis et al.
2016), we adopt soft subspace orthogonality constraint:

Lsep(Dk) = ∥Ĥ⊤
k Ȟk∥2F , (3)

where Ĥk ∈ Rd×nk is a matrix whose columns are the
output features {ĥk

i }
nk
i=1 of the altruistic encoder, ĥk

i =

ϕa(x
k
i ;Θ

zk
a ). Similarly, Ȟk ∈ Rd×nk consists of out-

put features {ȟk
i }

nk
i=1 of the egocentric encoder, ȟk

i =
ϕe(x

k
i ;Θ

zk
e ). ∥ · ∥F is Frobenius norm.

Modality Discriminator. The separation loss can encour-
age the altruistic and egocentric encoders to produce differ-
ent representations. However, the separation loss still cannot
guarantee that the output feature of the altruistic encoder ϕa
belongs to a latent space shared across different modalities
and the output feature of the egocentric encoder ϕe exactly
reflects the modality-specific characteristics of the client. To
deal with this problem, we use the modality discriminator
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ψmd to identify the modality label and guide the parameter
learning of the altruistic and egocentric encoders.

To make it easier to explain, we formally de-
fine the modality discriminator as ψmd(g;Θmd) =
Softmax

(
W⊤φ(g)

)
, where g ∈ Rd is the input feature of

the modality discriminator, which can be either the output
ĥk
i of the altruistic encoder or the output ȟk

i of the egocen-
tric encoder. φ: Rd→Rd̃ is a single-layer perception with
the nonlinear activation function of ReLU. Here, follow-
ing (Deng et al. 2019), we assume that the last linear trans-
formation layer of the modality discriminator does not have
bias term and its weight matrix is denoted as W ∈ Rd̃×M .

As a multi-class classifier, it is straightforward to learn
the modality discriminator with cross-entropy loss. How-
ever, directly using the cross-entropy will lead to a trivial
solution. Because each client has only one type of modality
and the requirement of data privacy impedes the direct ac-
cessing of instances from other clients. To address this issue,
we firstly normalize the hidden representation g̃ = φ(g)
and each column of W with L2-norm. Then, we use addi-
tive angular margin loss (Deng et al. 2019) to enhance the
intra-class compactness and inter-class discrepancy for the
modality discriminator in a hyper-sphere:

Lam(g, z) = − log
eα cos(θz+τ)

eα cos(θz+τ) +
M∑

m=1,m ̸=z

eα cos(θm)

, (4)

where θz = arccos(W⊤
z g̃), θm = arccos(W⊤

mg̃). z de-
notes the ground-truth modality label. Wz ∈ Rd̃ denotes the
z-th column of the weight matrix W. Similarly, Wm ∈ Rd̃

denotes the m-th column of the weight matrix W. τ is a
margin factor and α is a scale factor.

Since we need to use the modality discriminator to mea-
sure the output features of both the altruistic encoder and the
egocentric encoder, we compute the additive angular margin
loss for all instances on the local client as follows:

Lama(Dk, zk) =
1

nk

∑nk

i=1
Lam(ĥk

i , z
k), (5)

Lams(Dk, zk) =
1

nk

∑nk

i=1
Lam(ȟk

i , z
k), (6)

where ĥk
i = ϕa(x

k
i ;Θ

zk
a ), and ȟk

i = ϕe(x
k
i ;Θ

zk
e ).

In addition, to avoid learning identical weight parameters
for negative modalities, we adopt a spreadout regularizer (Yu
et al. 2020) to ensure that parameters of different modalities
are separated from each other:

Lsp =

M∑
m=1

M∑
m′=1
m′ ̸=m

max
{
0, ν −

(
1−W⊤

mWm′
)}
, (7)

where ν is a margin factor.
Finally, the spherical modality discriminative loss for

learning the modality discriminator is defined as Lmd =
Lsp−Lama+Lams, where the minus beforeLama is used to
adversarially learn the altruistic encoder. As shown in Fig-
ure 2, with the spherical modality discriminative loss, we
can constrain the hidden representation g̃k

i of the input xk
i

to be close to the parameter Wzk of its ground-truth modal-
ity label zk in a hyper-sphere while the parameters of the

negative modalities (e.g., m1 and m2) are constrained to be
scattered and far away from Wzk .

