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Abstract
To synthesize images with preferred objects and interactions,
a controllable way is to generate the image from a scene graph
and a large pool of object crops, where the spatial arrange-
ments of the objects in the image are defined by the scene
graph while their appearances are determined by the retrieved
crops from the pool. In this paper, we propose a novel frame-
work with such a semi-parametric generation strategy. First,
to encourage the retrieval of mutually compatible crops, we
design a sequential selection strategy where the crop selection
for each object is determined by the contents and locations of
all object crops that have been chosen previously. Such pro-
cess is implemented via a transformer trained with contrastive
losses. Second, to generate the final image, our hierarchical
generation strategy leverages hierarchical gated convolutions
which are employed to synthesize areas not covered by any im-
age crops, and a patch-guided spatially adaptive normalization
module which is proposed to guarantee the final generated im-
ages complying with the crop appearance and the scene graph.
Evaluated on the challenging Visual Genome and COCO-Stuff
dataset, our experimental results demonstrate the superiority
of our proposed method over existing state-of-the-art methods.

Introduction
It is challenging to generate an image from a scene graph con-
sists of several objects with sophisticated interactions. With
such a framework, users just need to provide flexible scene
descriptions to define the objects as well as their interactions,
and the framework would synthesize images, achieving a
user-controllable generation process. Current frameworks for
generating images from scene descriptions take advantage of
generative adversarial networks (GANs) (Goodfellow et al.
2014). Compared with parametric models (Johnson, Gupta,
and Fei-Fei 2018) that solely lean upon the networks to model
the appearance of objects, semi-parametric approaches (Li
et al. 2019c; Tseng et al. 2020) have recently been proposed
and shown superior performance. Such methods first lever-
age a memory bank to retrieve image crops for objects in
the scene graph (called retrieve stage), and then synthesize
realistic images from scene graphs and retrieved crops (called
generation stage). In this work, we focus on the amelioration
of the semi-parametric model, improving the retrieve stage
as well as the generation stage.
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The retrieved crops from the retrieve stage should be mu-
tually compatible for synthesizing an image and consistent
with the corresponding scene graph. To complete the retrieve
stage, existing retrieval-based image synthesis methods ei-
ther employ pre-defined embeddings for retrieval (Li et al.
2019c) or proposes a differentiable retrieval process (Tseng
et al. 2020) to retrieve the image crop that is compatible with
the previously selected ones. However, they all neglect the
usage of the crops’ spatial information during the optimizing
of retrieve stage. In this paper, we reformulate the retrieve
stage and complete it as a novel sequential process. In our
process, the selection of the crop for each object in the scene
graph would be determined by spatial, style, and content fea-
tures of crops that have already been chosen. To implement
such sequential selection, we propose to adopt a transformer
(Vaswani et al. 2017) structure that is trained with contrastive
learning (Oord, Li, and Vinyals 2018; Chen et al. 2020). In
the transformer, the candidate image crops for selection and
previously selected crops are embedded with two specific
heads and incorporated with spatial information via position
embedding. Iterative operations on the transformer can re-
trieve the image crops that are mutually compatible. This
is the first successful attempt to complete the crop retrieval
with self-supervised contrastive learning for image synthesis,
and experiments on public datasets demonstrate the superior-
ity of our sequential selection strategy over existing retrieve
approaches.

Moreover, in this paper, we further propose a novel gen-
erator that generates realistic images from a scene graph
with selected image crops as the guidance. To synthesize the
realistic and high-resolution images, we design the genera-
tor with a hierarchical generation strategy, using hierarchi-
cal gated convolutions and proposing patch-guided spatially
adaptive normalization module. The patch-guided spatially
adaptive normalization module is designed to guarantee the
synthesized images highly respecting the selected crops. The
generator is trained with crops selected by our transformer,
boosting the performance of the generator in the inference
stage, and the generator boosts the mutual compatibility be-
tween the selected crops in the output image. Evaluated on
Visual Genome and COCO-Stuff dataset (including objective
analyses and a user study for subjective evaluation) , our pro-
posed method significantly outperforms the state-of-the-art
(SOTA) generation approaches.
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Figure 1: Illustration of our framework for synthesizing images from scene graphs, including the scene graph encoding, retrieve
stage and the generation stage.

