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Abstract
This paper proposes a novel two-stage hypergraph-based
framework, dubbed ADaptive Hypergraph Neural Network
(AD-HNN) to estimate multiple human poses from a single
image, with a keypoint localization network and an Adaptive-
Pose Hypergraph Neural Network (AP-HNN) added onto the
former network. For providing better guided representations
of AP-HNN, we employ a Semantic Interaction Convolu-
tion (SIC) module within the initial localization network to
acquire more explicit predictions. Build upon this, we de-
sign a novel adaptive hypergraph to represent a human body
for capturing high-order semantic relations among different
joints. Notably, it can adaptively adjust the relations between
joints and seek the most reasonable structure for the variable
poses to benefit the keypoint localization. These two stages
are combined to be trained in an end-to-end fashion. Unlike
traditional Graph Convolutional Networks (GCNs) that are
based on a fixed tree structure, AP-HNN can deal with ambi-
guity in human pose estimation. Experimental results demon-
strate that the AD-HNN achieves state-of-the-art performance
both on the MS-COCO, MPII and CrowdPose datasets.

Introduction
Multi-person pose estimation (MPPE) aims to locate hu-
man keypoints for multiple persons in 2D image(Yang et al.
2017). It’s basic to deal with many high-level tasks, such
as action recognition(Yan et al. 2018) and 3D pose esti-
mation(Li et al. 2020). Recently, although large progress
has been made in pose estimation, while occlusions, varia-
tions in clothing, poses and viewpoints, unconstrained back-
grounds remain challenge MPPE. It’s a natural way to con-
sider structural constraint among joints to handle these chal-
lenges. A serious of approaches employ a graph to model
the relations between joints. Such graphs can mine human
part relations and spatial context for improving MPPE per-
formance. However, two properties of human poses are ig-
nored to different extent in these methods: (i) high-order
semantic dependencies among joints, (ii) relations of key-
points dynamically change subject to the variations in pose,
viewpoint and occlusions should be considered.

There are some attempts (Wang et al. 2020; Qiu et al.
2020a; Jin et al. 2020) introducing graph convolutional net-
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Figure 1: Graph-based human body representation, (a) a
simple graph (tree structure), (b) an initial hypergraph with
adaptability, (c) an adjusted hypergraph. For edges in (a),
both the edge degree and the number of edges are fixed. By
comparison, the hyperedges are free in (b). As the model
trains, new (old) hyperedges will create (disappear) and as-
signments of joints belonging to a hyperedge will change.
Finally, the hypergraph structure can be learned as (c). Dif-
ferent colored lines indicate different IDs of hyperedges.

work (GCN) to exploit the structural joints dependency
for improving the 2D MPPE performance. Firstly, although
these GCN-based methods have achieved promising results,
they all treat the human body as a tree structure and repre-
sent it as a simplified graph as in Fig. 1(a). Namely, they
only capture adjacent pair-wise joint relations and cannot
model high-order semantic dependencies. Since the human
body has a typical chain-like structure, the keypoint predic-
tion is not only constrained by directly neighboring joints,
but also is subject to multiple non-neighboring joints. This
high-order joint relations can help infer the occluded key-
points (i.e., like the challenging self-occlusions) with the
global and local joint contexts. Such a complex relationship
can hardly be captured by a simple graph with a set of fixed
adjacent connections.

Secondly, the semantic relations between joints vary for
different poses. It thus should build the most reasonable
structure for dynamically changing poses. This makes it es-
sential to automatically find the most suitable structure to
benefit the estimation. A pre-defined initial graph that is built
according to kinematic prior (like Fig. 1(a)) cannot provide
such adaptability and robustness. Despite the DGCN(Qiu
et al. 2020b) explores the high-order relations with a dy-
namic GCN, while it assumes the location subjects to a dis-
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tribution and cannot adjust the structure adaptively.
Aiming at the above issues, we creatively propose to rep-

resent a human body as an adaptive hypergraph(Feng et al.
2019) as depicted in Fig. 1(b) aiming to learn local and
global structural dependencies among joints flexibly. Unlike
a simple graph, an adaptive hypergraph represents the kine-
matic connections with flexible hyperedges. The hyperedges
have no fixed degrees and connect different joints freely ac-
cording to different semantic relations in different poses.
This characteristic enables it capture the high-order struc-
tural dependencies among joints adaptively and learns an
optimal structure as the model trains as in Fig. 1(c).