Activity Classification Loss. We use cross-entropy loss
to learn the shared activity classifier and private classifier:

Lsc(Dk) = −
nk∑
i=1

yk
i log ŷ

k
i ,Lpc(Dk) = −

nk∑
i=1

yk
i log y̌

k
i , (8)

where ŷk
i and y̌k

i are predictions: ŷk
i = ψsc(ĥ

k
i ;Θsc), y̌i =

ψpc(ȟ
k
i ;Θ

zk
pc). y

k
i is the ground-truth activity label. Finally,

the activity classification loss is defined as Lc = Lsc +Lpc.
Federated Optimization
We train the FDARN with two alternate steps of local up-
date and global aggregation for T rounds. In each round, the
client receives a global model and updates it for ε epochs
on local data while the server receives the updated local
models from different clients and updates the global model
with weighted averaging. Before introducing the optimiza-
tion details, we define Θm

∗ = {Θm
a ,Θ

m
e ,Θ

m
pc} for simplic-

ity, where m ∈ {1, ...,M} is the modality label.
Adversarial Local Update. For the k-th client, the server

firstly sends the initial modal parameters {Θ̄sc, Θ̄md, Θ̄
zk

∗ }
before local updating. Then, we will update these param-
eters based on the local data. It is worth noting that the
modality discriminator plays two contrary roles in learning
the FDARN. On the one hand, it is used to learn an altru-
istic encoder that can map instances from different modal-
ities into a common feature space. On the other hand, it is
also used to encourage an egocentric encoder to produce
modality-specific features. To achieve the adversarial goal,
we update the FDARN on the local data as follows:

(Θk
sc,Θ

zk,k
∗ ) = (Θ̄sc, Θ̄

zk

∗ )− η▽
(Θ̄sc,Θ̄zk

∗ )
L(Dk, zk), (9)

Θk
md = Θ̄md − η▽Θ̄md

L′
md(Dk, zk), (10)

where L = Lc+γ1Lsep+γ2Lmd and L′
md = Lsp+Lama+

Lams. η is learning rate. This adversarial local updating can
be simply implemented by adding a gradient reversal layer
(GRL) (Ganin and Lempitsky 2015) between the altruistic
encoder and the modality discriminator.

Modality-aware Global Aggregation. Now, we intro-
duce how to collect the local modals learned on different
clients to build a global model.

The shared activity classifier ψsc is learned on features
that are invariant across different modalities. Therefore, its
parameters learned on one client can also be shared by other
clients. We aggregate the local parameters of the shared
classifier from all clients with weighted average as in Fe-
dAvg (McMahan et al. 2017). For the modality discrimina-
tor, to ensure that it can consistently identify the modality
labels of all instances from different clients, we also take the
same parameter aggregation scheme:

Θ̄sc =
∑K

k=1

nk

n
Θk

sc, Θ̄md =
∑K

k=1

nk

n
Θk

md. (11)

For the altruistic encoder ϕa, the egocentric encoder ϕe
and the private activity classifier ϕpc, we only make the
clients with the same modality share common parameters:

Θ̄m
∗ =

∑
k∈Km

nk∑
k′∈Km

nk′
Θm,k

∗ ,m = 1, ...,M, (12)

where Km is a set of clients that have the modality label m.
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Inference
In the test time, each x on the k-th client is classified by:
f̄k(x) = ψsc(ϕa(x; Θ̄

zk
a ); Θ̄sc) + ψpc(ϕe(x; Θ̄

zk
e ); Θ̄zk

pc).

Experiment
Datasets and Evaluation Metrics
Epic-Kitchens. This is the largest public multimodal dataset
in egocentric HAR (Damen et al. 2020). The Epic-Kitchens-
100 has 89977 video segments of human-object interaction
captured by 37 participants. 16 participants also provide au-
dio and sensor data. For the CMF-HAR task, we use the
unique 97 verb labels as activity classes and consider four
modalities (i.e., video, optical flow, audio and sensor), where
the optical flow is extracted from the video. We randomly
select 4 participants for each modality and treat each partici-
pant as a local client, where each client only retains the data
of its corresponding modality. Finally, we obtain a 16-client
97-class 4-modality CMF-HAR task with 34018 instances.