Related Work
Conditional Image Generation
Current conditional generative models can synthesize images
according to additional conditions such as image (Choi et al.
2020; Lee et al. 2020; Liu et al. 2021), label (Chen et al.
2019; Yang et al. 2021), segmentation mask (Park et al. 2019;
Huang et al. 2020; Tan et al. 2021), text (Xu et al. 2018; Qiao
et al. 2019; Li et al. 2019a; Zhu et al. 2019; Li et al. 2019b)
and layout (Sun and Wu 2019; Ashual and Wolf 2019; Zhao
et al. 2019). The text conditions can either be natural language
sentences or scene graphs (Li et al. 2019c; Tseng et al. 2020).
Compared with sentences, the scene graph description is
more well-structured, since the nodes in a scene graph can
represent objects and the edges can denote their relationship.
Therefore, the synthesis from scene graphs allows better
controllability. In this work, we focus on employing the scene
graph description as the conditions.

Image Generation from Scene Descriptions
With the development of deep generative models, especially
the adversarial generative networks, the synthesis from scene
descriptions becomes feasible. Existing methods for such
synthesis can be divided into two categories. The first kind
of approach employs parametric generative models to tackle
this task (Johnson, Gupta, and Fei-Fei 2018). The feature of
objects and the relationships among objects are captured via
a graph convolution network from a scene graph, then im-
ages are synthesized based on the extracted feature with the
conditional generative models (Mirza and Osindero 2014).
However, these methods often fail to generate realistic images
for complicated scene descriptions, due to various objects and
complex interactions in the scene. To this, semi-parametric
approaches (Li et al. 2019c; Tseng et al. 2020) are recently
proposed and they perform generation based on reference ob-
ject crops. The reference crops are retrieved from an external
bank and help to synthesize the final images. The retrieval
module is a crucial component. PasteGAN (Li et al. 2019c)
employed predefined retrieval modules that cannot be opti-
mized during the training. RetrieveGAN (Tseng et al. 2020)
later designed a differentiable retrieval process, thus enable
optimizing the retrieve stage through the end-to-end training.

However, they ignore the employing of image crops’ spatial
features in the optimization of retrieve stage.

Contrastive Learning
Contrastive learning has recently become a prominent ap-
proach in unsupervised representation learning. These meth-
ods learn representations by a “contrastive loss” which pushes
apart dissimilar pairs (called negative pairs) while pulling
together similar pairs (called positive pairs). The main differ-
ence between different approaches to complete contrastive
learning lies in their strategies for obtaining positive and neg-
ative pairs. For the semantic computer vision task, e.g., image
classification, different types of data augmentation are em-
ployed for obtaining positive pairs (Chen et al. 2020; Oord,
Li, and Vinyals 2018; Khosla et al. 2020), including random
cropping and flipping. For the language task, Logeswaran et
al. (Logeswaran and Lee 2018) treat the context sentences as
positive samples to learn representations. However, no exist-
ing works have analyzed the effect of applying contrastive
learning in the crop retrieval for image synthesis.

Method
Given a scene graph G which contains a set of n objects O =
{o1, ..., on} and their pairwise relations R = {r1, ..., rm},
our goal is to synthesize an image x ∈ RH×W×3 from the
scene graph. In addition, our method leverages an external
pool of object crops (can be either segmented out or not)
to facilitate the generation process. The overall framework
is shown in Fig. 1 which consists of three stages. In the
first stage, we leverage the scene graph to extract semantic
features which are useful for crop retrieval and location pre-
diction for each object. In the second stage, the sequential
crop selection module (SCSM) sequentially selects a most
compatible crop for each object given all previously chosen
crops, which will be used for the image synthesis. Finally,
the progressive scene graph to image module (PSGIM) syn-
thesizes the target image based on the scene graph features
and selected crops.