Upon the above representations, this paper develops a
novel ADaptive Hypergraph Neural Network (AD-HNN)
for 2D MPPE as in Fig. 2. It mainly comprises a keypoint
localization network and an Adaptive-Pose Hypergraph
Neural Network (AP-HNN). The AP-HNN is added onto
the former network and constructed with the heatmap pre-
dictions. For providing better initialization, we design a
Semantic Interaction Convolution (SIC) module within
stage-1 to regress more precise predictions via exploring
the feature relationships. Build on this, we construct an AP-
HNN to flexibly capture high-order joint dependency among
joints. Instead of adopting a fixed structure, the most reason-
able pose structure can be discovered by seeking the poten-
tial joint semantic relations. The two-stages are combined
together to be trained in an end-to-end manner.

Overall, our main contributions are as follows:
• We develop an adaptive hypergraph-based two-stage

MPPE method, AD-HNN, which brings significant im-
provement. A SIC module is proposed in initial stage to ex-
plore the feature relations for more accurate predictions.
•A novel adaptive hypergraph is designed to flexibly con-

sider the reasonable connections among joints for variable
poses and, hence, to capture the high-order joint relations.
To our knowledge, this is the first work that brings the ad-
vantages of hypergraph to 2D MPPE.
• The proposed AD-HNN is extensively validated on MS-

COCO, MPII and CrowdPose datasets and achieves an out-
standing performance.

Related Work
Multi-Person Pose Estimation. Recently, researchers have
made much efforts(Cao et al. 2019; Luvizon and Picard
2019; Wei et al. 2016; Sun et al. 2017; Tang, Yu, and Wu
2018; Ning, Zhang, and He 2018; Chu et al. 2017; Chou,
Chien, and Chen 2018; Chen et al. 2017; Ke et al. 2018;
Huang et al. 2020; Moon, Chang, and Lee 2019; Zhang
et al. 2020) on HPE to accelerate its progress. Two main-
stream methods are prevalent in MPPE including bottom-
up(Insafutdinov et al. 2016; Newell and Deng 2017; Papan-
dreou et al. 2017; Cheng et al. 2020) and top-down(Newell
and Kaiyu 2016; Fang et al. 2017; Chen et al. 2018; Xiao
and Wei 2018; Sun et al. 2019; Su et al. 2019). This pa-
per follows the top-down pipeline. The recent graph-based
methods(Jin et al. 2020; Qiu et al. 2020b; Wang et al. 2020)
model the joint relations and achieves great performance. In
light of this, we model the human body with a hypergraph
which is a general form of the simple graph.

Graph-based MPPE. The graph representation for 2D
MPPE is not new. Recently, DGCN(Qiu et al. 2020b)
construct dynamic graph to tolerate large pose variations.
OPEC(Qiu et al. 2020a) design an Image-Guided Progres-
sive GCN to estimate the invisible joints. Gpcnn(Wang et al.
2020) embeds a graph pose refinement module to model the
human structure. HGG(Jin et al. 2020) propose a differen-
tiable graph grouping method to assign keypoints. However,
all above GNN-based methods are based on a simple graph
which only considers the one-order structural joint relations.
Hypergraph Learning. Recently, HNN(Feng et al. 2019)
learns multi-modal data relations by hyperedge convolution.
Unlike an edge in common graphs only connects two ver-
texes, a hyperedge connects two or more vertexes. It satis-
fies the characteristics of high-order structural relations in
human keypoints. Some works(Yu and Tao 2012; Zhu et al.
2017) adopt the hypergraph to learn high-order data rela-
tions. They treat each sample as one vertex and optimize
model by fixing others. DHNN(Jiang et al. 2019) constructs
the hypergraph dynamically due to the limitation of the fixed
structure. Inspired by this, we extend GCN to HNN and de-
sign an adaptive learning mechanism to capture the high-
order human kinematics flexibly.

There are researches introducing the hypergraph to study
the human-related computer vision task. For example, the
(Kim et al. 2020) design a hypergraph attention network
to define semantic modality relations and combine multi-
modal features. The hyperReID(Yan et al. 2020) propose
a multi-granular hypergraph to model the multi-granular
spatio-temporal dependency. The most related work is the
SD-HNN(Liu et al. 2020), which adopts hypergraph to rep-
resent the human body exploiting the joint relations for 3D
pose estimation. However, it designs a semi-dynamic graph
by introducing an extra adaptive matrix, this makes it hard
to train. Distinctly, we propose a flexible adaptive learning
mechanism to stably adjust the hypergraph structure.