Multimodal-EA. This is an earlier multimodal dataset
for egocentric HAR (Song et al. 2016b), which contains 50
minutes of videos with sensor signals of 20 activities. Since
the user information is not recorded, we randomly split this
dataset into 4 clients, where two clients have 100 instances
of the video modality and the other two have 100 instances
of the sensor modality. Then, we obtain a 4-client 20-class
2-modality CMF-HAR task with 400 instances.

Stanford-ECM. This dataset contains 31 hours of ego-
centric videos with sensor signals of 23 activities (Nakamura
et al. 2017). The video duration ranges from 2 minutes to 51
minutes, and each video may contain multiple activities. We
divide each video into multiple instances as in (Huang et al.
2021) so that each instance has a unique activity label. Since
the user information is not recorded, we randomly split this
dataset into 10 clients, where 5 clients have 112 instances of
the video modality and the other 5 clients have 112 instances
of the sensor modality. Then, we obtain a 10-client 23-class
2-modality CMF-HAR task with 1120 instances.

Ego-Exo-AR. This is a new multimodal HAR dataset col-
lected by ourselves. It contains sensor signals captured by
smart bracelets and images captured by third perspective
phone cameras. It is collected by 14 participants for one
month and each participant has 465 instances of 15 daily
activities. Similar to the Epic-Kitchens, we treat each par-
ticipant as a client and randomly select 7 clients for each
modality. Finally, we obtain a 14-client 15-class 2-modality
CMF-HAR task with 6510 instances, where each client only
retains the data of its corresponding modality. It is worth
noting that the image data and the sensor data of the Ego-
Exo-AR are captured in different perspectives while the vi-
sion and sensor data of the above three public datasets are
all from the egocentric perspective. Therefore, our Ego-
Exo-AR dataset has larger heterogeneity between different
modalities and brings more challenges to the CMF-HAR.

Training/Test Splitting. For all the above four datasets,
we randomly split local instances on each client into the
training and test sets with a ratio of 0.75 : 0.25.

Evaluation Metrics. Following the existing FL-based
HAR methods (Li et al. 2021a), we adopt accuracy as the

evaluation metric. More specifically, we firstly compute the
accuracy for each client, and then average the results of dif-
ferent clients. We repeat the training and testing process 5
times and report mean accuracy and standard deviation.
Baselines
We compare our model with seven state-of-the-art FL al-
gorithms: FedAvg (McMahan et al. 2017), pFedMe (Dinh,
Tran, and Nguyen 2020), FedProx (Li et al. 2020),
PerAvg (Fallah, Mokhtari, and Ozdaglar 2020), LG-
FedAvg (Liang et al. 2020), FedRep (Collins et al. 2021),
FedBN (Li et al. 2021b), and one closely related FL-based
HAR method: Meta-HAR (Li et al. 2021a). We also com-
pare with a baseline SingleSet, which trains a local model
(i.e., only the egocentric encoder and the private classifier of
our method are used) for each client without using FL.
Implementation Details
For the four datasets in our experiment, there are 5 unique
modalities (i.e., video, optical flow, audio, sensor, image).
To facilitate the fair comparison with existing methods, we
firstly extract the raw features with the same dimension (i.e.,
1024) for different modalities. Then, the raw features will be
input to our model or baselines to conduct the CMF-HAR
task. It is worth noting that using the same dimension fea-
tures of different modalities is not a mandatory requirement
of our method in practice.

The overall framework of our method is implemented
with Pytorch (Paszke et al. 2019). For all baselines, we use
the publicly released code. Our model and baselines are all
trained with SGD optimizer, where the weight decay is set to
1e-5 and the momentum is set to 0.9. On the Epic-Kitchens,
the learning rate η of the local client is set to 0.001 and the
batch size is set to 64. On the other three datasets, the learn-
ing rate and the batch size are set to 0.01 and 32, respec-
tively. On all four datasets, the number of local epochs ε is
set to 2, and the number of communication rounds T is 300.
For the SingleSet baseline, the number of local epochs is set
to 300. Unless explicitly specified, other hyper-parameters
of each baseline are tuned within the range provided by the
authors and the best results are reported.