Scene Graph Encoding
Following (Li et al. 2019c), our method first processes the
input scene graph to extracts text embeddings for all the
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Figure 2: The illustration for the SCSM during training.

n objects as {t1, ..., tn} = Eg(O,R) via a graph convolu-
tion network Eg, where ti ∈ RCt is the text embedding for
object oi. For each object oi, we match ti with the text em-
beddings of other object crops in the external object pool to
retrieve a set of its candidate crops M(oi) = {p1i , ...pki |p

j
i ∈

RHp×Wp×3, j ∈ [1, k]} with a fixed size k. In addition, ti is
further used to predict a bounding box bi ∈ R4 for object oi.
Please refer to (Li et al. 2019c) for details of these steps.

Sequential Crop Selection Module (SCSM)
To synthesize the final image, we first need to select only
one crop from every object’s k candidate crops. Our method
performs the crop selection operation in an iterative fashion.
Specifically, suppose there are already m ∈ [1, n) crops
p1, ..., pm selected for object o1, ..., om. Let us define the set
{p1, ..., pm} as the chosen crop set P . Given a new object
om+1, our SCSM aims to select one crop from its k candidate
crops which is most compatible with all the crops in P , and
thus can improve the realism of the final synthesized image.
To achieve this goal, we propose a novel contrastive learning
framework, i.e. given a chosen crop set P from the same
image, the compatible score between P and a new crop from
the same image should be higher than the compatible score
between P and a new crop from a different image. Such
learning objective helps our model to select object crops
likely belonging to the same image, and thus improves the
compatibility among the selected crops.

We leverage a novel transformer to implement the idea, as
shown in Fig. 2. Specifically, for every crop pi ∈ P (the shape
is Hp ×Wp × 3) with its predicted bounding box location bi,
we embed both its appearance and position information as an
input token to the transformer as fi = W1 ·pi+Eb(bi), where
W1 is a trainable linear transformation matrix to convert pi
into a 1-D embedding with shape RCp . Eb is a position en-
coder with three nonlinear layers, the output shape of which
is also RCp . In addition, we add a learnable start token f0
to represent the overall compatible feature of all the input
tokens. Its appearance input p0 is randomly initialized with

the normal distribution while its position input is initialized
with bm+1, which is the predicted bounding box location of
the new object om+1. A notable difference between previous
methods (Li et al. 2019c; Tseng et al. 2020) and ours is that
we explicitly leverage the position information of each crop,
which is proven to be effective in our ablation study.

Following recent transformer structures (Vaswani et al.
2017), our transformer has a total of six layers, each of which
consists of multi-head self-attention as well as MLP Let us
denote the output embedding of the start token as f̂0 ∈ RCp .
Given a new candidate crop plm+1, l ∈ [1, k], we first apply
another trainable linear matrix W2 with the same shape as
W1 to obtain its appearance features as f̂ lm+1 = W2 · plm+1.
Then its compatible score with the chosen crop set P is
computed as the cosine similarity between their embeddings,
i.e. f̂0 · f̂ lm+1. Note that both the embeddings are normalized
to the unit hypersphere before matching.

During training, given an image with its paired scene graph,
our method randomly selects a crop set P = {p1, ..., pm|m ∈
[1, n)} from the image. The size m is randomly determined
to mimic the iterative selection process for inference. Then
for a new object om+1, its crop pm+1 from the original image
is treated as the positive crop while its retrieved candidate
crops {p1m+1, ..., p

k
m+1} from different images are treated

as negative crops. Then the contrastive loss for this training
image can be defined as

Lcontrastive = −log exp(f̂0·f̂m+1/τ)

exp(f̂0·f̂m+1/τ)+
∑k

l=1 exp(f̂0·f̂ l
m+1/τ)

, (1)

where f̂m+1 and f̂ lm+1 are the embeddings of the positive
crop pm+1 and a negative crop plm+1. τ is a positive scalar
temperature parameter.