Method
Semantic Interaction Convolution
Given the similar visual patterns of joints, the semantic rep-
resentations of feature maps are highly correlated in spa-
tial distributions. We introduce the SIC module to model
the correlation among feature channels, where each chan-
nel encodes a visual pattern related to specific keypoint. In-
tuitively, the feature channels with similar semantics would
be activated simultaneously when a specific pattern of key-
points emerges. By grouping feature maps with similar se-
mantics, it finds the latent keypoint visual patterns to im-
prove the performance. The initial pose estimation model is
built on SBN(Xiao and Wei 2018), the SIC followed by dif-
ferent deconvolutional layers to explore the feature relations
from multi-resolution feature maps as in Fig. 3.
Feature Interaction Learning. Measured by the feature
distance in a space, the neighboring feature maps with sim-
ilar patterns form a meaningful subset. The feature map set
F = {fe1, fe2, ..., fec} consists of the deconvolutional
features. For each fei, we found its k-nearest neighbors
(k = 5). The relation between a pair of neighboring feature
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Figure 2: Overview of the proposed AD-HNN. In stage-1, an initial pose estimator equipped with our SIC module obtain the
initial heatmap predictions. In stage-2, an adaptive hypergraph builds a human body to adaptively correlate the adjacent or
non-adjacent joints and explore the high-order joint semantics. Each colored line depicts a hyperedge. The adjusted hyperedge
in learned structure connects joints with potential relations that is more consistent with the human commonsense.
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Figure 3: The process of Semantic Interaction Convolution.

maps is as below:
e′ij = ReLu(fej − fei), fej ∈ Nfei , (1)

where Nfei is the neighbors of fei. For each fei, we con-
sider its closest k feature maps and compute their cosine dis-
tance. Finally, a channel-wise max function operates on e′ij
to capture the discriminative features. The SIC output for the
i-th feature:

fe′i = max
j:fej∈Nfei

e′ij . (2)

Mapping on Keypoint Predictions. Generally, the joint
predictions benefit from the relation modeling ability of SIC
and the spatial representation of heatmaps. Each joint loca-
tion is associated with the encoded feature channel, which
can be influenced by the learned feature combinations from
SIC. The learned feature set can explain the specific visual
patterns of keypoints via capturing the local and inherent
feature relations. The learned weights describe the associa-
tion between the features with the keypoint predictions, and
a larger one leads to more explicit joint location in the pat-
tern. In this way, the joint predictions can be more explicit
by activating different visual patterns.

Adaptive Hypergraph for MPPE
Review of GCN and HNN. Assume that a graph is G =
{A,X}. The adjacency matrix is A = {aij} ∈ Rn×n that

depicting the node connections, while aij > 0 means there
exists an edge between node i and j. The node set is X ∈
Rn×d, n is the vertex numbers, d is the feature dimensions.
Based on above terminologies, a convolution of GCN(Kipf
and Welling 2016) can be depicted as:

H(l+1) = σ(ÃH(l)W (l+1)), (3)

whereH(l) denotes the node representations in l-th layer,W
depicts the parameters, σ(·) is a non-linear activation func-
tion. Ã is the normalized adjacency matrix.

The concept of GCN is extended to hypergraph in(Feng
et al. 2019) and a new hypergraph neural network is pro-
posed. The convolution of HNN is formulated as:

X(l+1) = σ(D
− 1

2
v HWD−1e HTD

− 1
2

v X(l)Γ(l)), (4)

whereDv ,De denote the diagonal matrices of the vertex de-
grees and edge degrees respectively. TheH denotes the inci-
dence matrix of hypergraph, W depicts the diagonal matrix
of the hyperedge weights and the filter Γ is applied over the
hypergraph nodes to extract features.
Motivation. In GNN-based works, the human body is often
represented as a fixed tree structure, where the connections
among adjacent joints only represent adjacent pair-wise re-
lations, but not the high-order semantic relations among
joints. The pairwise relationship cannot adjust to potential
non-physical connections flexibly. For example, for the pose
of stretching legs like in Fig. 4, the ‘rwrist’ and ‘rankle’
have a close connection but this relations cannot be cap-
tured by GNN. Intuitively, we involve a novel hypergraph to
describe this flexible and complex kinematics. The charac-
teristics of hypergraph make it capture more comprehensive
human context to help correct the inaccurate predictions.