In our method, both the altruistic encoder and the egocen-
tric encoder are implemented as two-layer perceptrons with
the activation function of ReLU, where the dimension of the
hidden layer and the output dimension d are all set to 1024.
For the shared activity classifier and the private classifier, the
dimension of the hidden layer is set to 1024. For the modal-
ity discriminator, the output dimension d̃ of the single-layer
perceptron φ is set to 128. The margin factor τ and scale fac-
tor α of the additive angular margin loss in Eq. (4) are set to
0.5 and 72. The margin factor ν of the spreadout regularizer
in Eq. (7) is set to 1.5. The balance weights γ1 and γ2 of the
loss function are set to 0.6 and 0.4.

Comparison with State-of-the-art Methods
Table 1 shows the average accuracy of the clients with the
same modality. Overall, the proposed FDARN performs bet-
ter than all baselines, which demonstrates that our model
can effectively mitigate the cross-modal heterogeneity. On
the Epic-Kitchens, our model has improvements of 2.00%,
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Methods Epic-Kitchens Multimodal-EA Stanford-ECM Ego-Exo-AR
Video Flow Audio Sensor Video Sensor Video Sensor Image Sensor

SingleSet 29.91(0.3) 40.07(0.6) 44.80(0.3) 30.12(0.4) 53.60(2.0) 32.80(1.6) 49.24(1.8) 27.79(0.9) 34.69(0.9) 31.34(0.8)
FedAvg 30.57(0.2) 36.76(0.5) 42.73(0.4) 28.90(0.5) 57.60(0.8) 31.20(0.9) 57.14(1.1) 29.74(1.2) 33.93(0.7) 32.96(0.9)
pFedMe 26.47(0.5) 31.73(0.9) 36.03(0.6) 26.97(0.4) 48.80(2.4) 28.40(2.0) 53.61(1.8) 25.49(1.4) 30.90(1.1) 28.71(1.2)
FedProx 32.16(0.5) 34.64(0.7) 41.37(0.5) 27.46(0.5) 57.60(0.8) 26.80(1.7) 54.37(1.3) 31.74(1.1) 34.24(1.0) 31.76(0.8)
PerAvg 30.95(0.4) 40.59(0.4) 42.67(0.3) 29.61(0.3) 62.40(0.8) 36.40(0.8) 60.86(1.0) 30.18(1.6) 37.53(0.8) 34.10(0.8)

LG-FedAvg 30.68(0.5) 41.25(0.5) 40.25(0.5) 30.51(0.6) 56.40(1.0) 31.60(1.7) 55.12(1.4) 29.87(1.4) 35.09(0.9) 32.23(0.8)
FedRep 31.93(0.4) 40.89(0.5) 43.12(0.5) 33.01(0.6) 64.80(1.7) 40.00(1.3) 61.09(1.7) 36.27(1.0) 40.02(0.6) 36.15(0.7)
FedBN 32.18(0.4) 38.98(0.4) 44.95(0.2) 32.87(0.4) 64.00(0.0) 42.00(1.9) 59.24(1.3) 33.37(0.8) 40.34(0.5) 35.37(0.7)

Meta-HAR 31.27(0.3) 39.90(0.6) 45.26(0.4) 34.62(0.5) 57.60(1.7) 42.00(1.3) 56.61(1.3) 33.49(1.6) 36.64(0.8) 37.23(0.8)
FDARN 34.18(0.5) 43.57(0.4) 47.52(0.4) 33.90(0.5) 68.40(0.8) 42.80(1.7) 65.62(1.8) 38.49(1.0) 42.38(0.6) 38.31(0.7)

Table 1: Comparison with state-of-the-art methods on four datasets.