During inference, given a scene graph and the predicted
bounding boxes, since initially there is no crop selected for
any object, our method simply randomly samples one object
and randomly set one of its candidate crops as the chosen
crop. Then, for each remaining object oi(i ∈ (2, n]), we
apply the trained SCSM once to find its candidate crop with
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Figure 3: Our overall framework for PSGIM.

the highest compatible score and add it to the chosen set P .
The process is repeated until every object has selected its
own crop.

Progressive Scene Graph to Image Module
For every object oi in the given scene graph, we now have
its scene-graph embedding ti, bounding box prediction bi
as well as a selected object crop pi. Our PSGIM leverages
these inputs to generate the final image x ∈ RH×W×3. The
framework is shown in Fig. 3.

Our generation module first leverages a content encoderEc
and a style encoder Es to extract different features from the
object crop pi. The output content feature of Ec is used as the
generator input to provide the structural information of object
oi in the generated image. The output style feature of Es is
used to modulate the content feature to have a unified style
with the other object crops, and thus improves the overall
realism of the final generated image. It is worth noting that
although our SCSM is able to select mutually compatible
object crops, it is still possible that the initially retrieved
candidate crop sets do not have enough compatible crops to
choose. Therefore we propose a style unifier in the generator
to handle the limitation.

Specifically, we extract the content feature as ci =
Ec(pi), ci ∈ RHc×Wc×Cc . We further combine the spatially-
expanded scene-graph feature ti with ci to include more
semantics. The new feature is further interpolated and pasted
onto a specific region of a zero feature map with the shape
R

H

2N−1×
W

2N−1×(Cc+Ct), where the location of the region is
determined by the location bi scaled by 1

2N−1 and N is the
number of output scales of the generator. Let ĉi denote the
final pasted feature.

The style feature is extracted as si = Es(pi), si ∈ RCs .
Our style unifier takes as input the averaged style features
of all object crops and produces as output the modulation

parameters which are applied to normalize the channels of
each content feature ĉi independently.

γs, βs = StyleUnifier( s1+...+snn ), γs, βs ∈ RCc+Ct ,

ĉi = γs
ĉi−µi√
σi+ε

+ βs, ĉi ∈ R
H

2N−1×
W

2N−1×(Cc+Ct),
(2)

where the style unifier is implemented via a MLP with several
nonlinear layers. µi and σi are the mean and variance of
the content feature ĉi and ε is a small positive constant for
numerical stability. Finally, the normalized content features
of all crops are aggregated together to represent the generator
input at the coarsest level, i.e. ĉ1 =

∑n
i=1 ĉi.

Our generator has a hierarchical structure with N output
scales. At every scale j ∈ [1, N ], the generator takes as in-
put ĉj and produces an output image xj ∈ R

H

2N−j ×
W

2N−j ×3.
There are two important network components at every scale
of the generator. The first component is the gated convolu-
tions employed from (Yu et al. 2019) which aims to inpaint
the missing areas uncovered by any object crops. The second
component is the patch-guided spatially adaptive normaliza-
tion module (PSANM) that is inspired from the SPADE (Park
et al. 2019) module, where we first copy and paste the object
crops into a reference image and then use it to guide the
structure and content of the generated image. Specifically,
the reference image rj ∈ R

H

2N−j ×
W

2N−j ×1 is generated by
pasting the gray scales of all object crops pi onto an empty
canvas based on their location bi scaled by a factor 1

2N−j .
The crops are turned into gray scale to eliminate the negative
effects of possible inconsistent color styles, which is already
handled by our style unifier. Then similar to the semantic
mask input to SPADE, our reference image rj is employed to
predict spatially adaptive normalization parameters. Please
refer to Fig. 3 for more details about PSANM.