Commonly, the hypergraph structure is fixed according
the predefined physical connections. However, the learned
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Figure 4: The examples of the adaptive adjustment process.

structures of hypergraphs are not always same for differ-
ent poses. For example, the number of hyperedges of pose
‘leg stretch’ are 5 but for ‘crunches’ are 4 because all the
symmetrical lower body parts have similar semantic rela-
tions and they finally are connected by a same hyperedge.
However, this flexible relations cannot be described by the
fixed structure. We should make the hypergraph adjust its
structure to fit for the flexible joint relations adaptively. To
achieve this, we adjust the hypergraph structure to connect
those joints which may have semantic relations into same
hyperedge via learning the incidence matrix as the model
trains. In this manner, the hypergraph achieves to capture
high-order joint relations flexibly indeed. It maximizes the
learning ability of pose hypergraph and thus can deal with
the flexible pose variations.
Hypergraph Construction. Following (Feng et al. 2019),
our adaptive hypergraph is defined as G = (V, ξ,We), where
V = {v1, v2, ..., vn} denotes the vertex set including n
joints, ξ = {e1, e2, ..., em} denotes the hyperedge set and
We is a diagonal matrix of hyperedge weights, which initial-
ized with an identity matrix of meaning equal weights. The
hypergraph incidence matrix is denoted as Hp ∈ Rn×m. We
redefine a hyperedge indicating a potential relation between
two or more joints, rather than a specific prior relationship.

As shown in Fig. 2, given an input, processed by the stage-
1, we get the initial heatmap predictions P̂heat. Then, we
acquire the vertex features Fv to form the initial hypergraph.

Fv = GAP (Fimage � P̂ iheat), i ∈ 1, 2..n, (5)

where Fimage denotes the visual features, Fv ∈ Rn×d1 =
{f1, f2, .., fn} as shown in Fig. 5, the d1 denotes the fea-
ture dimension. Initially, hyperedges are set as 5 by the pre-
defined kinematic chains, each hyperedge corresponding to
the kinematic chain connects all the joints in that chain. The
Hp ∈ Rn×5 acts as the basic structure as in shown Fig. 2.
Adaptive Hypergraph. We develop an adaptive hypergraph
via updating the Hp adaptively during training. For learn-
ing the relevance between the joints and hyperedges, we ap-
ply an adaptive mechanism like attention on Hp to present a
probabilistic model, which assigns non-binary and real val-
ues to measure the degree of connectivity. For a given vertex
vi, we compute its relevance with the other hyperedges em,

Hp = ave(σ(sim(fiΦ, fjΦ))), vj ∈ em, (6)

H̃p =
exp(Hp)∑

em∈ξ exp(Hp)
, (7)

…

hyperedge 
feat. update … … …

Fv ∈ R16×d1 Fe ∈ Rn×d2 Fv ∈ R16×d2 Fout∈ R16×d2
(l) (l) (l+1)

◊2

vertex feat.
update

Figure 5: The illustration of the adaptive hypergraph convo-
lution learning. ‘×2’ denotes that two layers are adopted.

where Φ ∈ Rdi×dj is the learned weighting matrix, the vj
belongs to em, sim(·) computes a cosine similarity between
vertex features.

Concretely, if the relevance between the specific vertex
and hyperedge is lower than a specific score (0.75 used
here), they shouldn’t be built connections. And if there ex-
ists two hyperedges with stronger relevance, we merge them
as a same hyperedge. After the first round of learning, we
update Hp as in Eq. 6, 7, and adjust the hypergraph struc-
ture for further learning to adapt more reasonable relations.
As shown in Fig. 2, the Hp adaptively updates as the model
learns, which enables the initial hypergraph structure adjust
to the most reasonable structure.
High-order Semantic Learning. To capture high-order se-
mantic joint relations, the two-layer hypergraph convolution
with adaptive hypergraph is adopted. Let Φ(l) denotes the
learnable filter matrix of the G at l-th layer, F (l) is the ver-
tex features and F (0) = Fv . A hypergraph convolutional
layer(Feng et al. 2019) can be depicted as:

F (l+1) = σ(D
− 1

2
v HpWeD

−1
e HT

p D
− 1

2
v F (l)Φ(l)), (8)

where σ(·) is the activation function,De andDv are used for
normalization. For a vertex v ∈ V and a hyperedge e ∈ ξ,
their degrees can be computed by

d(v) =
∑
e∈ξ

w(e)a(v, e), d(e) =
∑
v∈V

a(v, e), (9)

where w(e) is the weight of e, a(v, e) is the element of Hp.
As the Eq. 8 and Fig. 5 depicted, we adopt the learnable

matrix Φ(l) to transform the vertex features F (l)
v to the new

vertex features. Then, the updated vertex features on the hy-
peredges are gathered to obtain the hyperedge features by
multiplying HT

p . Finally, the related hyperedge features are

associated to obtain the final vertex features F (l+1)
v , which

is achieved by multiplying the Hp. Through the vertex-
hyperedge-vertex transform, AP-HNN can adaptively cap-
ture the joint dependencies and explore their high-order se-
mantic interactions.