Methods Epic-Kitchens
Video Flow Audio Sensor

SingleSet 22.35(0.9) 37.04(1.7) 39.91(0.4) 25.14(0.3)
FedAvg 23.37(0.4) 41.50(1.3) 39.26(0.4) 25.93(0.2)
pFedMe 22.53(0.8) 36.20(1.1) 37.05(0.5) 24.92(0.6)
FedProx 23.73(0.3) 39.27(0.6) 39.86(0.1) 26.18(0.4)
PerAvg 24.39(0.3) 42.88(1.2) 40.03(0.2) 27.26(0.4)

LG-FedAvg 21.76(0.4) 40.12(0.7) 36.54(0.3) 25.91(0.5)
FedRep 24.56(0.2) 42.09(0.6) 37.63(0.3) 29.22(0.3)
FedBN 21.55(0.5) 41.16(0.6) 38.71(0.4) 28.71(0.3)

Meta-HAR 22.47(0.4) 41.96(0.8) 38.27(0.6) 27.74(0.3)
FDARN 26.86(0.2) 43.23(0.8) 40.60(0.4) 31.01(0.3)

Table 2: Comparison with state-of-the-art methods under the
4-client 97-class 4-modality CMF-HAR task.

Methods Epic-
Kitchens

Multimodal-
EA

Stanford-
ECM

Ego-Exo-
AR

w/o ψsc 33.76(0.7) 44.60(2.0) 42.86(1.4) 35.43(1.2)
w/o ψpc 39.12(0.4) 54.00(0.6) 50.47(0.4) 39.17(0.4)

w/o (ϕa, ψsc) 35.96(0.6) 49.00(0.6) 48.13(0.3) 37.27(0.5)
w/o (ϕe, ψpc) 37.77(0.5) 53.20(0.4) 49.24(0.5) 37.86(0.7)
w/o ψmd 36.10(0.2) 51.20(0.4) 47.51(0.3) 36.12(0.3)
w/o Lsep 37.24(0.2) 50.80(1.1) 50.21(0.3) 38.38(0.6)
w/o Lsp 38.57(0.3) 54.80(0.4) 51.05(0.5) 39.47(0.4)
FDARN 39.80(0.5) 55.60(1.2) 52.05(1.4) 40.35(0.7)

Table 3: Ablation studies on four datasets.

2.32% and 2.26% over the second best method on the video,
optical flow and audio modality, respectively. For the sen-
sor modality, although our method cannot outperform the
Meta-HAR, we still achieve competitive results. On the
Multimodal-EA, Stanford-ECM and Ego-Exo-AR datasets,
our method performs consistently better than all baselines on
different modalities. It is worth noting that the Meta-HAR
has better performances than all other baselines for the sen-
sor data on the Epic-Kitchens and Ego-Exo-AR. This is due
to that each user has different distribution of the sensor sig-
nal for the same activity class (Li et al. 2021a) on these two
datasets while the Meta-HAR can effectively reduce the dis-
tribution gap by a meta-learned embedding network. How-
ever, the inferior performances of the Meta-HAR on other
modalities demonstrate that it cannot be directly applied to
diminish the cross-modal heterogeneity.

To further evaluate the effectiveness of our model in mit-
igating the cross-modal heterogeneity, we conduct an extra
experiment on the Epic-Kitchens under a more challenging
4-client 97-class 4-modality CMF-HAR task, where we ran-
domly select one client for each modality and ensure that no
two clients have the same modality. The results in Table 2
show that our model consistently outperforms all the base-
lines on different modalities.

Ablation Studies
Here, we present the results for several variants of our model
to demonstrate the effectiveness of the primary modules in
our method. We use w/o ψsc to denote the variant that does
not use the shared classifier, i.e., we learn disentangled fea-
tures, but only the private activity classifier is adopted for
classification. w/o ψpc denotes the variant that does not use
the private classifier, i.e., we learn disentangled features,
but only the shared activity classifier is adopted for clas-
sification. w/o (ϕa, ψsc) denotes the variant that does not
use the altruistic encoder and shared classifier, i.e., we dis-
tributively learn the egocentric encoder and private classi-
fier across clients with the same modality without consider-
ing the knowledge sharing across different modalities. w/o
(ϕe, ψpc) denotes the variant that does not use the egocen-
tric encoder and private classifier, i.e., we only use the altru-
istic encoder and modality discriminator to learn modality-
agnostic features that are further used to train the shared
activity classifier. w/o ψmd denotes the variant that does
not use the modality discriminator. w/o Lsep, w/o Lsp de-
notes the variants that do not use the separation loss and the
spreadout regularizer, respectively.