Experiments demonstrate the superiority of our PSGIM to
existing generators for the synthesis from scene graphs.
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Training losses. Given the generated image output at the
j-th scale, we propose several losses to train our generator.
First, for a training image y with its paired scene graph, we
can use ground truth crops and bounding boxes for each
object, and thus the generated output xj should reconstruct
(y)↓j , where (·)↓j denotes the operation of downsampling of
an image to the j-th scale.

Lj
r = E[‖(y)↓j − xj‖2]. (3)

We also leverage the perceptual loss (Johnson, Alahi, and
Fei-Fei 2016; Chen, Xu, and Jia 2020) to compare xj with
(y)↓j using ImageNet (Deng et al. 2009) pretrained VGG
(Simonyan and Zisserman 2015) features Φk, as

Lj
p =

∑
l

E[‖Φl((y)↓j)− Φl(x
j)‖2]. (4)

In addition, we apply the adversarial loss (Mao et al. 2017)
with a discriminator Dj at the j-the scale, as

Lj
d = E[(Dj((y)↓j)−1)2+(Dj(xj))2], Lj

g = E[(Dj(xj)−1)2].
(5)

Furthermore, we propose a consistency loss term to encour-
age the similarity between the generated outputs at different
scales, as

Lc =

N−1∑
j=1

E[‖(xN )↓j − xj‖]. (6)

Besides using ground truth crops and bounding boxes, we
can also use retrieved crops and predicted bounding boxes
to generate a new image x̄j which does not have correspond-
ing ground truth image. Therefore, we can only apply the
adversarial loss and consistency loss for it.

In summary, the total loss to train our generator at all scales
can be written as

L = λ1

∑
xj ,j

Lj
r + λ2

∑
xj ,j

Lj
p + λ3

∑
xj ,x̄j ,j

Lj
g + λ4

∑
xj ,x̄j

Lc, (7)

where λ1 to λ4 are parameters to balance various losses.

Experiments
Datasets
The COCO-Stuff (Caesar, Uijlings, and Ferrari 2018) and
Visual Genome (Krishna et al. 2017) datasets are standard
benchmark datasets for evaluating scene-graph-to-image gen-
eration models. Our framework can synthesize images with
arbitrary resolution. However, due to the computation lim-
itation, we use the image resolution of 256 × 256 for all
the experiments. We follow the protocol in sg2im (Johnson,
Gupta, and Fei-Fei 2018) to pre-process the dataset and com-
plete the train-test split.

Implementation Details
We implement with PyTorch (Paszke et al. 2017) and train
SCSM and PSGIM with 90 epochs on both the COCO-Stuff
and Visual Genome datasets. In addition, we use the Adam
optimizer (Kingma and Ba 2015) with a batch size of 16.
The learning rates for the generator and discriminator are
both 0.0001, and the exponential decay rates (β1, β2) are

set to be (0, 0.9). We set the hyper-parameters as follows:
λ1 = 1.0, λ2 = 1.0, λ3 = 0.02, λ4 = 1.0. For the training of
SCSM, the proportion between positive samples and negative
samples is 1:10. The number of candidate crops for each
object during inference is 5. To implement the perceptual loss
term, we use the ReLU1 2, ReLU2 2, ReLU3 3, ReLU4 3,
ReLU5 3 layers of an ImageNet-pretrained VGG-16 network
(Simonyan and Zisserman 2015). The crop size is set to
64× 64 and 32× 32 for COCO-Stuff and Visual Genome.