Optimization
We denote the ground truth pose over training set Ω as Pi,
and the output as P̂i. Following the SIC, we produce an ini-
tial heatmap-based prediction P̂heat. Hence, the total loss is
the weighted sum of the initial heatmap-based loss and the
hypergraph-based loss of final prediction:

Ltotal = min
θ

∑
i∈Ω

(λ1L(P̂heat, Pi) + λ2L(P̂i, Pi)), (10)
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where θ denotes all the trainable parameters of the model
and λ1 and λ2 are 0.3, 0.7 respectively.

Experiments
Datasets and Evaluation Metric
COCO Keypoint Detection(Lin et al. 2014) includes about
57K images for training and 5K images for validation, 20K
images for testing. The evaluation metrics adopt OKS-based
average precision (AP) and average recall (AR).
MPII Human Pose Dataset includes about 25K images
with 40K objects, where there are 12K objects for testing
and the remaining for training. We use the standard metric
PCKh(Andriluka et al. 2014) (head-normalized probability
of correct keypoint) score as evaluation.
CrowdPose(Li et al. 2019) contains 20K images and 80K
human instances, which aims to promote performance in
crowded cases and uses the same evaluation with COCO.
It divides into three crowding levels by Crowd Index: Easy
(0 ∼ 0.1), Medium (0.1 ∼ 0.8) and Hard (0.8 ∼ 1).

Implementation Details
Network Architectures. We adopt HRNet(Sun et al. 2019)
and SBN(Xiao and Wei 2018) as the initial pose estimator
and the backbone adopts ResNet-152 and HRNet-w32 in de-
fault. It’s noted we only add AP-HNN on HRNet without
SIC. We adopt two HyperConv layers followed by BN and
RELU and repeat four times.
Training. We implement all experiments in PyTorch on a
single NVIDIA TITAN XP GPU. Our models are initialized
with the weights of the pretrained ImageNet(Russakovsky
et al. 2015). For MS-COCO, human detection boxes are re-
sized to 384×288. The Adam(Kingma and Ba 2015) adopts
the learning rate with 10−3 and reduced to 10−4 and 10−5 at
170th and 200th epochs. For MPII, input size is 384×384
and trained for 180 epochs. For CrowdPose, the training set-
ting is similar with COCO and trained for 220 epochs. For
augmentation, we follow the HRNet(Sun et al. 2019).

Quantitative Results
Comparison on MPII. We evaluate the PCKh@0.5 on
MPII in Tab. 1. Compared with the existing methods, we
achieve the best performance with the same backbone. For
example, we achieve 92.0% score with ResNet, and boosts
0.5% than the baseline (SBN). The trend also fits for HRNet-
based model. And our model largely lifts 11.1% score over
the graph-based DGCN(Qiu et al. 2020b). This shows that
adopting hypergraph to model human pose has greater ad-
vantage than the common graph.

Comparison on CrowdPose. To show our method is ro-
bust in crowd scenes, we conduct experiments on Crowd-
Pose in Tab. 2. Our AD-HNN lifts 0.2 mAP over the best
GCN-based OPEC(Qiu et al. 2020a) that is specially de-
signed for occlusions, and outperforms others on all metrics
except AP50. We also list AP at different crowded levels.
Improvements remain high even at the high crowd level.