Table 3 shows the average accuracy of all clients on each
dataset. As shown, the w/o ψsc has the worst performance,
which demonstrates that the shared classifier has better dis-
criminative ability than the private classifier. The w/o ψpc

performs slightly worse than the FDARN, which demon-
strates that the modality-specific information is still com-
plementary to the shared classifier. The w/o (ϕe, ψpc) per-
forms much worse than the w/o ψpc, which demonstrates
that the proposed feature disentanglement is more effective
in learning client-shared features across different modalities
than directly embedding all instances from different clients
into a common space. The w/o ψsc performs even worse
than the w/o (ϕa, ψsc), which demonstrates that the feature
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(a) Epic-Kitchens (b) Multimodal-EA (c) Stanford-ECM (d) Ego-Exo-AR

Figure 3: Effect of the number of global rounds.

(a) Epic-Kitchens (b) Multimodal-EA (c) Stanford-ECM (d) Ego-Exo-AR

Figure 4: Effect of the number of local epochs.

disentanglement may tend to allocate more discriminative
information into the modality-agnostic features than into the
modality-specific features. The w/o ψmd decreases the per-
formance by about 4.00% on each dataset, which demon-
strates the effectiveness of the proposed modality discrimi-
nator. The decreased performances of the w/oLsep and w/o
Lsp show the necessity of the separation loss and the spread-
out regularizer, respectively.

Further Remarks
Number of Communication Rounds. Figure 3 shows the
average test accuracy of all clients with different number
of communication rounds. With a small number of rounds
(e.g., less than 20 on the Epic-Kitchens), our model has
similar performance as the baselines, e.g., PerAvg, FedBN,
and Meta-HAR. Thanks to the proposed feature disentangle-
ment scheme, our model achieves consistently better accu-
racy than all baselines after more rounds of training (e.g.,
about 40 rounds on the Epic-Kitchens).

Number of Local Epochs. Figure 4 shows the effect of
the number of local update epochs. Our model has the best
results when the number of local epochs is 2, which is con-
sistent with most of the baselines. With a smaller number of
local updates, the training speed will slow down and will im-
pact the final accuracy in a fixed number of communication
rounds. In contrast, with a larger number of local updates, it
is difficult to find a globally consistent HAR model.

Spherical Modality Discriminative Loss. In the pro-
posed FDARN, we adopt the spherical modality discrimina-
tive loss Lmd to learn the modality discriminator for disen-
tangling modality-agnostic and modality-specific features.
To show its effectiveness, we evaluate the performance of
our model when replacing Lmd with cross-entropy loss (CE-

Methods Epic-
Kitchens

Multimodal-
EA

Stanford-
ECM

Ego-Exo-
AR

CE-Loss 37.75(0.3) 53.60(0.5) 49.24(0.3) 37.26(0.5)
FDARN 39.80(0.5) 55.60(1.2) 52.05(1.4) 40.35(0.7)

CE-Loss* 34.55(0.3) 47.60(0.4) 45.56(0.2) 34.56(0.3)
FDARN* 37.24(0.2) 50.80(1.1) 50.21(0.3) 38.38(0.6)

Table 4: Results with different kinds of loss for learning the
modality discriminator.

Loss). As shown in Table 4, the CE-Loss decreases the per-
formance by at least 2.00% on each dataset. If we further
remove the separation loss Lsep and simply use the modal-
ity discriminator learned with cross-entropy loss (CE-Loss*)
to constrain the feature disentanglement, the performances
are much worse than FDARN* that simply uses the modal-
ity discriminator learned with Lmd. Because the local client
only has instances of one modality and the conventional
cross-entropy loss cannot effectively capture the inter-class
discrepancy in this case.

Conclusion
In this paper, we propose a feature-disentangled activity
recognition network to solve the new task of cross-modal
federated HAR by embedding instances on different lo-
cal clients into a modality-agnostic feature space and pro-
ducing the modality-specific feature that cannot be shared
across clients with different modalities. Through decentral-
ized optimization with a spherical modality discriminative
loss, our model obtains state-of-the-art results by combining
the shared activity classifier and the private activity classi-
fier that are learned on the modality-agnostic features and
the modality-specific features, respectively.
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