Baselines
The baselines for the comparison include four categories: 1)
the parametric generative models for mapping scene graphs
to images sg2im (Johnson, Gupta, and Fei-Fei 2018); 2) the
semi-parametric approaches PasteGAN and RetrieveGAN
(Li et al. 2019c; Tseng et al. 2020); 3) the text-to-image
methods AttnGAN (Xu et al. 2018), MirrorGAN (Qiao et al.
2019),ControlGAN (Li et al. 2019a), DM-GAN (Zhu et al.
2019),Obj-GAN (Li et al. 2019b); 4) the layout-to-image
methods Reconfigurable (Sun and Wu 2019), Specifying
(Ashual and Wolf 2019),Layout2im (Zhao et al. 2019). For
the text-to-image methods, we follow the strategy in Re-
trieveGAN (Tseng et al. 2020) for comparison: we convert
the scene graph to the corresponding text description. Specif-
ically, we convert each relationship in the graph into a sen-
tence, and link every sentence via the conjunction word “and”.
The layout-to-image methods take input as the ground-truth
bounding boxes. For a fair comparison, all baselines are
trained to synthesize with resolution of 256× 256.

Metrics
We employ three metrics. 1) Inception Score (IS) (Salimans
et al. 2016): IS uses the Inception V3 (Szegedy et al. 2016)
model to measure the visual quality of the generated images.
2) Fr´echet Inception Distance (FID) (Heusel et al. 2017):
FID measures the visual quality and diversity of the synthe-
sized images. 3) Diversity (DS): we follow the setting of (Li
et al. 2019c; Tseng et al. 2020) to evaluate the diversity by
measuring distances among features of synthesized images
(these images are synthesized with same input scene graph
while different crops) using the Learned Perceptual Image
Patch Similarity (LPIPS) (Zhang et al. 2018) metric.

Comparison with Existing Approaches
Quantitative evaluation. To have a fair comparison with
different methods, we conduct the evaluation using two dif-
ferent settings. First, bounding boxes of objects are predicted
by models. Second, ground-truth bounding boxes are given as
inputs in addition to the scene graph. The results of these two
settings are shown in Table 1. Since our approach has an op-
timized crop retrieval process and better generator structure,
our approach performs favorably against the other algorithms.
And our results are also superior over SOTA text-to-image
and layout-to-image methods on both COCO-Stuff and Vi-
sual Genome datasets. Moreover, since our framework can
have different crops for the initialization of the chosen crops
in SCSM, our framework synthesizes comparably diverse
images compared to others.
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Figure 4: The synthesis on COCO-Stuff (left four columns), Visual Genome (right four columns).

Datasets COCO-Stuff Visual Genome
FID ↓ IS ↑ DS ↑ FID ↓ IS ↑ DS ↑

sg2im 226.3 3.8 0.02 210.0 4.7 0.10
AttnGAN 80.1 9.2 0.15 126.1 8.4 0.30
MirrorGAN 78.3 9.5 0.15 123.3 8.7 0.31
ControlGAN 86.1 8.6 0.14 135.6 7.7 0.28
DM-GAN 68.0 10.9 0.18 107.0 10.5 0.34
Obj-GAN 68.4 10.8 0.19 107.8 10.4 0.35
PasteGAN 78.8 8.5 0.60 131.6 6.5 0.38
RetrieveGAN 56.9 10.2 0.47 113.1 7.5 0.30
Ours 51.6 15.2 0.63 63.7 10.8 0.59
sg2im (GT) 100.9 9.9 0.02 141.3 6.8 0.14
Layout2im 50.6 11.4 0.55 60.6 10.7 0.53
Reconfigurable 48.6 14.0 0.56 57.6 10.1 0.54
Specifying 65.2 12.4 0.62 63.3 11.0 0.61
PasteGAN (GT) 70.2 11.0 0.45 114.3 9.5 0.27
RetrieveGAN (GT) 54.6 12.3 0.25 77.7 10.8 0.22
Ours (GT) 46.9 15.5 0.64 56.7 11.4 0.59

Table 1: ↑ means the higher the better, ↓ means the lower the
better. The top part shows results of employing the predicted
bounding boxes during the inference, and the bottom part
displays results of using the ground-truth bounding boxes.