This proves that our adaptive hypergraph can better deal
with the occlusions or pose variations than the common

Method Hea Sho Elb Wri Hip Kne Ank Total

Wei(2016) 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5
Newell(2016) 98.2 96.3 91.2 87.2 89.8 87.4 83.6 90.9

Sun(2017) 98.1 96.2 91.2 87.2 89.8 87.4 84.1 91.0
Ning(2018) 98.1 96.3 92.2 87.8 90.6 87.6 82.7 91.2

Luvizon(2017) 98.1 96.6 92.0 87.5 90.6 88.0 82.7 91.2
Chu(2017) 98.5 96.3 91.9 88.1 90.6 88.0 85.0 91.5

Chou(2018) 98.2 96.8 92.2 88.0 91.3 89.1 84.9 91.8
Chen(2017) 98.1 96.5 92.5 88.5 90.2 89.6 86.0 91.9
Yang(2017) 98.5 96.7 92.5 88.7 91.1 88.6 86.0 92.0
Ke(2018) 98.5 96.8 92.7 88.4 90.6 89.3 86.3 92.1

Tang(2018) 98.4 96.9 92.6 88.7 91.8 89.4 86.2 92.3
DGCN(2020) 95.6 92.5 83.1 76.5 81.5 73.1 65.1 81.2
SBN(2018) 98.5 96.6 91.9 87.6 91.1 88.1 84.1 91.5

HRNet(2019) 98.6 96.9 92.8 89.0 91.5 89.0 85.7 92.3
Ours (ResNet) 98.5 96.6 92.6 88.5 91.0 88.8 86.0 92.0
Ours (HRNet) 98.6 96.9 92.8 89.2 91.6 89.3 86.3 92.4

Table 1: Result comparisons on the MPII test set.

GCN due to its adaptability to deal with flexible variations
and richer context representation to infer occluded joints.

Method AP AP50 AP75 APE APM APH
OpenPose(2016) - - - 62.7 48.7 32.3

Mask-RCNN(2017) 57.2 83.5 60.3 69.4 57.9 45.8
SBN(2018) 60.8 81.4 65.7 71.4 61.2 51.2

RMPE(2017) 61.0 81.3 66.0 71.2 61.4 51.1
HigherHRNet(2020) 65.9 86.4 70.6 73.3 66.5 57.9

CrowdPose(2019) 66.0 84.2 71.5 75.5 66.3 57.4
OPEC(2020) 70.6 86.8 75.6 - - -

Ours 70.8 86.5 75.8 77.0 68.5 59.6

Table 2: Performance comparisons on CrowdPose test set.

Comparison on MS-COCO. The AD-HNN achieves the
best result at most of metrics and surpasses other methods
largely on COCO test-dev in Tab. 3. Notably, AD-HNN ex-
ceeds the previous best result (HRNet: 75.5%) by 1.1%.

Compared with most of the recent graph-based methods,
e.g., OPEC(Qiu et al. 2020a), Dgcn(Qiu et al. 2020b) and
HGG(Jin et al. 2020), AD-HNN also achieves a notable
improvement on all metrics, which demonstrates its effec-
tiveness. Specifically, it has 1.2% higher than the OPEC
and achieves a comparable result with the best Gpcnn(Wang
et al. 2020). It proves the superiority of an adaptive hyper-
graph capturing semantic high-order relations among joints
over a fixed graph. Notably, although Gpcnn achieves the
best result, the guided point sampling and the supervision
from hard negative (positive) samples make a great contri-
bution in performance except the graph model.

For illustrating the superiority of AP-HNN for the ex-
treme self-occlusions, we choose 185 images with 570 sam-
ples from the MSCOCO val2017. Tab. 4 shows our method
improves 3.5% mAP over the baseline. This indicates our
adaptive hypergraph helps to infer the occluded joints by the
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Method Back size AP AP50 AP75 APM APL AR

RMI(2017) r101 353×257 64.9 85.5 71.3 62.3 70.0 69.7
AE(2017) - 512×512 65.5 86.8 72.3 60.6 72.6 70.2

CPN(2018) Ince 384×288 73.0 91.7 80.9 69.5 78.1 79.0
CSA(2019) r152 384×288 74.5 91.7 82.1 71.2 80.2 80.7
PFix(2019) r152 384×288 76.7 92.6 84.1 73.1 82.6 81.5

Gpcnn(2020) r152 384×288 75.1 91.8 82.3 71.6 81.4 80.2
OPEC(2020) - 384×288 73.9 91.9 82.2 - - -
Dgcn(2020) r152 641×641 67.4 88.0 74.4 63.6 73.0 73.2
HGG(2020) 4HG 512×512 67.6 85.1 73.7 62.7 74.6 71.3
SBN(2018) r152 384×288 73.7 91.9 81.1 70.3 80.0 79.0
UDP(2020) r152 384×288 74.7 91.8 82.1 71.5 80.8 80.0