Qualitative evaluation. Furthermore, we qualitatively
compare the visual results generated by different methods
in Fig. 4. We show the results on the COCO-Stuff and the
Visual Genome datasets under two settings of using predicted
and ground-truth bounding boxes. Moreover, our model syn-
thesizes comparably diverse images compared to the other
schemes. Our framework can synthesize diverse images by
setting different crops to initialize the set of chosen crops in
SCSM, and the diverse results can be viewed in Fig. 5.

Datasets COCO-Stuff Visual Genome

Other Same Ours Other Same Ours

sg2im 15.3 8.7 76.0 17.3 2.7 80.0
AttnGAN 24.0 4.7 71.3 16.7 8.0 75.3
MirrorGAN 20.7 6.0 73.3 8.0 10.0 82.0
ControlGAN 18.0 13.3 68.7 16.6 16.7 66.7
DM-GAN 20.7 12.7 66.6 15.3 28.7 56.0
Obj-GAN 17.3 10.7 72.0 10.0 14.0 76.0
PasteGAN 8.0 17.3 74.7 3.4 19.3 77.3
RetrieveGAN 12.7 5.3 82.0 6.0 6.0 88.0
sg2im (GT) 8.7 9.3 82.0 2.6 6.7 90.7
Layout2im 19.3 10.0 70.7 14.0 12.7 73.3
Reconfigurable 25.3 7.3 67.4 26.6 10.7 62.7
Specifying 22.7 12.7 64.6 14.0 18.0 68.0
PasteGAN (GT) 18.7 11.3 70.0 9.3 14.7 76.0
RetrieveGAN (GT) 28.7 16.0 55.3 26.6 12.7 60.7

Table 2: User preference in the user study for the synthe-
sis. “Ours” is the percentage (%) that our result is pre-
ferred, “Other” is the percentage that other method is selected,
“Same” means the percentage that the users can not decide.

User study. We synthesize images with our framework and
all other baselines, and conduct a user study. We invite 30
participants to see one scene graph and two images synthe-
sized by our framework and one of the baselines. And they
will choose which one is better (they can also select that
they have no preference). The criteria include the consistency
with the input scene graph and the quality of synthesized
images. Each participant is required to complete 70 pairs of
AB-test. The results are shown in Table 2, demonstrating that
our framework can better implement the synthesis.
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Datasets COCO-Stuff Visual Genome
Retrieve Generation FID ↓ IS ↑ DS ↑ FID ↓ IS ↑ DS ↑
PasteGAN PSGIM 58.9 12.9 0.64 83.8 8.1 0.56
RetrieveGAN PSGIM 55.3 13.2 0.65 80.2 8.5 0.57
SCSM w/o P PSGIM 54.7 13.5 0.62 81.5 9.2 0.53
SCSM PasteGAN 53.5 11.7 0.58 98.7 8.0 0.54
SCSM PSGIM 51.6 15.2 0.63 63.7 10.8 0.59

Table 3: Ablation study’s results. “w/o P” denotes the setting
without using the position encoding of bounding boxes.
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Figure 5: Diverse synthesis on COCO-Stuff (first row) and
Visual Genome (bottom row).

Ablation Study
The effects of SCSM and PSGIM. First, we prove the
effectiveness of our proposed SCSM. We replace SCSM with
the pre-trained embedding function in PasteGAN (Li et al.
2019c), and the differentiable retrieval module in Retrieve-
GAN (Tseng et al. 2020). Second, we validate the effect of
our PSGIM. We replace PSGIM with the generator in Paste-
GAN and RetrieveGAN while keeping our trained SCSM. We
conduct the ablation studies on both COCO-Stuff dataset and
Visual Genome dataset, and the results are shown in Table 3.
Obviously, our retrieve process is better than the retrieve strat-
egy proposed by PasteGAN and RetrieveGAN. Moreover,
the ablation study also proves the superiority of our generator
compared with the generator proposed by PasteGAN.

The effect of the position encoding. We also validate the
effect of using the position encoding in our SCSM, by delet-
ing the position encoding of bounding boxes in SCSM (the
results are denoted as “SCSM w/o P”). As shown in Table 3,
the deletion of position encoding causes the decrease of the
performance.

The influence of candidate crops’ number. Moreover, we
also analyze the impact from the number of candidate crops
for each object. The candidate crops are pre-retrieved by the
method of PasteGAN (Li et al. 2019c) and the number of
candidate crops is 5 in the above experiments. In this section,
we conduct experiments with the number of candidate crops
as 50 and 100. As shown in Table 4, the performance is
improved a little since our retrieve module will preferentially
choose the candidate crop that has a higher rank after the
pre-retrieve. We expect the improvement will be more clear
if a large-scale object bank (e.g., Google search engine) is
available. However, if we set the number of candidate crops
high, the time cost for retrieve is increased a lot. Thus, the
choice of 5 in this paper is rational and practical.

Datasets COCO-Stuff Visual Genome
FID ↓ IS ↑ DS ↑ FID ↓ IS ↑ DS ↑

Ours (50) 50.8 15.8 0.66 62.5 11.2 0.62
Ours (100) 50.5 16.3 0.68 62.1 11.7 0.64
Ours (5) 51.6 15.2 0.63 63.7 10.8 0.59

Table 4: “Ours (xx)” means the results with the number of
candidate crops as xx.

Datasets COCO-Stuff Visual Genome
Retrieve FID ↓ IS ↑ DS ↑ FID ↓ IS ↑ DS ↑
RetrieveGAN 65.1 8.5 0.59 126.5 4.2 0.45
SCSM w/o P 64.9 8.6 0.58 126.0 4.3 0.44
SCSM 63.5 8.9 0.59 125.6 4.5 0.46

Table 5: Comparison among retrieve strategies.

The average number of external images. For the gener-
ation from one scene graph, our SCSM would obtain a set
of patches for synthesis. These crops are extracted from a
set of external images, and we calculate the average num-
ber. For COCO-stuff, retrieved patches for one scene graph
are cropped from 5.46 external images averagely; for Visual
Genome, the average number is 4.18. These results effec-
tively demonstrate that the good results of our method are not
simply because it retrieves a real image matching the given
scene graph. Instead, it is because of its ability to search
mutually compatible patches from different image sources
and strong generation capability.

Evaluation of crop selection. We can paste retrieved crops
from different methods onto one image, building a canvas.
And we sort the crops according to their area and put the
crops with a larger size to the back. To further demonstrate
the superiority of our retrieve strategy directly, we compute
the FID, IS, and DS for the canvas formed by different re-
trieve methods. The results are shown in Table 5. The results
demonstrate three important conclusions: 1) our retrieved
crops are more mutually compatible than other baselines; 2)
our generator (PSGIM) can further enhance the mutual com-
patibility, producing more realistic images than the canvas;
3) position encoding is useful to improve the results while
previous methods fail to leverage such information.

Conclusion
We in this paper propose a novel Sequential Crop Selection
Module (SCSM) and Progressive Scene Graph to Image Mod-
ule (PSGIM). In SCSM, the selection of the image crop for
each object would be determined with the contents and loca-
tions of image crops that have been chosen previously. Such
sequential selection is implemented with a transformer that is
trained with contrastive learning. Hierarchical gated convolu-
tions in the generator are employed to enhance the areas that
are not covered by any image crops; a patch-guided spatially
adaptive normalization module is also proposed to guarantee
the generated images highly respecting the crops. Evaluated
on Visual Genome and COCO-Stuff, the results demonstrate
the superiority of our proposed over SOTA methods.
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