Ours r152 384×288 75.1 91.7 82.5 71.5 81.3 80.1
HRNet(2019) hr32 384×288 74.9 92.5 82.8 71.3 80.9 80.1
UDP(2020) hr32 384×288 76.1 92.5 83.5 72.8 82.0 81.3

Gpcnn(2020) hr32 384×288 76.4 92.5 83.8 72.9 82.4 80.3
Ours hr32 384×288 76.3 92.3 83.8 73.0 82.2 81.2

HRNet(2019) hr48 384×288 75.5 92.5 83.3 71.9 81.5 80.5
UDP(2020) hr48 384×288 76.5 92.7 84.0 73.0 82.4 81.6
Dark(2020) hr48 384×288 76.2 92.5 83.6 72.5 82.4 81.1

Ours hr48 384×288 76.6 92.4 84.3 73.2 82.5 81.5

Table 3: Performance comparisons with the state-of-the-arts
on COCO test-dev2017. The first row denotes the classical
methods and second row depicts GNN-based methods.

aid of the learned high-order joint context. For the results on
the self-occlusion subset are better than results on the whole
set possibly because there exists normal postures in a self-
occluded image but we build this on the image-level.

Ablation Study
Effect of the Components. We compare with the base-
line (ResNet-152) to illustrate the effectiveness of the pro-
posed modules in Tab. 4. Our AP-HNN and SIC module
have 2.1%, 0.5% improvements than the baseline respec-
tively. The adaptive hypergraph model really makes a big
contribution by establishing more reasonable connections
among different joints flexibly. As well, the semantic inter-
action convolution module further improves the accuracy.

Methods AP AP50 AP75 APM APL AR

Baseline 74.3 89.6 81.1 70.5 79.7 79.7
w/ SIC 74.8 89.8 81.5 70.9 80.2 80.0

w/AP-HNN 75.9 90.6 82.7 71.9 82.3 81.0
Ours(ensemble) 76.4 90.8 82.8 72.3 83.3 81.2

self-occlusion subset
Baseline(val-sub) 76.0 94.5 84.4 71.2 83.2 79.3

Ours(val-sub) 79.5 95.8 86.9 74.2 85.8 81.4

Table 4: The effect of the proposed components on val2017.

HNN vs. GNN. To explore the effect of the HNN, we replace
the AP-HNN by the GNN and HNN, respectively in Tab. 5.
The graph construction adopts the fixed tree-like structure.
The GNN-based follows OPEC(Qiu et al. 2020a). The result

drops from 75.3% to 74.9% when replace HNN with GNN.
This proves that HNN is superior to GNN in exploring the
high-order structural dependency.

Methods AP AP50 AP75 APM APL AR

Baseline 74.3 89.6 81.1 70.5 79.7 79.7
GNN 74.9 90.1 81.8 70.9 80.3 80.2

Static HNN 75.3 90.4 82.2 71.4 81.2 80.6
Dynamic HNN 75.6 90.4 82.3 71.6 81.8 80.8
Adaptive HNN 75.9 90.6 82.7 71.9 82.3 81.0

Table 5: Comparisons of different hypergraph learning
strategies on val2017.

Effect of Adaptive Hypergraph. To evaluate the effec-
tiveness of our adaptive hypergraph, we compare different
HNN-based methods in Tab. 5. We firstly explore the differ-
ence between Dynamic HNN and Static HNN(joint relations
fixed). The Dynamic HNN(Jiang et al. 2019) builds the key-
point connections dynamically which updates the features
via k-NN algorithm. The mAP ups to 75.6% from 75.3%,
indicating the advantage of dynamic HNN in adapting to
changes of human structures over fixed ones. Still, the pa-
rameters of the incidence matrix of static HNN are frozen
and not learnable during training. Secondly, we compare
adaptive HNN with Dynamic HNN. For Dynamic HNN, it’s
hard to find out the most reasonable joint relations because
it adjusts the structure solely relying on the vertex features
rather than considering the flexible semantic relevance be-
tween the vertex and other hyperedges. Besides, the hyper-
edge numbers of Dynamic HNN are fixed. In contrast, our
Adaptive HNN can automatically build the most reasonable
joint relations in a learnable way. The result also proves the
effectiveness of the adaptive learning for pose variations.
The Generality of AP-HNN on HPE. We validate the AP-
HNN on different 1-stage methods in Tab. 6. We adopt four
top-down and bottom-up methods respectively to provide
the initialization. The result shows consistent improvements
owing to the AP-HNN. It proves that AP-HNN can better
help correct the initial inaccurate predictions benefiting from
the learned high-order structure information and its adapt-
ability for complex postures. Also, AP-HNN has good gen-
erality to different heatmap-based methods.

Visualization and Analysis
Component Analysis. Fig. 6 visualizes the results of differ-
ent modules on AD-HNN. Columns 2, 3, and 4 depict the
results of using Convolution (Conv.) instead of SIC, fixed
HNN instead of Adaptive Hypergraph (Adap.), and using
GNN to replace HNN, respectively. Compared with less ac-
curate locations and relatively low confident keypoints got
by GNN, HNN, and Conv., the keypoint-aware areas of AD-
HNN are more concentrated. It demonstrates the effective-
ness of the proposed components.
Comparison Analysis. Noted that we don’t compare with
most of the graph-based methods in qualitative since their
codes are not released. To show the advantage of AP-HNN,
we replace it with the GNN model onto our initial models.
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1-Stage Method AP AP50 AP75 APM APL AR

w/o AP-HNN
Bottom-up

OpenPose(2016) 61.8 84.9 67.5 57.1 68.2 66.5
AE(2017) 65.5 86.8 72.3 60.6 72.6 70.2

Top-down
HG(2016) 63.0 85.7 68.9 58.0 70.4 68.0

CPN(2018) 72.1 91.4 80.0 68.7 77.2 78.5
SBN(2018) 73.7 91.9 81.1 70.3 80.0 79.0

HRNet(2019) 74.9 92.5 82.8 71.3 80.9 80.1
w/ AP-HNN

Bottom-up
OpenPose(2016) 63.3 85.7 68.8 58.5 69.4 68.1

AE(2017) 67.2 87.3 73.8 61.1 72.6 71.4
Top-down

HG(2016) 65.1 86.8 70.9 59.9 72.1 70.0
CPN(2018) 74.0 91.6 81.6 70.3 78.5 79.8
SBN(2018) 75.1 91.7 82.5 71.5 81.3 80.1

HRNet(2019) 76.3 92.3 83.8 73.0 82.2 81.2

Table 6: Study of the AP-HNN generality on test-dev2017.

The predicted keypoints of AD-HNN are more accurate than
those of SBN and HRNet with GCN in Fig. 7. It shows that
the hypergraph-based modeling of the human pose is indeed
effective and superior to the constant graph. For example,
the self-occlusion cases lie in Fig. 7 while our method can
better avoid this confusions, which shows that the global and
local joint context can largely help infer the occluded joints.

Figure 6: The visualized comparison of each module. “mod-
ule A→ module B” means that replacing B with A.

High-order Semantic Learning Analysis. We further an-
alyze the ability of AP-HNN to capture high-order joint
information. Fig. 8 shows the predicted keypoints and the
confidence score of GNN or HNN. We take the ‘rshoulder’
as example, its neighboring joint ‘relbow’ is accurately de-
tected with a high confidence of 0.8. Similar confident re-

AD-HNN(ours)SBN_GNN HRNet_GNN

Figure 7: Qualitative comparison with the GNN-based base-
line on self-occluded samples.

Figure 8: Comparison of the high-order semantic relations
capturing capability, c(·) depicts the confidence score.

sults can be observed for GNN. This is possibly because
both of them can well capture the neighboring structural in-
formation. However, if the ‘lshoulder’ is non-neighbored or
‘rwrist’ is far away from ‘rshoulder’, the predicted confi-
dence score of GNN is obvious lower than HNN. The GNN-
based model can’t correctly recognize ‘lshoulder’ while
HNN can. It shows that AP-HNN has superiority to capture
high-order joint relationships.

Conclusion
In this paper, we study the MPPE from a new perspective
of introducing a novel ADaptive Hypergraph Neural Net-
work (AD-HNN). To obtain better initial heatmap predic-
tions, we design a semantic interaction convolution to ex-
plore the feature relation learning within the initial pose es-
timator. Build on this, we creatively propose an adaptive
hypergraph to represent a human pose exploiting the fea-
sible high-order semantic relations among joints flexibly.
Unlike traditional Graph Convolutional Networks (GCNs)
that adopt fixed tree structure, our AP-HNN can adaptively
find the most reasonable structure for variable postures. Our
method achieves almost best performance compared with
the state-of-the-arts on both MS-COCO, MPII and Crowd-
Pose datasets. In future, we plan to investigate the hyper-
graph learning in bottom-up MPPE.
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